This invention relates generally to monitoring systems and more particularly concerns devices and systems used to monitor seated or lying patients in homes or in medical environments such as hospitals, assisted care facilities, long term care institutions, and other care-giving environments, wherein audible alarms are employed that activate upon a change in the patient's condition and wherein such alarms are designed to be adjustable in volume.
It is well documented that the elderly and post-surgical patients are at a heightened risk of falling. These individuals are often afflicted by gait and balance disorders, weakness, dizziness, confusion, visual impairment, and postural hypotension (i.e., a sudden drop in blood pressure that causes dizziness and fainting), all of which are recognized as potential contributors to a fall. Additionally, cognitive and functional impairment, and sedating and psychoactive medications are also well recognized risk factors.
A fall places the patient at risk of various injuries including sprains, fractures, and broken bones—injuries which in some cases can be severe enough to eventually lead to a fatality. Of course, those most susceptible to falls are often those in the poorest general health and least likely to recover quickly from their injuries. In addition to the obvious physiological consequences of fall-related injuries, there are also a variety of adverse economic and legal consequences that include the actual cost of treating the victim and, in some cases, caretaker liability issues.
In the past, it has been commonplace to treat patients that are prone to falling by limiting their mobility through the use of restraints, the underlying theory being that if the patient is not free to move about, he or she will not be as likely to fall. However, research has shown that restraint-based patient treatment strategies are often more harmful than beneficial and should generally be avoided—the emphasis today being on the promotion of mobility rather than immobility. Among the more successful mobility-based strategies for fall prevention include interventions to improve patient strength and functional status, reduction of environmental hazards, and staff identification and monitoring of high-risk hospital patients and nursing home residents.
Of course, direct monitoring of high-risk patients, as effective as that care strategy might appear to be in theory, suffers from the obvious practical disadvantage of requiring additional staff if the monitoring is to be in the form of direct observation. Thus, the trend in patient monitoring has been toward the use of electrical devices to signal changes in a patient's circumstance to a caregiver who might be located either nearby or remotely at a central monitoring facility, such as a nurse's station. The obvious advantage of an electronic monitoring arrangement is that it frees the caregiver to pursue other tasks away from the patient. Additionally, when the monitoring is done at a central facility a single person can monitor multiple patients which can result in decreased staffing requirements and/or more efficient use of current staff.
Generally speaking, electronic monitors work by first sensing an initial status of a patient, and then generating a signal when that status changes, e.g., he or she has sat up in bed, left the bed, risen from a chair, etc., any of which situations could pose a potential cause for concern in the case of an at-risk patient. Electronic bed and chair monitors typically use a pressure sensitive switch in combination with a separate electronic monitor which conventionally contains a microprocessor of some sort. In a common arrangement, a patient's weight resting on a pressure sensitive mat (i.e., a “sensing” mat) completes an electrical circuit, thereby signaling the presence of the patient to the microprocessor. When the weight is removed from the pressure sensitive switch, the electrical circuit is interrupted, which fact is similarly sensed by the microprocessor. The software logic that drives the monitor is typically programmed to respond to the now-opened circuit by triggering some sort of alarm—either electronically (e.g., to the nursing station via a conventional nurse call system) or audibly (via a built-in siren) or both. Additionally, many variations of this arrangement are possible and electronic monitoring devices that track changes in other patient variables (e.g., wetness/enuresis, patient activity/inactivity, bed-exit, temperature, position, etc.) are available for some applications.
General information relating to mat-type sensors, electronic monitors and other hardware for use in patient monitoring is relevant to the instant disclosure and may be found in U.S. Pat. Nos. 4,179,692, 4,295,133, 4,700,180, 5,600,108, 5,633,627, 5,640,145, and, 5,654,694, U.S. patent application Ser. Nos. 10/701,581 and 10/617,700, U.S. Pat. Nos. 6,111,509, 6,441,742, and U.S. patent application Ser. No. 10/210,817 (the last three of which concern electronic monitors generally). Additional information may be found in U.S. Pat. Nos. 4,484,043, 4,565,910, 5,554,835, 5,623,760, 6,417,777, U.S. patent application 60/488,021, (sensor patents) and U.S. Pat. No. 5,065,727 (holsters for electronic monitors), the disclosures of all of which aforementioned patents are all incorporated herein by reference as if fully set out at this point. Further, U.S. Pat. No. 6,307,476 (discussing a sensing device which contains a validation circuit incorporated therein), U.S. Pat. No. 6,544,200, (for automatically configured electronic monitor alarm parameters), U.S. Pat. No. 6,696,653 (for a binary switch and a method of its manufacture), and U.S. patent application Ser. No. 10/125,059 (for a lighted splash guard) are similarly incorporated herein by reference.
