The present invention relates to network interface devices. More particularly, the present invention relates to a method and apparatus for aggregating input data streams from first processors into one data stream for a second processor.
Switched Ethernet technology has continued evolving beyond the initial 10 Mbps (bit per second). Gigabit Ethernet technology complying the Institute of Electrical and Electronics Engineers (IEEE) 1000BASE-T Standard (IEEE 802.3 2002-2002) meets demands for greater speed and bandwidth of increasing network traffic. Gigabit over Copper technologies provides high performance in the Enterprise local area network (LAN) and accelerates the adoption of Gigabit Ethernet in various areas, such as server farms, cluster computing, distributed computing, bandwidth-intensive applications, and the like. Gigabit over Copper technologies can be integrated into the motherboard of a computer system, and many server makers are offering integrated Gigabit over Copper ports, which is also referred to as LAN on Motherboard.
Gigabit Ethernet works seamlessly with existing Ethernet and Fast Ethernet networks, as well as Ethernet adapters and switches. The 1 Gbps (i.e., 1000 Mbps) speeds of Gigabit Ethernet are 10 times faster than Fast Ethernet (IEEE 100BASE-T), and 100 times faster than standard Ethernet (IEEE 10BASE-T). 10Gigabit Ethernet (10 GbE) enables Gigabit to be migrated into an Enterprise LAN by providing the appropriate backbone connectivity. For example, 10 GbE delivers a bandwidth required to support access to Gigabit over Copper attached server farms.
Switch fabrics and packet processors in high-performance broadband switches, such as Gigabit Ethernet switches or line cards, typically run at a fraction of their rated or maximum capacity. That is, typical processing loads do not require the full capacity of the switch fabrics and packet processors. Thus, it would be desirable to provided a scheme to allow such switch fabrics or packet processors to “oversubscribe” data to achieve more efficient usage of the processing capacity, where oversubscription means that the capacity of the data feed is larger than the capacity of data processing or switching.
A method and apparatus aggregate a plurality of input data streams from first processors into one data stream for a second processor, the circuit and the first and second processors being provided on an electronic circuit substrate. The aggregation circuit includes (a) a plurality of ingress data ports, each ingress data port adapted to receive an input data stream from a corresponding first processor, each input data stream formed of ingress data packets, each ingress data packet including priority factors coded therein, (b) an aggregation module coupled to the ingress data ports, adapted to analyze and combine the plurality of input data steams into one aggregated data stream in response to the priority factors, (c) a memory coupled to the aggregation module, adapted to store analyzed data packets, and (d) an output data port coupled to the aggregation module, adapted to output the aggregated data stream to the second processor.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present invention and, together with the detailed description, serve to explain the principles and implementations of the invention.
In the drawings:
Embodiments of the present invention are described herein in the context of a method and apparatus for aggregating input data streams. Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.
In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
In accordance with one embodiment of the present invention, the components, process steps, and/or data structures may be implemented using various types of operating systems (OS), computing platforms, firmware, computer programs, computer languages, and/or general-purpose machines. The method can be implemented as a programmed process running on processing circuitry. The processing circuitry can take the form of numerous combinations of processors and operating systems, or a stand-alone device. The process can be implemented as instructions executed by such hardware, hardware alone, or any combination thereof. The software may be stored on a program storage device readable by a machine.
In addition, those of ordinary skill in the art will recognize that devices of a less general purpose nature, such as hardwired devices, field programmable logic devices (FPLDs), including field programmable gate arrays (FPGAs) and complex programmable logic devices (CPLDs), application specific integrated circuits (ASICs), or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.
In the context of the present invention, the term “network” includes local area networks (LANs), wide area networks (WANs), the Internet, cable television systems, telephone systems, wireless telecommunications systems, fiber optic networks, ATM networks, frame relay networks, satellite communications systems, and the like. Such networks are well known in the art and consequently are not further described here.
As shown in
Each of the ingress data packets includes, typically in its header, certain information such as indication of the type of the packets (ordinary data packet, protocol packet, control or management packet, and the like), port information, virtual LAN (VLAN) address, and the like. In accordance with one embodiment of the present invention, the information indicating the data packet is a certain protocol packet is used as a priority factor. In addition, port information and VLAN information may also be used as priority factors.
