Method and apparatus for an adjustable damper

Information

  • Patent Grant
  • 11168758
  • Patent Number
    11,168,758
  • Date Filed
    Wednesday, July 25, 2018
    5 years ago
  • Date Issued
    Tuesday, November 9, 2021
    2 years ago
Abstract
A system for controlling vehicle motion is described. The system includes: a first set of sensors coupled with a vehicle, the first set of sensors configured for sensing the vehicle motion; and a vehicle suspension damper coupled with the first set of sensors, the vehicle suspension damper configured for adjusting a damping force therein, the vehicle suspension damper comprising: a primary valve; a pilot valve assembly coupled with the primary valve, the pilot valve assembly configured for metering a flow of fluid to the primary valve, in response to at least the sensing; and an orifice block coupled with the primary valve and comprising a control orifice there through, the control orifice configured for operating cooperatively with the pilot valve assembly in the metering the flow of fluid to the primary valve.
Description

The application with Ser. No. 13/934,067 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/843,704, filed on Mar. 15, 2013, now U.S. Pat. No. 9,033,122, entitled “METHOD AND APPARATUS FOR ADJUSTABLE DAMPER” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/843,704, claims the benefit of and claims priority of co-pending U.S. provisional patent application Ser. No. 61/709,041, filed on Oct. 2, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/934,067 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/667,327, filed on Jul. 2, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/934,067 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 13/485,401, filed on May 31, 2012, now abandoned, entitled “METHODS AND APPARATUS FOR POSITION SENSITIVE SUSPENSION DAMPING” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/485,401 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/491,858, filed on May 31, 2011, entitled “METHODS AND APPARATUS FOR POSITION SENSITIVE SUSPENSION DAMPENING” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/485,401 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/645,465, filed on May 10, 2012, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Cox et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/934,067 is a continuation-in-part application of and claims the benefit of U.S. patent application Ser. No. 12/684,072, filed on Jan. 7, 2010, now abandoned, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 12/684,072 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/143,152, filed on Jan. 7, 2009, entitled “REMOTE BYPASS LOCK-OUT” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/934,067 is a continuation-in-part application of and claims the benefit of co-pending U.S. patent application Ser. No. 13/189,216, filed on Jul. 22, 2011, now U.S. Issued U.S. Pat. No. 9,239,090, entitled “SUSPENSION DAMPER WITH REMOTELY-OPERABLE VALVE” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/189,216 is a continuation-in-part application of and claims the benefit of co-pending U.S. patent application Ser. No. 13/010,697, filed on Jan. 20, 2011, now U.S. Issued U.S. Pat. No. 8,857,580, entitled “REMOTELY OPERATED BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/010,697 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/296,826, filed on Jan. 20, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/189,216 is a continuation-in-part application of and claims the benefit of co-pending U.S. patent application Ser. No. 13/175,244, filed on Jul. 1, 2011, now U.S. Issued U.S. Pat. No. 8,627,932, entitled “BYPASS FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


The application with Ser. No. 13/175,244 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 61/361,127, filed on Jul. 2, 2010, entitled “BYPASS LOCK-OUT VALVE FOR A SUSPENSION DAMPER” by John Marking, assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.


BACKGROUND
Field of the Invention

Embodiments generally relate to a damper assembly for a vehicle. More specifically, the invention relates to an adjustable damper for use with a vehicle suspension.


Description of the Related Art

Vehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances, a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there-through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.


Conventional damping components provide a constant damping rate during compression or extension through the entire length of the stroke. Other conventional damping components provide mechanisms for varying the damping rate. Further, in the world of bicycles, damping components are most prevalently mechanical. As various types of recreational and sporting vehicles continue to become more technologically advanced, what is needed in the art are improved techniques for varying the damping rate.


SUMMARY OF EMBODIMENTS

According to aspects of embodiments, there is provided a vehicle suspension damper including:


a damping chamber containing a damping fluid, and a piston and a piston rod moveable in the damping cylinder;


a valve for controlling movement of said damping fluid in compression and/or rebound of said vehicle suspension damper, the valve having:


a primary valve member for resisting damping fluid flow along a first fluid flow path from a first side of the valve to a second side of the valve;


a first pressure reducing means and a second pressure reducing means in a second fluid flow path between said first and second sides of the valve;


wherein a surface of the primary valve member is exposed to damping fluid in said second fluid flow path between said first and second pressure reducing means;


the arrangement being such that, in use, during compression and/or rebound of said vehicle suspension damper damping fluid is urged to flow through said first fluid flow path at a first fluid pressure resisted by said primary valve member, and at the same time pressure of damping fluid in the second fluid flow path is reduced by the first and second pressure reducing means to a second fluid pressure lower than said first fluid pressure; and


the second fluid pressure acts on a said surface of said primary valve member so that the primary valve member increases its resistance to damping fluid flow along said first fluid flow path.


