Field of the Invention
Embodiments of the invention generally relate to methods and apparatus for depositing nanowires via electrospinning.
Description of the Related Art
In solar, display, and touch screen technologies, transparent conductive oxide (TCO) films are used as electrodes to provide low-resistance electrical contact to a device's active layers while also allowing the passage of light to and from the active layers. However, TCO films possess a number of disadvantages that reduce the absolute efficiency of the device in which the TCO film is utilized. For example, deposition of TCO films requires a balancing of optical transparency and sheet resistance. Thicker films or higher doping levels in the TCO films results in higher conductivities but a reduction in the optical transmission of light. Additionally, the use of TCO films in a device may also require the utilization of additional non-active film layers which can further reduce the absorption of light. Furthermore, TCO films are relatively expensive.
As an alternative to TCO films in devices, the use of metallic nanowires has been proposed. One method of depositing the metallic nanowires is electrospinning. The metallic nanowires are generally deposited onto a substrate surface in a random pattern. Electrospinning includes applying a high voltage to a metallic capillary containing a deposition material including a polymer and a metal. The voltage applied to the capillary creates an electric field sufficient to overcome the surface tension of the deposition material, causing ejection of a thin jet of the deposition material onto a substrate. The deposition material is allowed to deposit on the substrate surface in a random orientation, which is generally dictated by the charged deposition material's affinity for the grounded substrate.
After the material is deposited on the substrate, the deposition material is then annealed to remove volatile polymer components. The remainder of the deposition material is reduced using a reducing agent, such as hydrogen gas, to leave a conductive metal (e.g., a nanowire) on the surface of the substrate. However, due to the random deposition of the nanowires on the substrate, the nanowire pattern does not have a uniform thickness or conductivity, thereby adversely affecting device performance.
Therefore, there is a need for methods and apparatus for aligning nanowires deposited by an electrospinning process.
Embodiments of the invention generally include apparatus and methods for depositing nanowires in a predetermined pattern during an electrospinning process by controlling the trajectory of a deposition material during the electrospinning process. An apparatus includes a nozzle for containing and ejecting a deposition material and a voltage source coupled to the nozzle. The voltage source applies a voltage to the nozzle to eject the deposition material from the nozzle towards the substrate. One or more electric field shaping devices, such as coils or a counter electrode, are positioned to shape the electric field adjacent to the substrate to control the trajectory of the ejected deposition material. The electric field shaping features shape the electric field so that the electric field converges at a point near the surface of the substrate to accurately deposit the deposition material on the substrate in a predetermined pattern. The methods include applying a voltage to a nozzle to eject an electrically-charged deposition material towards the surface of a substrate, and shaping one or more electric fields to control the trajectory of the electrically-charged deposition material. The deposition material is then deposited on the substrate in a predetermined pattern by controlling the trajectory.
In one embodiment, an apparatus for electrospinning a material on a substrate comprises a reservoir for containing a deposition material and a nozzle in fluid communication with the reservoir. A substrate support is adapted to support a substrate adjacent to the nozzle. The apparatus also includes a voltage source coupled to the nozzle to apply an electric potential to the nozzle to eject the deposition material from the nozzle. An electric field shaping device comprising a counter electrode is positioned to shape an electric field between the substrate and the nozzle. The electric field shaping device is adapted to influence the trajectory of the deposition material ejected from the nozzle.
In another embodiment, an apparatus for electrospinning a material on a substrate comprises a reservoir for containing a deposition material and a nozzle in fluid communication with the reservoir. The nozzle is adapted to deliver the deposition material to a surface of a substrate. The apparatus also includes a substrate support movable relative to the nozzle. The substrate support is adapted to support the substrate adjacent to the nozzle. A voltage source is coupled to the nozzle to apply an electric potential to the nozzle to eject the deposition material from the nozzle. One or more coils are positioned around a process region located between the nozzle and the substrate support. The one or more coils are adapted to influence the trajectory of the deposition material ejected from the nozzle.
In another embodiment, a method of electrospinning a material on a substrate comprises applying a voltage to a nozzle to eject an electrically-charged deposition material towards a surface of a substrate, and shaping an electric field adjacent to the substrate to control the trajectory of the electrically-charged deposition material towards the surface of the substrate. The electrically-charged deposition material is then deposited on the surface of the substrate in a predetermined pattern by controlling the trajectory.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
Embodiments of the invention generally include apparatus and methods for depositing nanowires in a predetermined pattern during an electrospinning process by controlling the trajectory of a deposition material during the electrospinning process. An apparatus includes a nozzle for containing and ejecting a deposition material and a voltage source coupled to the nozzle. The voltage source applies a voltage to the nozzle to eject the deposition material from the nozzle towards the substrate. One or more electric field shaping devices, such as coils or a counter electrode, are positioned to shape the electric field adjacent to the substrate to control the trajectory of the ejected deposition material. The electric field shaping features shape the electric field so that the electric field converges at a point near the surface of the substrate to accurately deposit the deposition material on the substrate in a predetermined pattern. The methods include applying a voltage to a nozzle to eject an electrically-charged deposition material towards the surface of a substrate, and shaping one or more electric fields to control the trajectory of the electrically-charged deposition material. The deposition material is then deposited on the substrate in a predetermined pattern by controlling the trajectory.