In accordance with one embodiment of the present invention, each of the first processors 12 and second processors 14 includes a logical interface providing logical interconnection between a Media Access Control sublayer (MAC) and a Physical layer (PHY), such as the 10 Gigabit Media Independent Interface (XGMII), through which data streams are received and transmitted. For example, the first processors 12 may be Layer-2 switching processors implementing Ethernet Maida Access Controllers and supporting the GMII, and the second processor 14 may be a data packet processor processing the aggregated packet data stream in the GMII format. Typically, the first processors 12 receive a receive (Rx) signal as the input data stream from transceivers, and the data flow from the first processors 12 to the second processor 14 through the aggregation module 18 forms a receive data path in the system. On the other hand, the data flow form the second processor 14 to the first processors 12 typically forms a transmit (Tx) data path.
Accordingly, in accordance with one embodiment of the present invention, as shown in
The first packet analyzer 40a is coupled to the first data port 16a, and adapted to classify each of the ingress data packets in the first data stream 24a into one of predetermined priority classes based on the priority factors of the ingress data packets. Similarly, the second packet analyzer 40b is coupled to the second data port 16b, and adapted to classify each of the ingress data packets in the second data stream 24b into one of predetermined priority classes based on the priority factors. As described above, each of the ingress data packets includes, typically in the header, certain information such as indication of the type of the packets (ordinary data packet, protocol packet, control or management packet, and the like), port information, virtual LAN (VLAN) address, and the like, which can be used as priority factors. The priority class of each data packet is determined using one or more priority factors.
The queue module 42 includes a plurality of priority queues 48 and selection logic 50. Each of the priority queues 48 is provided for the corresponding priority class, and the selection logic 50 implements a queue scheme. For example, four (4) priority queue may be provided. The first and second packet analyzers 40a and 40b analyze and classify each of the ingress data packets into one of the priority classes based on the priority factors, and also generate a packet descriptor for each of the analyzed ingress data packets. The analyzed data packet is stored in the memory 20. The packet descriptor contains a reference to a memory location of its analyzed data packet. The packet descriptor is placed in a priority queue 48 corresponding to the priority class of the data packet. The selection logic 50 arbitrates and select a packet descriptor from among the priority queues 48 in accordance with the queue scheme. Such a queue scheme includes strict fair queuing, weighted fair queuing, and the like.
The memory interface 44 provides access to the external buffer memory 20, and may include a first write interface 52a, a second write interface 52b, and a common read interface 54. The first write interface 52a is coupled to the first packet analyzer 40a and adapted to write the analyzed data packets into the memory 20 at the memory location indicated by the corresponding packet descriptor. Similarly, the second write interface 52b is coupled to the second packet analyzer 40b, and adapted to write the analyzed data packets into the memory 20 at the memory location indicated by the corresponding packet descriptor. The common read interface 54 is coupled to the queue module 42 (the queue selection logic 50) and adapted to read a data packet from a memory location of the memory 20 indicated by the selected packet descriptor. The data packet read from the memory 20 is provided to the output module 46 which sends the data packets to the output data port 22 as the aggregated data stream. Providing separate write interfaces (and the corresponding write ports) and a common read interface (and the corresponding common read port) saves the number of input/output (I/O) pins of the circuit 10.
In the above-discussed embodiments, two or more input data streams from different processors are aggregated into one data stream. The present invention is also applicable when data from one processor (first processor) is oversubscribed by another (second processor), for example, when the first processor's uplink bandwidth (capacity) is greater than the second processor's data processing bandwidth (capacity). The circuit in accordance with the present invention can “bridge” the two processors and provides aggregation scheme for the oversubscribed data.
The implementation of the circuit 11 can be done in a similar manner as that of the circuit 10 shown in
Similarly to the circuit 10 in
As shown in
As described above, each of the first processors and second processors may include a logical interface providing logical interconnection between a Media Access Control sublayer (MAC) and a Physical layer (PHY), such as the 10 Gigabit Media Independent Interface (XGMII), through which data streams are received and transmitted. For example, the first processors may be Layer-2 switching processors implementing Ethernet Maida Access Controllers and supporting GMII, and the second processor may be a data packet processor processing the aggregated packet data stream. Typically, the first processors receive a receive signal (Rx) as the input data stream from transceivers. For example, the first processors may be a 10 GbE switching processor that supports various features used for switching and forwarding operation of data packets as well as the interface standards such as IEEE 1000BASE-T. Typically, such a 10 GbE switching processor has ten or more Gigabit ports and a 10Gigabit uplink. For example, BCM 5632 processors, available from Broadcom Corporation, Irvine, Calif., may be used as such switching processors. However, any other MAC/PHY devices supporting required features can be used in the embodiment of the present invention. The second processor is typically a proprietary packet processor implementing specific packet processing processes and switching fabrics.