In one embodiment, the first fluid flow path includes a first area over which said first fluid pressure acts to urge said primary valve member open, and said surface of said primary valve member includes a second area over which said second fluid pressure acts to urge said primary valve member closed, and wherein a ratio of said first area to said second area determines how much resistance is provided by said primary valve member and thereby the damping characteristics of said vehicle suspension damper.


In one embodiment, the second area is smaller than said first area, for example said second area is about 60% or less of said first area.


In one embodiment, an exterior surface of said primary valve member is exposed to damping fluid on said second side of said valve, and an interior surface of said primary valve member is exposed to damping fluid in said second fluid flow path, which interior surface includes said surface.


In one embodiment, the first pressure reducing means provides (i) a bleed for damping fluid at low compression or rebound velocities, and (ii) at higher compression or rebound velocities a reduction in damping fluid pressure that is directly proportional to the velocity of the damping fluid through the first pressure reducing means, whereby hydraulic locking of said primary valve member is inhibited; and/or wherein said first pressure reducing means includes at least one of an orifice, a diffuser, a labyrinth, and a screw thread.


In one embodiment, the second pressure reducing means is adjustable, for example manually adjustable by a user and/or automatically adjustable by a computing device, whereby, in use, adjustment of said second pressure reducing means effects a corresponding adjustment of said second fluid pressure, and thereby a corresponding change in the resistance by said primary valve member to damping fluid flow along said first fluid flow path.


In one embodiment, the second pressure reducing means includes a pilot valve controllable by an electro-mechanical device.


In one embodiment, the second pressure reducing means includes at least one of a spool valve controlled by a magnetic latching solenoid, a needle positionable relative to a seat, a vane valve, a solenoid valve, and moveable screw.


In one embodiment, the primary valve member acts directly against said first fluid pressure, the arrangement being such that, in use, when said second pressure reducing means is adjusted to reduce said second fluid pressure, said primary valve member is moved by said first fluid pressure to increase damping fluid flow through said first fluid flow path.


In one embodiment, the first pressure reducing means is adapted to produce turbulent flow of damping fluid downstream thereof; and/or further comprising a diffuser in said second fluid flow path between said first and second pressure reducing means wherein, in use, said diffuser disrupts substantially linear damping fluid flow, such as a jet, in said second fluid flow path; and optionally wherein said diffuser is arranged to, in use, cause a change in velocity of said substantially linear fluid flow, for example a change in direction; and optionally wherein said diffuser includes a pin having a longitudinal axis oriented substantially perpendicularly to said linear damping fluid flow; and optionally wherein said diffuser includes at least one fluid flow port, such as a plug having at least one such fluid flow port, that forces a change in direction of said substantially linear fluid flow.


In one embodiment, the primary valve member includes an annular piston axially moveable along a valve body; and optionally wherein said valve body comprises a fluid port providing fluid communication between a valve body interior and an annular piston interior.


In one embodiment, the valve body includes said first and second pressure reducing means, and said valve body interior comprises a pilot pressure chamber that is hydraulically between said first and second pressure reducing means and that is in fluid communication with said annular piston interior via said fluid port.


In one embodiment, the first fluid flow path includes one or more shim for controlling flow of damping fluid along said first fluid flow path, and said primary valve member is arranged apply a variable force to said one or more shim, the arrangement being such that, in use, the resistance to damping fluid flow along said first fluid path is the sum of the resistance provided by said shims and by said primary valve member.


In one embodiment, the valve assembly includes: a valve for controlling movement of a damping fluid in compression and/or rebound of said vehicle suspension damper, the valve having: a primary valve member for resisting damping fluid flow along a first fluid flow path from a first side of the valve to a second side of the valve; a first pressure reducing means and a second pressure reducing means in a second fluid flow path between said first and second sides of the valve; wherein a surface of the primary valve member is exposed to damping fluid in said second fluid flow path between said first and second pressure reducing means; the arrangement being such that, in use, during compression and/or rebound of said vehicle suspension damper damping fluid is urged to flow through said first fluid flow path at a first fluid pressure resisted by said primary valve member, and at the same time pressure of damping fluid in the second fluid flow path is reduced by the first and second pressure reducing means to a second fluid pressure lower than said first fluid pressure; and the second fluid pressure acts on a said surface of said primary valve member so that the primary valve member increases its resistance to damping fluid flow along said first fluid flow path.