The substrate support 104 is positioned within the enclosure 102 in a lower portion of the interior 108 of the electrospinning apparatus 100A. The substrate support 104 is adapted to support the substrate 112, such as a sheet of glass, polypropylene, or polyethylene terephthalate, adjacent to the material delivery device 116. The substrate support 104 is a frame having an opening formed through a central portion thereof to expose a back surface of the substrate 112 (e.g., the surface opposite the material delivery device 116) to a counter electrode 120. The opening through the substrate support 104 allows the counter electrode 120, such as an electrically conductive pin, post, or cylinder, to be positioned adjacent to the back surface of the substrate 112. The substrate support 104 is movable relative to the material delivery device 116 and the counter electrode 120 on a stage 136 positioned in the bottom of the enclosure 102. Movement of the stage 136 is facilitated by an actuator (not shown) and tracks formed within or on the bottom of the enclosure 102. Movement of the stage 136 along the bottom of the enclosure 102 facilitates the formation of a predetermined one- or two-dimensional pattern on an upper surface of the substrate 112 during processing. Thus, during an electrospinning process within the electrospinning apparatus 100A, the counter electrode 120 and the fluid delivery device 116 remain stationary, while the substrate 112 is moved relative to the counter electrode 120 and the fluid delivery device 116 to form a pattern of deposition material on the substrate surface. In one example, the predetermined pattern may be a one-dimensional pattern such as a line, or may be a two-dimensional pattern such as a weave or perpendicular lines.
The counter electrode 120 is an electric field shaping device. The counter electrode 120 is formed from an electrically conductive material, for example, a metal such as aluminum. The counter electrode 120 is coupled to a voltage source 124 which applies an electric potential to the counter electrode 120. The electrically charged counter electrode 120 shapes or influences electric field lines 126 located within a process region 128 between the material delivery device 116 and the substrate support 104. The counter electrode 120 causes the electric field lines 126 to converge at a single point near the surface of the substrate 122. The counter electrode 120 includes a tip 122 having a conical shape positioned at an end of the counter electrode 120 closest to the substrate 112. The tip 122 enables more precise control over the divergence point of the electric field lines 126. The tip 122 has a base width of about 10 millimeters and a height of about 5 millimeters.
The material delivery device 116, such as a syringe, is positioned adjacent to an upper surface of the substrate 112 and is adapted to deliver a deposition material 130 from a reservoir 132 through a nozzle 134 of the material delivery device 116 to the upper surface of the substrate 112. The nozzle 134 is also formed from an electrically conductive material, for example, a metal such as stainless steel, and is coupled to the voltage source 124. The nozzle 134 is adapted to be electrically biased by the voltage source 124, which overcomes the surface tension of the deposition material 130 present in the nozzle 134, thus ejecting the deposition material 130 towards the substrate 112.
A controller 138 is connected to the reservoir 132, the voltage source 124, and the stage 136 for controlling processes within the electrospinning apparatus 100A. The controller 138 controls the electric potential applied to the nozzle 134 and the counter electrode 120, as well as the movement of the stage 136, thus controlling the amount and position of deposited material on the upper surface of the substrate 112. The controller 138 facilitates formation of a predetermined pattern of deposition material 130 on the surface of the substrate 112 by controlling the x-y movement of the stage 136.
During an electrospinning deposition process in the electrospinning apparatus 100A, a deposition material 130 from the reservoir 132 is provided to the material delivery device 116. The deposition material 130 is suspended in the nozzle 134 of the material delivery device 116 by capillary action until an electric potential from the voltage source 124 is applied to the nozzle 134. The electric potential from the voltage source 124 overcomes the surface tension of the deposition material 130 in the nozzle 134, causing the deposition material 130 to be ejected from the nozzle 134. The application of the electrical potential from the voltage source 124 electrically charges the deposition material 130 ejected from the nozzle 134. The nozzle 134, and correspondingly the deposition material 130, is generally biased with a first polarity while the counter electrode 120 is biased with the opposite polarity. Biasing of the counter electrode 120 with the opposite polarity results in the convergence of an electric field near the surface of the substrate 112, thus directing the charged deposition material 130 to a desired area of the substrate. The deposition material 130 is attracted to the substrate at a point immediately above the tip 122 of the counter electrode due to the convergence of the electric field lines 126 caused by the counter electrode 120, thereby facilitating accurate deposition of the deposition material 130 on the substrate 112. Since the deposition material 130 is directed to a point immediately above the counter electrode 120, the substrate support 104 can be moved relative to the counter electrode 120 to deposit the deposition material 130 in a predetermined one- or two-dimensional pattern. For example, while deposition material 130 is being ejected from the nozzle 134, the substrate support 104 can be moved in the x-y directions to deposit a weave, perpendicular lines, or other predetermined patterned on the surface of the substrate 112.