As shown in
As shown in
The packet descriptor contains a reference to a memory location of its analyzed data packet in the memory 120. The packet descriptor is placed in the queue module 142. The queue module 142 includes a plurality of priority queues 148 and selection logic 150. Each of the priority queues 148 is provided for the corresponding priority class, and the packet descriptor is placed in the priority queue 148 corresponding to the priority class of its data packet. That is, packet descriptors of the ingress data packets for both of the first and second input data streams 124a and 124b are placed in the same priority queue 148 if they belong to the same priority class. The selection logic 150 implements a queue scheme, and arbitrates and select a packet descriptor from among the priority queues 148 in accordance with the queue scheme. Such a queue scheme includes strict fair queuing, weighted fair queuing, and the like.
The memory interface 144 provides access to the external memory 120. When the analyzed data packets are to be written into the memory 120 (memory unit 120a or 120b), the first or second packet analyzer 140a or 140b uses the corresponding memory interface 144a or 144b. When the stored data packet specified by a selected packet descriptor is to be read from the referenced memory location in the memory 120, one of the first and second interfaces is commonly used (the first interface 144a in this example) as the read interface. The data packet read from the memory 120 is provided to the output module 146 which sends the data packets to the output data port 122 as the aggregated data stream.
As shown in
As described above, the priority factors include information indicating the type of the packets (ordinary data packet, protocol packet, control or management packet, and the like), destination port information, virtual LAN (VLAN) address, and the like. In accordance with one embodiment of the present invention, the information indicating that the data packet is a certain protocol packet is used for protocol-filtering to classify certain protocols. The data packets meet the protocol filter criterion may be given the highest priority such that protocol packets are less likely to be dropped or discarded. The port information and/or VLAN information is also used as priority factors.
In accordance with one embodiment of the present invention, the priority of a data packet is assigned using per-port priority, VLAN priority, and protocol filter. For example, assume that the ingress data packets are to be classified into four priority classes. Each priority factor of an ingress data packet may be assigned with a certain number such as 3, 2, 1, or 0, indicating the priority class, with number 3 indicating the highest priority. For example, each port number may be mapped onto one of the priority numbers. If the ingress data packet has been formatted with another priority queue scheme, such an external priority number, for example, a predefined VLAN priority number, may also be mapped onto one of the (internal) priority numbers 3, 2, 1, and 0. If the ingress data packet is a protocol packet, the priority factor associated with the protocol filter may be assigned with number 3. Then, the priority numbers assigned to respective factors of the data packet are “merged” or compared each other and the highest priority number is determined as the ultimate priority number for that data packet. The data packet is classified according to the ultimate priority number. For example, if the ingress data packet is a protocol packet, it would be classified into the highest priority class even if other priority factors receives lower priority number.
Referring back to
The output module 146 may include a read buffer 156 coupled to a common read interface of the memory interface 144, and a data encoder 158 coupled to the read buffer 146. The data encoder 158 encodes the data packets into an interface format corresponding to that used by the first and second processors. For example, the data packets are encoded into the XGMII format to form an output data stream sent from the output data port 122.
As shown in
An input data stream is received from each of the first processors (300). Each input data stream is formed of ingress data packets, and each ingress data packet includes priority factors coded therein, as described above. Each of the ingress data packets are analyzed and classified into one of predetermined priority classes based on the priority factors (302). The analyzed ingress data packet is stored in a memory (304), and a packet descriptor is generated for the analyzed ingress data packet (306). The packet descriptor contains a reference to a memory location of its analyzed data packet stored in the memory. The packet descriptor is placed in a priority queue corresponding to the priority class of the data packet (308). The packet descriptors from each data stream of the same priority class are placed in the same priority queue for that priority class. A packet descriptor is selected from among the priority queues by arbitrating the packet descriptors in the priority queues using selection logic implementing a queue scheme (310). A data packet corresponding to the selected packet descriptor is read from the memory (312), and an aggregated data stream is generated combining the data packets read from the memory, and aggregated data stream is sent to the second processor (314).