Additionally, sensors other than mat-type pressure sensing switches may be used in patient monitoring including, without limitation, temperature sensors, patient activity sensors, patient location sensors, bed-exit sensors, toilet seat sensors (see, e.g., U.S. Pat. No. 5,945,914), wetness sensors (e.g., U.S. Pat. No. 6,292,102), decubitus ulcer sensors (e.g., U.S. Pat. No. 6,646,556), restraint device sensors (e.g., U.S. patent application No. 60/512,042), etc., all of which are incorporated herein by reference. Thus, in the text that follows the terms “mat” or “patient sensor” should be interpreted in its broadest sense to apply to any sort of patient monitoring switch or device, whether the sensor is pressure sensitive or not.
Finally, pending U.S. patent application Ser. No. 10/397,126, discusses how white noise can be used in the context of decubitus ulcer prevention and in other contexts, and U.S. patent application Ser. No. 60/543,718 teaches the use of medical feedback systems to reduce the risk of decubitus ulcer formation. Both of these references are similarly fully incorporated herein by reference.
Of particular importance for purposes of the instant disclosure are those patient monitors that contain audible alarms that are adjustable in volume. Those of ordinary skill in the art will recognize that it is desirable in many settings to control the local alarm volume of the monitor depending on, among other things, the level of ambient noise, the distance to the caregiver, etc. However, conventionally the hardware that makes up such volume controls (e.g., potentiometers, digital potentiometers, etc.) is expensive and/or prone to failure either by physical damage or internal corrosion.
Heretofore, as is well known in the patient monitoring arts, there has been a need for an invention to address and solve the above-described problems. Accordingly, it should now be recognized, as was recognized by the present inventors, that there exists, and has existed for some time, a very real need for a system for monitoring patients that contains an adjustable volume alarm with the features described hereinafter.
Before proceeding to a description of the present invention, however, it should be noted and remembered that the description of the invention which follows, together with the accompanying drawings, should not be construed as limiting the invention to the examples (or preferred embodiments) shown and described. This is so because those skilled in the art to which the invention pertains will be able to devise other forms of this invention within the ambit of the appended claims.
In accordance with a first aspect of the instant invention, there is provided a patient sensor and electronic monitor combination that utilizes pulse width modulation (“PWM”) as a means of controlling the volume of the alarm.
In a first preferred arrangement, there is provided an electronic patient monitor that utilizes a CPU as a signal generator and which is directly connected to a power amplifier without an intervening (or subsequent) conventional volume control. The microprocessor preferably creates frequency-varying square waves (or constant amplitude pulses) according to the sort of alarm desired by the user, with the duty cycle of the square waves being shortened to reduce the alarm volume and lengthened to increase it.
In another preferred arrangement, there is provided an electronic patient monitor substantially similar to that described above, but wherein the CPU directs a separate signal generator to create the series of pulses. In such a configuration, the separate signal generator will be programmed to adjust the pulse width so as to vary the alarm volume.
In still another preferred arrangement, there is provided an electronic patient monitor substantially as described above, but wherein the CPU directly drives the speaker without an intervening amplifier. As has been explained previously, the CPU will utilize PWM to control the output volume of the speaker.
In a further preferred embodiment, there is provided an electronic patient monitor substantially as described above, but wherein the square wave/pulse series takes the form of series of gating pulses that restrict the amount of audio information that reaches the amplifier and/or speaker.
The foregoing has outlined in broad terms the more important features of the invention disclosed herein so that the detailed description that follows may be more clearly understood, and so that the contribution of the instant inventor to the art may be better appreciated. The instant invention is not to be limited in its application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. Rather, the invention is capable of other embodiments and of being practiced and carried out in various other ways not specifically enumerated herein. Further, the disclosure that follows is intended to apply to all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. Finally, it should be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting, unless the specification specifically so limits the invention.