In one embodiment, a vehicle includes a vehicle suspension damper as described above.


According to certain embodiments, there is provided a vehicle suspension damper including:


a damping chamber containing a damping fluid, and a piston and a piston rod moveable in the damping cylinder;


a valve for controlling movement of said damping fluid in compression and/or rebound of said vehicle suspension damper, the valve having:


a primary valve member for resisting damping fluid flow along a first fluid flow path from a first side of the valve to a second side of the valve;


a first pressure reducing means and a second pressure reducing means in a second fluid flow path between said first and second sides of the valve;


wherein a surface of the primary valve member is exposed to damping fluid in said second fluid flow path between said first and second pressure reducing means;


the arrangement being such that, in use, during compression and/or rebound of said vehicle suspension damper damping fluid is urged to flow through said first fluid flow path at a first fluid pressure resisted by said primary valve member, and at the same time pressure of damping fluid in the second fluid flow path is reduced by the first and second pressure reducing means to a second fluid pressure lower than said first fluid pressure; and


the second fluid pressure acts on a said surface of said primary valve member whereby so that the primary valve member increases its resistance to damping fluid flow along said first fluid flow path.


The surface of the primary valve member may be a force-generating surface. In particular, the surface may be oriented so that, when said second fluid pressure acts against the surface, a resultant force is generated on the primary valve member tending to offer increased resistance to fluid flow through the first fluid flow path. In certain embodiments the force-generating surface includes an area that is substantially perpendicular to the direction of the resultant force.


In certain aspects the valve further includes a reaction surface that remains stationary relative to the force-generating surface under application of said second fluid pressure. For example, the reaction surface may be part of a valve body relative to which the primary valve member is movable by said second fluid pressure.


In some aspects, the valve is positioned in the vehicle suspension damper to receive damping fluid directly from a damping cylinder, whereby the first and second pressures are each a function of damping fluid pressure in the damping cylinder.


In one embodiment, said first fluid flow path includes a first area over which said first fluid pressure acts to urge said primary valve member open, and said surface of said primary valve member includes a second area over which said second fluid pressure acts to urge said primary valve member closed, and wherein a ratio of said first area to said second area determines how much resistance is provided by said primary valve member and thereby the damping characteristics of said vehicle suspension damper. In one embodiment said second area is smaller than said first area, for example said second area is about 60% or less of said first area. By adjusting the ratio of these two areas the designer and/or manufacture can determine inter alia the maximum force that the primary valve member can exert against a fluid port or a valve shim for example. In some embodiments, as the second area gets smaller in comparison to the first area (or the first area gets bigger in comparison to the second area), the maximum force decreases. In that way it is possible to determine whether the valve member provides a ‘lock-out’ function on the damper, or whether the valve member can only restrict damping fluid flow at maximum force, but not stop it completely.


In one embodiment, an exterior surface of said primary valve member is exposed to damping fluid on said second side of said valve, and an interior surface of said primary valve member is exposed to damping fluid in said second fluid flow path, which interior surface includes said surface. Since the surface is inside the primary valve member and between two pressure reducing means, the force provided by the primary valve member is not dependent on the temperature of the damping fluid or on the position of the piston and piston rod in the main damping cylinder.


In one embodiment, said first pressure reducing means provides (i) a bleed for damping fluid at low compression or rebound velocities, and (ii) at higher compression or rebound velocities a reduction in damping fluid pressure that is directly proportional to the velocity of the damping fluid through the first pressure reducing means, whereby hydraulic locking of said primary valve member is inhibited.


In certain aspects said first pressure reducing means includes at least one of an orifice (for example a bore or channel), a diffuser, a labyrinth, and a screw thread. In some embodiments the orifice is smaller in diameter than an inlet channel to the valve.