As shown in
The numbers of ports, processors, priority queues, memory banks, and the like are by way of example and are not intended to be exhaustive or limiting in any way. While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3866175 | Seifert, Jr. et al. | Feb 1975 | A |
4628480 | Floyd | Dec 1986 | A |
4667323 | Engdahl et al. | May 1987 | A |
4683564 | Young et al. | Jul 1987 | A |
4698748 | Juzswik et al. | Oct 1987 | A |
4723243 | Joshi et al. | Feb 1988 | A |
4754482 | Weiss | Jun 1988 | A |
4791629 | Burns et al. | Dec 1988 | A |
4794629 | Pastyr et al. | Dec 1988 | A |
4807280 | Posner et al. | Feb 1989 | A |
4876681 | Hagiwara et al. | Oct 1989 | A |
4896277 | Vercellotti et al. | Jan 1990 | A |
4985889 | Frankish et al. | Jan 1991 | A |
5101404 | Kunimoto et al. | Mar 1992 | A |
5136584 | Hedlund | Aug 1992 | A |
5195181 | Bryant et al. | Mar 1993 | A |
5208856 | Leduc et al. | May 1993 | A |
5224108 | McDysan et al. | Jun 1993 | A |
5280582 | Yang et al. | Jan 1994 | A |
5282196 | Clebowicz | Jan 1994 | A |
5287477 | Johnson et al. | Feb 1994 | A |
5301192 | Henrion | Apr 1994 | A |
5307345 | Lozowick et al. | Apr 1994 | A |
5323386 | Wiher et al. | Jun 1994 | A |
5365512 | Combs et al. | Nov 1994 | A |
5377189 | Clark | Dec 1994 | A |
5390173 | Spinney et al. | Feb 1995 | A |
5392279 | Taniguchi | Feb 1995 | A |
5406643 | Burke et al. | Apr 1995 | A |
5408469 | Opher et al. | Apr 1995 | A |
5430442 | Kaiser et al. | Jul 1995 | A |
5436893 | Barnett | Jul 1995 | A |
5461615 | Henrion | Oct 1995 | A |
5490258 | Fenner | Feb 1996 | A |
5506840 | Pauwels et al. | Apr 1996 | A |
5521923 | Willmann et al. | May 1996 | A |
5546385 | Caspi et al. | Aug 1996 | A |
5550816 | Hardwick et al. | Aug 1996 | A |
5563948 | Diehl et al. | Oct 1996 | A |
5566170 | Bakke et al. | Oct 1996 | A |
5598410 | Stone | Jan 1997 | A |
5600795 | Du | Feb 1997 | A |
5619497 | Gallagher et al. | Apr 1997 | A |
5640504 | Johnson, Jr. | Jun 1997 | A |
5646878 | Samra | Jul 1997 | A |
5663952 | Gentry, Jr. | Sep 1997 | A |
5663959 | Nakagawa et al. | Sep 1997 | A |
5666353 | Klausmeier et al. | Sep 1997 | A |
5721819 | Galles et al. | Feb 1998 | A |
5732080 | Ferguson et al. | Mar 1998 | A |
5740176 | Gupta et al. | Apr 1998 | A |
5745708 | Weppler et al. | Apr 1998 | A |
5751710 | Crowther et al. | May 1998 | A |
5802287 | Rostoker et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5818816 | Chikazawa et al. | Oct 1998 | A |
5835496 | Yeung et al. | Nov 1998 | A |
5838684 | Wicki et al. | Nov 1998 | A |
5862350 | Coulson | Jan 1999 | A |
5867675 | Lomelino et al. | Feb 1999 | A |
5870538 | Manning et al. | Feb 1999 | A |
5872769 | Caldara et al. | Feb 1999 | A |
5872783 | Chin | Feb 1999 | A |
5875200 | Glover et al. | Feb 1999 | A |
5907566 | Benson et al. | May 1999 | A |
5907660 | Inoue et al. | May 1999 | A |
5909686 | Muller et al. | Jun 1999 | A |
5915094 | Kouloheris et al. | Jun 1999 | A |
5920566 | Hendel et al. | Jul 1999 | A |
5920886 | Feldmeier | Jul 1999 | A |
5936939 | Des Jardins et al. | Aug 1999 | A |
5936966 | Ogawa et al. | Aug 1999 | A |
5956347 | Slater | Sep 1999 | A |