While the instant invention will be described in connection with one or more preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
According to a preferred aspect of the instant invention, there is provided an electronic patient monitor for use with at least one patient sensor, wherein the volume of the monitor's alarm sounds is controlled by using PWM rather than via a conventional hardware volume control.
Generally speaking, electronic patient monitors of the sort discussed herein work by first sensing an initial status of a patient, and then generating a signal when that status changes (e.g., if the patient changes position from laying or sitting to standing, if the sensor changes from dry to wet, if a temperature spike occurs, if the patient rolls, etc.) or if the status fails to change (e.g., if the patient has not moved within some predetermined time period). Turning now to
In another common arrangement, and as is illustrated in
In accordance with a first aspect of the instant invention and as is generally shown in
Preferably the monitor will utilize connector 320 to interface with the patient sensor 100. In some preferred configurations the interface 320 is compatible with an RJ-11-type jack. Preferably the sensor will be a mat-type pressure sensitive sensor, however it should be clear that the type of sensor that is employed is immaterial to the operation of the instant invention. That is, no matter what form the attached sensor might take (e.g., presence/absence, position, wetness, temperature, pressure, movement, etc.) the volume adjusting portion of the instant patient monitor would operate in exactly the same fashion. As is typical in individual patient monitors, each unit is equipped with a speaker 310 through which an audio alarm may be issued.
Turning now to
In electronic communication with CPU 420, and preferably external to it, is a power amplifier 440, the purpose of which is to amplify the signal that is sourced in CPU 420. The speaker 310 then preferably broadcasts the amplified signal in the vicinity of the monitor 300. However, those of ordinary skill in the art will recognize that the speaker 310 need not be made integral to the monitor 300, but could instead be located remotely from the CPU 420 (e.g., located in the hall outside of the patient's room, located at the nurses' station, etc.). The speaker 310 will preferably be a cone-type loudspeaker but, clearly, it could be any sort of device that can reproduce sound and that can be driven from a power amplifier 440. Additionally, the speaker 310 could certainly be a piezoelectric or similar device and, especially preferably, it will be a piezoelectric device that is driven directly from the microprocessor without an intervening amplifier (see, e.g.,
In a preferred arrangement, a volume control switch 330 is provided on the exterior of the case so that the user can select from among a plurality of different volume levels. The CPU 420 is preferably placed in electronic communication with the switch 330 so that the user's volume choice can be read and acted upon. In a typical arrangement, the user will be provided with eight different volume levels (zero to 7, say) which are cycled through by repeatedly pressing switch 330. Often there will also be provided a visual indication of the selected alarm volume (e.g., an LED or similar display device) that displays the currently selected numeric volume. Preferably, the CPU 420 will control the reading and display of the selected volume information according to methods well known to those of ordinary skill in the art.
In brief, the duty cycle of the input signal that is transmitted to the amplifier 440 (e.g., signals 510/530) is directly correlated with the speaker 310 output volume. Thus, by changing the duty cycle of the signal that is generated by the CPU 420, the alarm volume can be changed. Those of ordinary skill in the art will recognize that the exact volume that is produced by a particular duty cycle choice is one that can readily be determined for any particular hardware configuration and duty cycle. A preferred method of determining at least a rough correspondence is through the use of trial and error. For example, if a number of different duty cycles are selected and broadcast through the speaker 310, the resulting volumes can be measured and recorded, thereby providing a profile of the impulse-response of that particular hardware combination. Additionally, the instant inventors would note that, generally speaking, if uniformly-spaced speaker volumes are desired, the corresponding duty cycles choices are likely to be logarithmically distributed between zero and 50% duty cycle.
A typical hardware configuration for the instant invention is set out in
Note that in another preferred arrangement and as is generally indicated in
As is generally indicated in
Other preferred configurations are set out in
PA1=({overscore (PA0)}).
Those of ordinary skill in the art will readily recognize how an inverted square wave series in one port can simultaneously be generated in the other port. Of course, in general it would be impractical to drive large speakers at substantial volume levels with the power available from a microprocessor. However, small speakers such as those preferably utilized in connection with the instant invention can certainly be driven at some volume levels by the microprocessor 420 alone.