In one embodiment, said second pressure reducing means is adjustable, for example manually adjustable by a user and/or automatically adjustable by a computing device, whereby, in use, adjustment of said second pressure reducing means effects a corresponding adjustment of said second fluid pressure, and thereby a corresponding change in the resistance by said primary valve member to damping fluid flow along said first fluid flow path. For example a user of the vehicle may adjust the second pressure reducing means directly on the damper, or remotely from the damper, possibly via an intermediate electronic controller. Additionally or alternatively, adjustment of the second pressure reducing means is performed by an electronic computing device. The computing device may be connected to one or more vehicle motion sensor, and may receive an input from the one or more vehicle motion sensor. The computing device may use the input to determine an adjustment for the second pressure reducing means that could increase or decrease damping force provided by the damper. Such an embodiment may be called an ‘electronic valve’. In other words, the function of controlling damping according to inertia is performed by the combination of a sensor, an electronic controller and the valve described above. This arrangement permits much faster control of the valve than known inertia valves that rely on movement of a mass to effect valve control.


Adjustability of the second pressure reducing means enables the damping fluid pressure with the second fluid flow path to be adjusted, and thereby the force applied by the primary valve member to be adjusted also. Whilst the aforementioned area ratio controls the overall damping characteristics of the valve, adjustment of the second pressure reducing means controls the particular damping characteristics of the valve at any point in time, but within the limits set by the area ratio.


In other embodiments, the second pressure reducing means is provided with a fine tuning mechanism that allows a user to fine tune the damping characteristics of the valve. In some aspects the fine tuning mechanism is an adjuster that moves a metering edge to increase the partial block provided by the second pressure reducing means to damping fluid flow.


In one embodiment, said primary valve member acts directly against said first fluid pressure, the arrangement being such that, in use, when said second pressure reducing means is adjusted to reduce said second fluid pressure, said primary valve member is moved by said first fluid pressure to increase damping fluid flow through said first fluid flow path. In this way, very rapid changes damping characteristics can be achieved. For example, in certain embodiments a switch between ‘full firm’ and ‘full soft’ damping characteristics can be achieved in less than 10 ms, and sometimes less than 5 ms.


In certain aspects, said second pressure reducing means includes a pilot valve controllable by an electro-mechanical device. For example, the said second pressure reducing means may be at least one of a spool valve controlled by a magnetic latching solenoid, a needle positionable relative to a seat, a vane valve, a solenoid valve, and moveable screw.


In some situations when the first pressure reducing means is a an orifice and the second pressure reducing means is a pilot valve it has been found that, at high compression velocities, the pilot valve can close of its own accord. This is undesirable because the second fluid pressure increases, which causes the primary valve member to offer increased resistance to fluid flow, and may be even lock out depending on the set up. It has been found that this is due to a jet effect caused on the damping fluid by the orifice. Accordingly this problem may not be limited to the two specific kinds of first and second pressure reducing means mentioned. In order to solve this problem, a device for disrupting damping fluid flow in the second fluid flow path is incorporated in certain embodiments. Such a device may be separate from the first and second pressure reducing means, or may be incorporated into one or both of them. In other embodiments the first pressure reducing means may be of a kind the naturally produces turbulent flow rather than linear flow in the second fluid flow path. Preferably, the vehicle suspension damper further includes a diffuser in said second fluid flow path between said first and second pressure reducing means wherein, in use, said diffuser disrupts substantially linear damping fluid flow, such as a jet, in said second fluid flow path.


In one embodiment, said diffuser is arranged to, in use, cause a change in velocity of said substantially linear fluid flow, for example a change in direction.


In one embodiment, said diffuser includes a pin having a longitudinal axis oriented substantially perpendicularly to said linear damping fluid flow.


In one embodiment, said diffuser includes at least one fluid flow port, such as a plug having at least one such fluid flow port, that forces a change in direction of said substantially linear fluid flow.


In some embodiments said primary valve member includes an annular piston axially moveable along a valve body.


In one embodiment, said valve body includes a fluid port providing fluid communication between a valve body interior and an annular piston interior.


Preferably, said valve body includes said first and second pressure reducing means, and said valve body interior includes a pilot pressure chamber that is hydraulically between said first and second pressure reducing means and that is in fluid communication with said annular piston interior via said fluid port.


In one embodiment, said first fluid flow path includes one or more shim for controlling flow of damping fluid along said first fluid flow path, and said primary valve member is arranged apply a variable force to said one or more shim, the arrangement being such that, in use, the resistance to damping fluid flow along said first fluid path is the sum of the resistance provided by said shims and by said primary valve member.