5999528 | Chow et al. | Dec 1999 | A |
6000016 | Curtis et al. | Dec 1999 | A |
6016310 | Muller et al. | Jan 2000 | A |
6023471 | Haddock et al. | Feb 2000 | A |
6035414 | Okazawa et al. | Mar 2000 | A |
6038288 | Thomas et al. | Mar 2000 | A |
6067298 | Shinohara | May 2000 | A |
6067606 | Holscher et al. | May 2000 | A |
6076115 | Sambamurthy et al. | Jun 2000 | A |
6081522 | Hendel et al. | Jun 2000 | A |
6088356 | Hendel et al. | Jul 2000 | A |
6094434 | Kotzur et al. | Jul 2000 | A |
6104696 | Kadambi et al. | Aug 2000 | A |
6104700 | Haddock et al. | Aug 2000 | A |
6108306 | Kalkunte et al. | Aug 2000 | A |
6118787 | Kalkunte et al. | Sep 2000 | A |
6125417 | Bailis et al. | Sep 2000 | A |
6128666 | Muller et al. | Oct 2000 | A |
6144668 | Bass et al. | Nov 2000 | A |
6147996 | Laor et al. | Nov 2000 | A |
6151301 | Holden | Nov 2000 | A |
6154446 | Kadambi et al. | Nov 2000 | A |
6157643 | Ma | Dec 2000 | A |
6160809 | Adiletta et al. | Dec 2000 | A |
6172990 | Deb et al. | Jan 2001 | B1 |
6178520 | DeKoning et al. | Jan 2001 | B1 |
6181699 | Crinion et al. | Jan 2001 | B1 |
6222845 | Shue et al. | Apr 2001 | B1 |
6243667 | Kerr et al. | Jun 2001 | B1 |
6263374 | Olnowich et al. | Jul 2001 | B1 |
6272144 | Berenbaum et al. | Aug 2001 | B1 |
6304903 | Ward | Oct 2001 | B1 |
6320859 | Momirov | Nov 2001 | B1 |
6333929 | Drottar et al. | Dec 2001 | B1 |
6335932 | Kadambi et al. | Jan 2002 | B2 |
6335935 | Kadambi et al. | Jan 2002 | B2 |
6343072 | Bechtolsheim et al. | Jan 2002 | B1 |
6351143 | Guccione et al. | Feb 2002 | B1 |
6356550 | Williams | Mar 2002 | B1 |
6356942 | Bengtsson et al. | Mar 2002 | B1 |
6363077 | Wong et al. | Mar 2002 | B1 |
6369855 | Chauvel et al. | Apr 2002 | B1 |
6421352 | Manaka et al. | Jul 2002 | B1 |
6424658 | Mathur | Jul 2002 | B1 |
6424659 | Viswanadham et al. | Jul 2002 | B2 |
6427185 | Ryals et al. | Jul 2002 | B1 |
6460088 | Merchant | Oct 2002 | B1 |
6463063 | Bianchini, Jr. et al. | Oct 2002 | B1 |
6466608 | Hong et al. | Oct 2002 | B1 |
6470436 | Croft et al. | Oct 2002 | B1 |
6473433 | Bianchini, Jr. et al. | Oct 2002 | B1 |
6477174 | Dooley et al. | Nov 2002 | B1 |
6480477 | Treadway et al. | Nov 2002 | B1 |
6490280 | Leung | Dec 2002 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6496502 | Fite, Jr. et al. | Dec 2002 | B1 |
6522656 | Gridley | Feb 2003 | B1 |
6532229 | Johnson et al. | Mar 2003 | B1 |
6532234 | Yoshikawa et al. | Mar 2003 | B1 |
6535504 | Johnson et al. | Mar 2003 | B1 |
6549519 | Michels et al. | Apr 2003 | B1 |
6553370 | Andreev et al. | Apr 2003 | B1 |
6556208 | Congdon et al. | Apr 2003 | B1 |
6567404 | Wilford | May 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6606300 | Blanc et al. | Aug 2003 | B1 |
6643269 | Fan et al. | Nov 2003 | B1 |
6654342 | Dittia et al. | Nov 2003 | B1 |
6654346 | Mahalingaiah et al. | Nov 2003 | B1 |
6654370 | Quirke et al. | Nov 2003 | B1 |
6654373 | Maher, III et al. | Nov 2003 | B1 |
6658002 | Ross et al. | Dec 2003 | B1 |
6661791 | Brown | Dec 2003 | B1 |
6671275 | Wong et al. | Dec 2003 | B1 |
6678248 | Haddock et al. | Jan 2004 | B1 |