According to still another embodiment, and as is generally illustrated in
As is set out in
As is generally illustrated in
In practice, the instant invention will preferably operate according to the method generally set out in
As a next preferred step 715, the CPU 420 will select an alarm type. That is, in a typical arrangement the user will be offered a selection of different alarm sounds such as sirens, warbles, swoops, songs (e.g., “Mary had a little lamb”), etc. Note that, for purposes of the instant disclosure, even if there is but a single alarm sound type provided it will be understood that it is “selected” at this step.
Once the alarm has been selected, the tone data associated with it will be read (step 720), preferably by the CPU 420. In the preferred embodiment, the tones that make up such alarms are kept in the form of a table that contains the frequency and duration of each tone such that by sequentially playing each tone for the indicated duration the desired alarm sound will be heard through the speaker 310. Those of ordinary skill in the art will recognize that this sort of arrangement is routinely utilized in this industry to store relatively simple alarm sounds. Alternatively, the alarm might consist of more complex digitized audio information (e.g., the alarm could be the prerecorded spoken message “Please get back into bed”). Note that, for purposes of the instant disclosure, when the alarm sound is an arbitrary digitized sound the “tone data” for such a sound is the individual digital sound samples together with any other parameter(s) that might be required to reproduce the sound (e.g., the sample rate). Further, in the case where the alarm sound is dynamically (e.g., algorithmically or mathematically) generated, whether within a microprocessor or within a DSP microcontroller, the tone data refers to the parameters that define such a sound. Examples of such algorithmically generated alarm sounds would include white noise-based alarms, alarms that consist of collections of simple sine or cosine waves, square waves, triangular waves, etc. The methods by which these and many other such waveforms might be generated are well known to those of ordinary skill in the art.
Note that, and as is illustrated in
Next, the preferred method enters a loop (steps 725 through 740) wherein the tones that define the alarm are successively selected, generated as a series of square waves, and transmitted to the amplifier. Step 725 selects the first or, after the loop has been entered, the next tone in the alarm definition. Preferably, the data for each tone will consist of a frequency and a tone duration. Clearly, this sort of data will be suitable to describe host of simple alarm patterns. However, in the event that the alarm is more sonically complex (e.g., a recorded or synthesized voice or an orchestral musical work), the data that is read will preferably be successive samples of a digitized audio that has been collected at a predetermined sample rate. The handling of more sonically complex alarms will be separately discussed below.
As a next preferred step 730, a series of constant frequency square waves will be generated at the frequency specified by the tone data. Thus, if the tone frequency is 440 Hz, 440 square waves will be generated per second. Note that, although such a series of square waves might readily be manually generated in software, many microprocessors contain the ability to generate square waves as a built-in software or hardware function.
The width of each square wave will be determined from the user's selected volume level in concert with the frequency of the pulses. That is, given the specified frequency the width (time duration) of each square wave can readily be determined at the maximum duty cycle of 50%. However, if the alarm volume is less than maximum, it is preferred that the width of each square wave be scaled logarithmically. Alternatively, the alarm volume might be scaled linearly, although approach typically does not produce equally spaced perceived volume changes. As a simple example, suppose that the specified frequency is 440 Hz, this would mean that at maximum volume each square wave would have a on-time of about 0.00114 seconds (0.00227/2.0), followed by the same amount of “off” time when the signal is “zero”. Note, however, that would be the preferred pulse duration at full volume. At, for example, volume “3” (of 8 possible volume levels), the duration of the duty cycle could be scaled linearly from the maximum volume and calculated to be (⅜)*(0.00227 seconds) which equals approximately 0.00085 seconds. That being said, those of ordinary skill in the art will recognize that equally spaced power-level changes will not be perceived as equally spaced volume changes by the listener. Thus, it is preferred instead that logarithmic spacing of the volume levels be utilized to scale the square waves according to methods well known to those of ordinary skill in the art.
As a next preferred step, the square waves will be sequentially transmitted to the amplifier 440. In the preferred arrangement, the microprocessor will alternately set a predetermined port to high and low (i.e., “1” and “0”) according to the timing calculated above. The amplifier 440 receives the sequence of square waves and then amplifies that signal for broadcast by the speaker 310.
Next, an inquiry is preferably made as to whether or not the alarm is to be terminated (step 735). If the alarm has been properly terminated, the monitor would be expected to stop its broadcast (step 745).
