Embodiments generally relate to a damper assembly for a vehicle. More specifically, the invention relates to an adjustable damper for use with a vehicle suspension.
Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances, a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there-through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.
Conventional damping components provide a constant damping rate during compression or extension through the entire length of the stroke. Other conventional damping components provide mechanisms for varying the damping rate. As various types of recreational and sporting vehicles continue to become more technologically advanced, what is needed in the art are improved techniques for varying the damping rate.
The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.
Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the technology will be described in conjunction with various embodiment(s), it will be understood that they are not intended to limit the present technology to these embodiments. On the contrary, the present technology is applicable to alternative embodiments, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
Furthermore, in the following description of embodiments, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well known methods, procedures, and components have not been described in detail as not to unnecessarily obscure aspects of the present disclosure.
Embodiments describe a system and method for a pilot spool valve assembly that enables the generation of relatively large damping forces by a relatively small solenoid (or other motive source), while using relatively low amounts of power. Furthermore, since the incompressible fluid inside of the valve body of the shock absorber assembly causes damping to occur as the valve opens and the valve body collapses, embodiments enable both a controllable preload on the valve stack and a controllable damping rate.
In one embodiment, the solenoid includes a “latching” mechanism to open and close the pressure-balanced pilot spool. Due to the latching configuration of the solenoid, power is only required to open or close the valve. Power is not required to hold the valve open or closed in either setting. Consequently, embodiments enable reduced power consumption compared to the traditional shock absorber.
Further embodiments provide an externally-adjustable means of tuning the open state of the damper. An adjuster turns in or out to vary the effective orifice size of the pilot spool when in the open position. This allows the rider to adjust the soft setting of the damper to his preference.
The following discussion describes the
Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by or used in conjunction with a mechanical spring or constructed in conjunction with an air spring or both. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. The damping fluid (i.e., damping liquid) or damping liquid may be, for example, hydraulic oil. A mechanical spring may be a helically wound spring that surrounds or is mounted in parallel with the damper body. Vehicle suspension systems typically include one or more dampers as well as one or more springs mounted to one or more vehicle axles. As used herein, the terms “down”, “up”, “downward”, “upward”, “lower”, “upper”, and other directional references are relative and are used for reference only.
In one embodiment, the damping components inside the damping leg include an internal piston 166 disposed at an upper end of a damper shaft 136 and fixed relative thereto. The internal piston 166 is mounted in telescopic engagement with a cartridge tube 162 connected to a top cap 180 fixed at one end of the upper tube 105. The interior volume of the damping leg may be filled with a damping liquid such as hydraulic oil. The piston 166 may include shim stacks (i.e., valve members) that allow a damping liquid to flow through vented paths in the piston 166 when the upper tube 105 is moved relative to the lower tube 110. A compression chamber is formed on one side of the piston 166 and a rebound chamber is formed on the other side of the piston 166. The pressure built up in either the compression chamber or the rebound chamber during a compression stroke or a rebound stroke provides a damping force that opposes the motion of the fork 100.
The spring components inside the spring leg include a helically wound spring 115 contained within the upper tube 106 and axially restrained between top cap 181 and a flange 165. The flange 165 is disposed at an upper end of the riser tube 163 and fixed thereto. The lower end of the riser tube 163 is connected to the lower tube 111 in the spring leg and fixed relative thereto. A valve plate 155 is positioned within the upper leg tube 106 and axially fixed thereto such that the plate 155 moves with the upper tube 106. The valve plate 155 is annular in configuration, surrounds an exterior surface of the riser tube 163, and is axially moveable in relation thereto. The valve plate 155 is sealed against an interior surface of the upper tube 106 and an exterior surface of the riser tube 163. A substantially incompressible lubricant (e.g., oil) may be contained within a portion of the lower tube 111 filling a portion of the volume within the lower tube 111 below the valve plate 155. The remainder of the volume in the lower tube 111 may be filled with gas at atmospheric pressure.
During compression of fork 100, the gas in the interior volume of the lower tube 111 is compressed between the valve plate 155 and the upper surface of the lubricant as the upper tube 106 telescopically extends into the lower tube 111. The helically wound spring 115 is compressed between the top cap 181 and the flange 165, fixed relative to the lower tube 111. The volume of the gas in the lower tube 111 decreases in a nonlinear fashion as the valve plate 155, fixed relative to the upper tube 106, moves into the lower tube 111. As the volume of the gas gets small, a rapid build-up in pressure occurs that opposes further travel of the fork 100. The high pressure gas greatly augments the spring force of spring 115 proximate to the “bottom-out” position where the fork 100 is fully compressed. The level of the incompressible lubricant may be set to a point in the lower tube 111 such that the distance between the valve plate 155 and the level of the oil is substantially equal to a maximum desired travel of the fork 100.
Referring now to
Damping liquid displaced as described above moves from the damper cylinder 25, through a base valve assembly of detail 2 and ultimately into an elastic bladder 30 during compression, and from the elastic bladder 30, back through the base valve assembly of detail 2 and into the damper cylinder 25 during rebound. In one embodiment, the base valve assembly of detail 2 allows for the compression damping to be adjusted by the user.
Of note, the pilot spool 210 shown in
In one embodiment, the axial displacement of the pilot spool 210 is facilitated by an electromagnetic interaction between the armature 215 and the coil 220. Adjustment of the current in the coil 220 (via modulation of the current from a power source [not shown]) to predetermined values causes the armature 215, and hence the pilot spool 210, to move in corresponding predetermined axial positions relative to the coil 220. As such, the pilot spool 210 can be adjusted as shown in the
When the pilot spool 210 is closing ports 50A, as shown in
Additionally, a further embodiment provides an externally-adjustable means of tuning the open state of the damper. There is an adjuster that can be turned in or out to vary the effective orifice size of the pilot spool when in the open position. This will allow the rider to adjust the soft setting of the damper to his/hers preference.