6681332 | Byrne et al. | Jan 2004 | B1 |
6687247 | Wilford et al. | Feb 2004 | B1 |
6691202 | Vasquez et al. | Feb 2004 | B2 |
6696917 | Heitner et al. | Feb 2004 | B1 |
6697359 | George | Feb 2004 | B1 |
6697368 | Chang et al. | Feb 2004 | B2 |
6700894 | Shung | Mar 2004 | B1 |
6708000 | Nishi et al. | Mar 2004 | B1 |
6721229 | Cole | Apr 2004 | B1 |
6721268 | Ohira et al. | Apr 2004 | B1 |
6721313 | Van Duyne | Apr 2004 | B1 |
6735218 | Chang et al. | May 2004 | B2 |
6745277 | Lee et al. | Jun 2004 | B1 |
6751224 | Parruck et al. | Jun 2004 | B1 |
6754881 | Kuhlmann et al. | Jun 2004 | B2 |
6765866 | Wyatt | Jul 2004 | B1 |
6775706 | Fukumoto et al. | Aug 2004 | B1 |
6778546 | Epps et al. | Aug 2004 | B1 |
6781990 | Puri et al. | Aug 2004 | B1 |
6792484 | Hook | Sep 2004 | B1 |
6792502 | Pandya et al. | Sep 2004 | B1 |
6798740 | Senevirathne et al. | Sep 2004 | B1 |
6804220 | Odenwalder et al. | Oct 2004 | B2 |
6804731 | Chang et al. | Oct 2004 | B1 |
6807179 | Kanuri et al. | Oct 2004 | B1 |
6807363 | Abiko et al. | Oct 2004 | B1 |
6810046 | Abbas et al. | Oct 2004 | B2 |
6813243 | Epps et al. | Nov 2004 | B1 |
6813266 | Chiang et al. | Nov 2004 | B1 |
6816467 | Muller et al. | Nov 2004 | B1 |
6831923 | Laor et al. | Dec 2004 | B1 |
6831932 | Boyle et al. | Dec 2004 | B1 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6839346 | Kametani | Jan 2005 | B1 |
6842422 | Bianchini, Jr. | Jan 2005 | B1 |
6854117 | Roberts | Feb 2005 | B1 |
6859438 | Haddock et al. | Feb 2005 | B2 |
6865153 | Hill et al. | Mar 2005 | B1 |
6901072 | Wong | May 2005 | B1 |
6912637 | Herbst | Jun 2005 | B1 |
6920154 | Achler | Jul 2005 | B1 |
6925516 | Struhsaker et al. | Aug 2005 | B2 |
6934305 | Dushcatko et al. | Aug 2005 | B1 |
6937606 | Basso et al. | Aug 2005 | B2 |
6946948 | McCormack et al. | Sep 2005 | B2 |
6957258 | Maher, III et al. | Oct 2005 | B2 |
6959007 | Vogel et al. | Oct 2005 | B1 |
6973092 | Zhou et al. | Dec 2005 | B1 |
6978309 | Dorbolo | Dec 2005 | B1 |
6980552 | Belz et al. | Dec 2005 | B1 |
6990102 | Kaniz et al. | Jan 2006 | B1 |
7005812 | Mitchell | Feb 2006 | B2 |
7009968 | Ambe et al. | Mar 2006 | B2 |
7012919 | So et al. | Mar 2006 | B1 |
7050430 | Kalkunte et al. | May 2006 | B2 |
7080238 | Van Hoof et al. | Jul 2006 | B2 |
7082133 | Lor et al. | Jul 2006 | B1 |
7103041 | Speiser et al. | Sep 2006 | B1 |
7126956 | Scholten | Oct 2006 | B2 |
7151797 | Limberg | Dec 2006 | B2 |
7161948 | Sampath et al. | Jan 2007 | B2 |
7167471 | Calvignac et al. | Jan 2007 | B2 |
7176911 | Kidono et al. | Feb 2007 | B1 |
7185141 | James et al. | Feb 2007 | B1 |
7185266 | Blightman et al. | Feb 2007 | B2 |
7187687 | Davis et al. | Mar 2007 | B1 |
7190696 | Manur et al. | Mar 2007 | B1 |
7191277 | Broyles | Mar 2007 | B2 |
7191468 | Hanner | Mar 2007 | B2 |
7203194 | Chang et al. | Apr 2007 | B2 |
7206283 | Chang et al. | Apr 2007 | B2 |
7212536 | Mackiewich et al. | May 2007 | B2 |
7218637 | Best et al. | May 2007 | B1 |
7219293 | Tsai et al. | May 2007 | B2 |
7228509 | Dada et al. | Jun 2007 | B1 |
7230917 | Fedorkow et al. | Jun 2007 | B1 |
7236490 | Chang et al. | Jun 2007 | B2 |