On the other hand, if the alarm has not been terminated, an inquiry will preferably be made as to whether there is another tone available in the tone definition for this alarm (step 740). If so, the preferred algorithm will proceed to read that tone and transmit it for the time period indicated. If there are no further tones (e.g., if the end of the song has been reached), the instant method preferably resets the tone counter (step 750) to the first tone in the alarm (e.g., the first note of the song “Mary had a little lamb”) and steps 725 through 740 will be repeated as has been previously described.
Turning now to a more complex scenario, e.g., an alarm sound that is a sampled or synthesized multi-frequency waveform, while there are many possible methods of using PWM to scale such a signal, a first preferred method is generally illustrated in
Given the previous arrangement, a series of preferably equally spaced (Δt) square waves are generated, wherein the width of each square wave is determined by the amplitude of one or more of the original samples 940. That is, in
Additionally, and preferably, rather than choosing the square wave series 920 to be of uniform pulse width, the input signal 910 will preferably be interpolated at points 950 (i.e., at sampling interval Δt) and each of the corresponding square waves in the series 920 scaled according to an interpolated value. This means that the pulse width of the square wave series 920 is continuously varied according to the instantaneous amplitude of the input signal 910. Note that, although linear interpolation was used in this case, any other form of interpolation would work as well including, without limitation, general polynomial interpolation, spline interpolation, etc. Those of ordinary skill in the art will recognize that this is just one of many ways that the volume of a sampled waveform can be controlled according to the methods taught herein.
It should be noted and remembered that, although the instant invention preferably operates with square waves, in reality an arbitrary waveform can be utilized to control the speaker volume as is taught herein. That is, and in still another preferred embodiment, as is generally illustrated in
According to still another preferred embodiment, there is illustrated in
Finally, and as is generally indicated in
Note that if a microprocessor is utilized as a component of the monitor 300, the only requirement that such a component must satisfy is that it must minimally be an active device, i.e., one that is programmable in some sense, that it is capable of recognizing signals from a bed mat or similar patient sensing device, and that it is capable of initiating the sounding of one or more alarm sounds in response thereto. Of course, these sorts of modest requirements may be satisfied by any number of programmable logic devices (“PLD”) including, without limitation, gate arrays, FPGA's (i.e., field programmable gate arrays), CPLD's (i.e., complex PLD's), EPLD's (i.e., erasable PLD's), SPLD's (i.e., simple PLD's), PAL's (programmable array logic), FPLA's (i.e., field programmable logic array), FPLS (i.e., fuse programmable logic sequencers), GAL (i.e., generic array logic), PLA (i.e., programmable logic array), FPAA (i.e., field programmable analog array), PsoC (i.e., programmable system-on-chip), SoC (i.e., system-on-chip), CsoC (i.e., configurable system-on-chip), ASIC (i.e., application specific integrated chip), etc., as those acronyms and their associated devices are known and used in the art. Further, those of ordinary skill in the art will recognize that many of these sorts of devices contain microprocessors integral thereto. Thus, for purposes of the instant disclosure the terms “processor,” “microprocessor” and “CPU” (i.e., central processing unit) should be interpreted to take the broadest possible meaning herein, and such meaning is intended to include any PLD or other programmable device of the general sort described above.
Additionally, in those embodiments taught herein that utilize a clock or timer or similar timing circuitry, those of ordinary skill in the art will understand that such functionality might be provided through the use of a separate dedicate clock circuit or implemented in software within the microprocessor. Thus, when “clock” or “time circuit” is used herein, it should be used in its broadest sense to include both software and hardware timer implementations.
Note further that a preferred electronic monitor of the instant invention utilizes a microprocessor with programming instructions stored therein for execution thereby, which programming instructions define the monitor's response to the patient and environmental sensors. Although ROM is the preferred apparatus for storing such instructions, static or dynamic RAM, flash RAM, EPROM, PROM, EEPROM, or any similar volatile or nonvolatile computer memory could be used. Further, it is not absolutely essential that the software be permanently resident within the monitor, although that is certainly preferred. It is possible that the operating software could be stored, by way of example, on a floppy disk, a magnetic disk, a magnetic tape, a magneto-optical disk, an optical disk, a CD-ROM, flash RAM card, a ROM card, a DVD disk, or loaded into the monitor over a network as needed. Additionally, those of ordinary skill in the art will recognize that the memory might be either internal to the microprocessor, or external to it, or some combination. Thus, “program memory” as that term is used herein should be interpreted in its broadest sense to include the variations listed above, as well as other variations that are well known to those of ordinary skill in the art.