With reference now to
The pilot spool valve assembly (including at least the pilot spool 210 and the metering edge 930 of the pilot spool 210) regulates damping fluid flow through a portion of the damper and adjusts the force applied to the valve shims 225 by the valve body 230 through ports 60. In one embodiment, the position of the spool valve assembly may be adjusted axially by means of the low speed adjuster 935. The low speed adjuster 935 (comprising multiple pieces), being for example, threaded at its lower end to the top cap 20 via the low speed adjuster threads 940, may be rotated to facilitate axial movement. In one embodiment, the low speed adjuster 935 includes a non-round shape (e.g., hexagonal) that facilitates the rotation with relative axial movement (see 1105 of
With reference now to
In one embodiment, the pilot spool 210 is biased by spring 915 toward a position wherein the metering edge 930 of the pilot spool 210 further obstructs ports 50A (see
In one embodiment, when it is desired to close or partially close ports 50A by means of the metering edge 930 of the pilot spool 210, a current is applied to the coil 220 via the wires 925. The current causes a magnetic flux around the coil 220, which acts on the magnetic component of the pilot spool 210 causing the pilot spool 210 to move axially within the cartridge. When the pilot spool 210 has moved a relatively small distance axially away from the permanent magnet 920, the spring 915 bias moves the pilot spool 210 toward closure of ports 50A with little or no additional power input to the coil 220.
Of note,
It should be noted that any of the features disclosed herein may be useful alone or in any suitable combination. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be implemented without departing from the scope of the invention, and the scope thereof is determined by the claims that follow.
This application is a continuation application of and claims the benefit of co-pending U.S. patent application Ser. No. 16/224,516 filed on Dec. 18, 2018, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER”, having Attorney Docket No. FOX-P10-02-12-US.DIV.CON2, and assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 16/224,516 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 15/599,469 filed on May 19, 2017, now U.S. Pat. No. 10,160,511, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER”, having Attorney Docket No. FOX-P10-02-12-US.DIV.CON, and assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 15/599,469 is a continuation application of and claims the benefit of U.S. patent application Ser. No. 14/690,267 filed on Apr. 17, 2015, now U.S. Pat. No. 9,663,181, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER”, having Attorney Docket No. FOX-P10-02-12-US.DIV, and assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 is a divisional application of and claims the benefit of U.S. patent application Ser. No. 13/843,704 filed on Mar. 15, 2013, now U.S. Pat. No. 9,033,122, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER”, having Attorney Docket No. FOX-P10-02-12-US, and assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/709,041, filed on Oct. 2, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Ericksen et al., now expired, assigned to the assignee of the present application, having Attorney Docket No. FOX-P10-02-12.PRO, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/667,327, filed on Jul. 2, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Ericksen et al., now expired, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0065USL, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/485,401, filed on May 31, 2012, now abandoned, entitled “METHOD AND APPARATUS FOR POSITION SENSITIVE SUSPENSION” by Ericksen et al., assigned to the assignee of the present application, now abandoned, having Attorney Docket No. FOXF/0055US, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/485,401 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/491,858, filed on May 31, 2011, entitled “METHOD AND APPARATUS FOR POSITION SENSITIVE SUSPENSION DAMPENING” by Ericksen et al., now expired, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0055USL, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/485,401 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/645,465, filed on May 10, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Cox et al., now expired, assigned to the assignee of the present application, having Attorney Docket No. FOX-P5-10-12.PRO, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 12/684,072, filed on Jan. 7, 2010, now abandoned, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, now abandoned, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0032US, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 12/684,072 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/143,152, filed on Jan. 7, 2009, entitled “REMOTE BYPASS LOCK-OUT” by John Marking, now expired, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0032L, and is hereby incorporated by reference in its entirety herein. The U.S. patent application Ser. No. 13/843,704 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/189,216, filed on Jul. 22, 2011, entitled “SUSPENSION DAMPER WITH REMOTELY-OPERABLE VALVE” by John Marking, now U.S. Pat. No. 9,239,090, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0049USP1, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/189,216 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/010,697, filed on Jan. 20, 2011, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, now U.S. Pat. No. 8,857,580, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0043USP1, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/010,697 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/296,826, filed on Jan. 20, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, now expired, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0043USL, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/189,216 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/175,244, filed on Jul. 1, 2011, entitled “BYPASS FOR A SUSPENSION DAMPER” by John Marking, now U.S. Pat. No. 8,627,932, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0047USP1, and is hereby incorporated by reference in its entirety herein. The application with Ser. No. 13/175,244 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/361,127, filed on Jul. 2, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, now expired, assigned to the assignee of the present application, having Attorney Docket No. FOXF/0047USL, and is hereby incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
61709041 | Oct 2012 | US | |
61667327 | Jul 2012 | US | |
61491858 | May 2011 | US | |
61645465 | May 2012 | US | |
61143152 | Jan 2009 | US | |
61296826 | Jan 2010 | US | |
61361127 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13843704 | Mar 2013 | US |
Child | 14690267 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16224516 | Dec 2018 | US |
Child | 16938484 | US | |
Parent | 15599469 | May 2017 | US |
Child | 16224516 | US | |
Parent | 14690267 | Apr 2015 | US |
Child | 15599469 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13485401 | May 2012 | US |
Child | 13843704 | US | |
Parent | 12684072 | Jan 2010 | US |
Child | 13843704 | US | |
Parent | 13189216 | Jul 2011 | US |
Child | 13843704 | US | |
Parent | 13010697 | Jan 2011 | US |
Child | 13189216 | US | |
Parent | 13175244 | Jul 2011 | US |
Child | 13189216 | US |