7237058 | Srinivasan | Jun 2007 | B2 |
7249306 | Chen | Jul 2007 | B2 |
7266117 | Davis | Sep 2007 | B1 |
7277425 | Sikdar | Oct 2007 | B1 |
7283547 | Hook et al. | Oct 2007 | B1 |
7286534 | Kloth | Oct 2007 | B2 |
7324509 | Ni | Jan 2008 | B2 |
7355970 | Lor | Apr 2008 | B2 |
7356030 | Chang et al. | Apr 2008 | B2 |
7366100 | Anderson et al. | Apr 2008 | B2 |
7391769 | Rajkumar et al. | Jun 2008 | B2 |
7428693 | Obuchi et al. | Sep 2008 | B2 |
7512127 | Chang et al. | Mar 2009 | B2 |
7561590 | Walsh | Jul 2009 | B1 |
7596139 | Patel et al. | Sep 2009 | B2 |
7613991 | Bain | Nov 2009 | B1 |
7636369 | Wong | Dec 2009 | B2 |
7649885 | Davis | Jan 2010 | B1 |
7657703 | Singh | Feb 2010 | B1 |
20010001879 | Kubik et al. | May 2001 | A1 |
20010007560 | Masuda et al. | Jul 2001 | A1 |
20010026551 | Horlin | Oct 2001 | A1 |
20010048785 | Steinberg | Dec 2001 | A1 |
20010053150 | Clear et al. | Dec 2001 | A1 |
20020001307 | Nguyen et al. | Jan 2002 | A1 |
20020040417 | Winograd et al. | Apr 2002 | A1 |
20020054594 | Hoof et al. | May 2002 | A1 |
20020054595 | Ambe et al. | May 2002 | A1 |
20020069294 | Herkersdorf et al. | Jun 2002 | A1 |
20020073073 | Cheng | Jun 2002 | A1 |
20020085499 | Toyoyama et al. | Jul 2002 | A1 |
20020087788 | Morris | Jul 2002 | A1 |
20020089937 | Venkatachary et al. | Jul 2002 | A1 |
20020089977 | Chang et al. | Jul 2002 | A1 |
20020091844 | Craft et al. | Jul 2002 | A1 |
20020091884 | Chang et al. | Jul 2002 | A1 |
20020097713 | Chang et al. | Jul 2002 | A1 |
20020105966 | Patel et al. | Aug 2002 | A1 |
20020110180 | Barney et al. | Aug 2002 | A1 |
20020126672 | Chow et al. | Sep 2002 | A1 |
20020131437 | Tagore-Brage | Sep 2002 | A1 |
20020141403 | Akahane et al. | Oct 2002 | A1 |
20020146013 | Karlsson et al. | Oct 2002 | A1 |
20020161967 | Kirihata et al. | Oct 2002 | A1 |
20020191605 | Van Lunteren et al. | Dec 2002 | A1 |
20030009466 | Ta et al. | Jan 2003 | A1 |
20030033435 | Hanner | Feb 2003 | A1 |
20030043800 | Sonksen et al. | Mar 2003 | A1 |
20030043848 | Sonksen | Mar 2003 | A1 |
20030048785 | Calvignac et al. | Mar 2003 | A1 |
20030061459 | Aboulenein et al. | Mar 2003 | A1 |
20030074657 | Bramley, Jr. | Apr 2003 | A1 |
20030095548 | Yamano | May 2003 | A1 |
20030103499 | Davis et al. | Jun 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030110180 | Calvignac et al. | Jun 2003 | A1 |
20030115403 | Bouchard et al. | Jun 2003 | A1 |
20030120861 | Calle et al. | Jun 2003 | A1 |
20030128668 | Yavatkar et al. | Jul 2003 | A1 |
20030137978 | Kanetake | Jul 2003 | A1 |
20030152084 | Lee et al. | Aug 2003 | A1 |
20030152096 | Chapman | Aug 2003 | A1 |
20030156586 | Lee et al. | Aug 2003 | A1 |
20030159086 | Arndt | Aug 2003 | A1 |
20030165160 | Minami et al. | Sep 2003 | A1 |
20030174719 | Sampath et al. | Sep 2003 | A1 |
20030177221 | Ould-Brahim et al. | Sep 2003 | A1 |
20030214956 | Navada et al. | Nov 2003 | A1 |
20030215029 | Limberg | Nov 2003 | A1 |
20030223424 | Anderson et al. | Dec 2003 | A1 |
20030227943 | Hallman et al. | Dec 2003 | A1 |
20040022263 | Zhao et al. | Feb 2004 | A1 |
20040028060 | Kang | Feb 2004 | A1 |