Additionally, although the term “duty cycle” has occasionally been used herein in a manner that might suggest that a single-valued duty cycle (e.g., 50%) is intended by the inventors, that interpretation would unnecessarily limit the broader meaning taught by this invention. That is, and as has been discussed previously the “duty cycle” in many cases might be chosen to be a continuously varying pulse width rather than any single constant value. More generally, the “duty cycle function” could specify any arbitrary combination of time-varying pulse width and pulse separation interval, so long as the pulse train was composed of constant amplitude rectangular pulses. Thus, the phrases “duty cycle” and “duty cycle function” should be interrupted herein in the broadest possible sense to include single valued/constant duty cycles as well as arbitrarily complex time-varying duty cycle changes.
Further, it should be noted that the term “alarm” as used here should not be limited to traditional alarms and alarm sounds (e.g., sirens, warbles, etc.) but instead should be broadly construed to include any audible signal that might be broadcast by an electronic patient monitor, e.g., soothing/calming sounds (e.g., white or colored noise that is designed to mask ambient sounds), musical works, digitized speech, feedback beeps that are sounded in connection with button presses, etc.
Still further, it should be noted that when the term “square wave” is used herein, that term should not be limited to cases where the “on” time and the “off” time (i.e., the pulse separation interval) are equal but instead should be broadly construed to include any sort of constant amplitude rectangular wave or pulse that alternates between two values (e.g., between +1 V and 0 V) or between three values (e.g., between +0.5 V, 0.0 V, and −0.5 V), even if the duration of each pulse and/or the time-separation between successive pulses is not a constant value.
Additionally, it should be noted and remembered that although patient exit monitors are a preferred environment for application of the instant invention, the teachings disclosed herein have much further application. In brief, the instant invention is most suitable for use in electronic patient monitoring applications, patient feedback control systems, and similar applications.
Finally, it should be noted that the term “nurse call” as that term has been used herein should be interpreted to mean, not only traditional wire-based nurse call units, but more also any system for notifying a remote caregiver of the state of a patient, whether that system is wire-based (e.g., fiber optics, LAN) or wireless (e.g., R.F., ultrasonic, IR link, etc.). Additionally, it should be clear to those of ordinary skill in the art that it may or may not be a “nurse” that monitors a patient remotely and, as such, nurse should be broadly interpreted to include any sort of caregiver, including, for example, untrained family members and friends that might be signaled by such a system.
Thus, it is apparent that there has been provided, in accordance with the invention, a patient sensor and method of operation of the sensor that fully satisfies the objects, aims and advantages set forth above. While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art and in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications and variations as fall within the spirit of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/496,501 filed on Aug. 20, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4179692 | Vance | Dec 1979 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4295133 | Vance | Oct 1981 | A |
4484043 | Musick et al. | Nov 1984 | A |
4526477 | Murakami | Jul 1985 | A |
4565910 | Musick et al. | Jan 1986 | A |
4644327 | Patterson | Feb 1987 | A |
4654642 | Groff | Mar 1987 | A |
4700180 | Vance | Oct 1987 | A |
4768022 | Patterson | Aug 1988 | A |
D361462 | Newham | Aug 1995 | S |
5554835 | Newham | Sep 1996 | A |
5600108 | Newham | Feb 1997 | A |
5623760 | Newham | Apr 1997 | A |
5633627 | Newham | May 1997 | A |
5640145 | Newham | Jun 1997 | A |
5654694 | Newham | Aug 1997 | A |
5730140 | Fitch | Mar 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5945914 | Holmes et al. | Aug 1999 | A |
6065727 | Fitzgerald et al. | May 2000 | A |
6111509 | Holmes | Aug 2000 | A |
6292102 | Smith | Sep 2001 | B1 |
6307476 | Smith et al. | Oct 2001 | B1 |
6417777 | Fitzgerald et al. | Jul 2002 | B1 |
6441742 | Lovely et al. | Aug 2002 | B1 |
6544200 | Smith et al. | Apr 2003 | B1 |
6646556 | Smith et al. | Nov 2003 | B1 |
6696653 | Smith et al. | Feb 2004 | B1 |
6784787 | Atkins et al. | Aug 2004 | B1 |
6784797 | Smith et al. | Aug 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050046575 A1 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
60496501 | Aug 2003 | US |