While
It is contemplated that less than two or more than two coils 140 may be positioned in the process region 128. It is further contemplated that the sizing and the spacing of the rings, both relative to one another as well as to the nozzle 134 and the substrate 112, may be adjusted to effect the desired trajectory of the deposition material 130. Additionally, it is contemplated that a single helical coil 140 may be positioned within the process region 128.
It is noted that the electrospinning apparatus 100A-100D are not to be limited by the orientations illustrated. It is contemplated that any of the electrospinning apparatus 100A-100D can be positioned horizontally, or inverted, or in any other operable orientation.
Concurrent with the application of a voltage to the nozzle of the material delivery device, electric field lines adjacent to a substrate surface are shaped, influenced, or formed in order to control the trajectory of the deposition material and to direct the deposition material onto the substrate in a predetermined pattern. The electric fields are shaped using one or more electric field shaping devices, such as coils or a counter electrode, which are electrically biased by the voltage source. In operation 254, the one or more electric field shaping devices converge the electric field lines and direct the charged deposition material onto the substrate surface via electrostatics in order to form a predetermined one-, two-, or three-dimensional pattern on the substrate. The predetermined pattern may correspond to a desired structure, such as a pad, wire, or busbar, for a semiconductor device.
In operation 255, after the material has been deposited in a predetermined pattern on the substrate, the deposition material may be processed to remove the polymer material from the deposition material to leave a resulting nanowire. Removal of the polymer material leaves a metal or metal-containing material on the surface of the substrate having a thickness within a range of about 10 nanometers to about 10,000 nanometers. In an embodiment where a metal-containing material remains on the substrate, the metal-containing material may be reduced with a reducing gas, such as hydrogen or hydrogen radicals, to leave a conductive metal on the surface of the substrate. One example of a process to remove the polymer material includes annealing the substrate, and the deposition material thereon, in an annealing device at a temperature of about 25 degrees Celsius to about 250 degrees Celsius for about 5 minutes to about 10 minutes at a pressure of about 1 mTorr to about 760 Torr. Annealing of the deposition material evaporates the polymer from the surface of the substrate, leaving an electrically conductive metal in a predetermined pattern on a surface of the substrate.
While the flow diagram 250 illustrates one embodiment of a method of depositing nanowires by electrospinning, other embodiments are also contemplated. In another embodiment, it is contemplated that operation 255 may be excluded depending upon the composition of the deposition material.
Benefits of the present invention include methods and apparatus for aligning nanowires deposited during an electrospinning process. The methods and apparatus utilize one or more electric field shaping devices to converge an electric field within the apparatus to a desired point. The electric field shaping devices facilitate formation and alignment of a predetermined pattern of nanowires on the surface of a substrate. Thus, a metallic layer of uniform thickness and conductivity can be formed on the surface of a substrate. Metallic layers of uniform thickness and conductivity facilitate the formation of more efficient devices.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a divisional application of co-pending U.S. patent application Ser. No. 13/623,819, filed Sep. 20, 2012, which claims benefit of U.S. Provisional Patent Application Ser. No. 61/547,656, filed Oct. 14, 2011, which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5277751 | Ogle | Jan 1994 | A |
20020089094 | Kleinmeyer | Jul 2002 | A1 |
20070272901 | Gouma | Nov 2007 | A1 |
20090091065 | Katti | Apr 2009 | A1 |
20090285718 | Privitera et al. | Nov 2009 | A1 |
20090295014 | Matsubayashi et al. | Dec 2009 | A1 |
20100222771 | Mitchell | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1584135 | Feb 2005 | CN |
1966399 | May 2007 | CN |
101092232 | Dec 2007 | CN |
20110062216 | Jun 2011 | KR |
2008040527 | Apr 2008 | WO |
2011006967 | Jan 2011 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/US2012/056208 dated Feb. 1, 2013. |
Chinese Office Action dated Mar. 18, 2015 for Application No. 201280052127.7. |
Yu, J.H. et al., “Effect of viscosity of silver nanoparticle suspension on conductive line patterned by electrohydrodynamic jet printing”, Applied Physics A 89 (2007), pp. 157-159. |
Deitzel, J.M. et al., “Controlled deposition of electrospun poly(ethylene oxide) fibers”, Polymer (2001), pp. 8163-8170. |
Chinese Office Action dated Oct. 29, 2015 for Application No. 201280052127.7. |
Number | Date | Country | |
---|---|---|---|
20150251214 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61547656 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13623819 | Sep 2012 | US |
Child | 14716489 | US |