20040054867 | Stravers et al. | Mar 2004 | A1 |
20040062246 | Boucher et al. | Apr 2004 | A1 |
20040088469 | Levy | May 2004 | A1 |
20040128434 | Khanna et al. | Jul 2004 | A1 |
20040141504 | Blanc et al. | Jul 2004 | A1 |
20040190547 | Gordy et al. | Sep 2004 | A1 |
20040208177 | Ogawa | Oct 2004 | A1 |
20040223502 | Wybenga et al. | Nov 2004 | A1 |
20040264380 | Kalkuntew et al. | Dec 2004 | A1 |
20050010630 | Doering et al. | Jan 2005 | A1 |
20050010849 | Ryle et al. | Jan 2005 | A1 |
20050041684 | Reynolds et al. | Feb 2005 | A1 |
20050097432 | Obuchi et al. | May 2005 | A1 |
20050132132 | Rosenbluth et al. | Jun 2005 | A1 |
20050138276 | Navada et al. | Jun 2005 | A1 |
20050144369 | Jaspers | Jun 2005 | A1 |
20050152324 | Benveniste | Jul 2005 | A1 |
20050152335 | Lodha et al. | Jul 2005 | A1 |
20050175018 | Wong | Aug 2005 | A1 |
20050185577 | Sakamoto et al. | Aug 2005 | A1 |
20050185652 | Iwamoto | Aug 2005 | A1 |
20050193316 | Chen | Sep 2005 | A1 |
20050226236 | Klink | Oct 2005 | A1 |
20050246508 | Shaw | Nov 2005 | A1 |
20050249124 | Elie-Dit-Cosaque et al. | Nov 2005 | A1 |
20060031610 | Liav et al. | Feb 2006 | A1 |
20060034452 | Tonomura | Feb 2006 | A1 |
20060077891 | Smith et al. | Apr 2006 | A1 |
20060114876 | Kalkunte | Jun 2006 | A1 |
20060146374 | Ng et al. | Jul 2006 | A1 |
20060165089 | Klink | Jul 2006 | A1 |
20060209685 | Rahman et al. | Sep 2006 | A1 |
20060221841 | Lee et al. | Oct 2006 | A1 |
20060268680 | Roberts et al. | Nov 2006 | A1 |
20070038798 | Bouchard et al. | Feb 2007 | A1 |
20070088974 | Chandwani et al. | Apr 2007 | A1 |
20070179909 | Channasagara | Aug 2007 | A1 |
20070208876 | Davis | Sep 2007 | A1 |
20070253420 | Chang et al. | Nov 2007 | A1 |
20070258475 | Chinn et al. | Nov 2007 | A1 |
20070288690 | Wang et al. | Dec 2007 | A1 |
20080002707 | Davis | Jan 2008 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080037544 | Yano et al. | Feb 2008 | A1 |
20080049742 | Bansal | Feb 2008 | A1 |
20080069125 | Reed et al. | Mar 2008 | A1 |
20080092020 | Hasenplaugh et al. | Apr 2008 | A1 |
20080095169 | Chandra et al. | Apr 2008 | A1 |
20080181103 | Davies | Jul 2008 | A1 |
20080205407 | Chang et al. | Aug 2008 | A1 |
20080307288 | Ziesler et al. | Dec 2008 | A1 |
20090175178 | Yoon et al. | Jul 2009 | A1 |
20090279423 | Suresh et al. | Nov 2009 | A1 |
20090279440 | Wong et al. | Nov 2009 | A1 |
20090279441 | Wong et al. | Nov 2009 | A1 |
20090279541 | Wong et al. | Nov 2009 | A1 |
20090279542 | Wong et al. | Nov 2009 | A1 |
20090279546 | Davis | Nov 2009 | A1 |
20090279548 | Davis et al. | Nov 2009 | A1 |
20090279558 | Davis et al. | Nov 2009 | A1 |
20090279559 | Wong et al. | Nov 2009 | A1 |
20090279561 | Chang et al. | Nov 2009 | A1 |
20090282148 | Wong et al. | Nov 2009 | A1 |
20090282322 | Wong et al. | Nov 2009 | A1 |
20090287952 | Patel et al. | Nov 2009 | A1 |
20090290499 | Patel et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1380127 | Jan 2004 | EP |
2003-289359 | Oct 2003 | JP |
2004-537871 | Dec 2004 | JP |
WO 0184728 | Nov 2001 | WO |
WO 02041544 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090279559 A1 | Nov 2009 | US |