According to other aspects there is provided a valve assembly for use in a vehicle suspension damper, which valve assembly includes:


a valve for controlling movement of a damping fluid in compression and/or rebound of said vehicle suspension damper, the valve having:


a primary valve member for resisting damping fluid flow along a first fluid flow path from a first side of the valve to a second side of the valve;


a first pressure reducing means and a second pressure reducing means in a second fluid flow path between said first and second sides of the valve;


wherein a surface of the primary valve member is exposed to damping fluid in said second fluid flow path between said first and second pressure reducing means;


the arrangement being such that, in use, during compression and/or rebound of said vehicle suspension damper damping fluid is urged to flow through said first fluid flow path at a first fluid pressure resisted by said primary valve member, and at the same time pressure of damping fluid in the second fluid flow path is reduced by the first and second pressure reducing means to a second fluid pressure lower than said first fluid pressure; and


the second fluid pressure acts on a said surface of said primary valve member so that the primary valve member increases its resistance to damping fluid flow along said first fluid flow path.


It is foreseeable that the valve assembly might be manufactured and sold separately from a vehicle suspension assembly.


According to yet other aspects there is provided a vehicle comprising a vehicle suspension damper as set out above.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts an asymmetric bicycle fork having a damping leg and a spring leg.



FIG. 1B depicts a cross-sectional side elevation view of a shock absorber of a bicycle fork cartridge, in accordance with an embodiment.



FIG. 2, FIG. 3, and FIG. 4 depict a cross-sectional side elevation view of various operational positions of an embodiment of the base valve assembly of detail 2 of FIG. 1B.



FIG. 5A and FIG. 5B depict a cross-sectional side elevation view of a valve assembly of detail 2 of the shock absorber of FIG. 1B, in accordance with an embodiment.



FIG. 6 and FIG. 7 each depicts a cross-sectional side elevation view of the valve assembly of detail 2 of the shock absorber of FIG. 1B, in accordance with an embodiment.



FIG. 8A and FIG. 8B depict a cross-sectional side elevation view of a shock absorber, in accordance with an embodiment.



FIGS. 9-13 depict a cross-sectional side elevation view of the base valve assembly of detail 2 of FIG. 1B, including a “latching solenoid”, in accordance with an embodiment.



FIG. 14 depicts an arrangement of an embodiment on an example vehicle, in accordance with an embodiment.



FIG. 15 depicts an example vehicle suspension damper, in accordance with an embodiment.



FIGS. 16A-16C depict an electronic valve, in accordance with an embodiment.





The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.


DESCRIPTION OF EMBODIMENTS

Reference will now be made in detail to embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the technology will be described in conjunction with various embodiment(s), it will be understood that they are not intended to limit the present technology to these embodiments. On the contrary, the present technology is applicable to alternative embodiments, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


Furthermore, in the following description of embodiments, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, the present technology may be practiced without these specific details. In other instances, well known methods, procedures, and components have not been described in detail as not to unnecessarily obscure aspects of the present disclosure.


Embodiments of vehicle suspension dampers described herein may include a valve assembly as is described in embodiments above. The valve assembly may be used to regulate damping fluid flow in different parts of the suspension damper. For example, the valve assembly may be part of a base valve in a hydraulic suspension damper, such as a suspension fork and/or rear shock for a bicycle or motorcycle. Additionally or alternatively, the valve assembly may be included as part of a main piston assembly of the vehicle suspension damper, and may be used to control damping in compression and/or rebound. Additionally or alternatively, the valve assembly may be used to regulate damping fluid flow between a main damping chamber of the damping assembly and a reservoir, the reservoir for accommodating damping fluid as a piston shaft enters the main damping chamber in compression. The principle of operation of the valve assembly has wide application in vehicle suspension dampers; for example, by scaling the size of the valve assembly appropriately, it can be used in vehicles as small and light as bicycles (e.g. in the forks and/or rear shocks), and as heavy as military vehicles.


Embodiments provide a system for controlling a vehicle's motion by increasing and/or decreasing damping forces within a vehicle suspension damper in quick response to sensed movement of the vehicle. Embodiments may be used in various types of vehicles, such as, but not limited to, bicycles, Side by Sides (four-wheel drive off-road vehicle), snow mobiles, etc. Embodiments include a set of sensors coupled with a vehicle suspension damper having an electronic valve. Embodiments provide for a quicker response time, such as selectively applying damping forces, to terrain changes than the timing of responses from conventional vehicle suspension dampers.


Conventional inertia valves of conventional vehicle suspension dampers are mechanical. The conventional mechanical inertia valve operates to respond to a terrain change by applying damping forces when a vehicle's motion is sensed. However, by the time that the mechanical inertia valve senses the vehicle motion and then actually applies the damping force, the vehicle rider has already experienced some type of response to the varied terrain. For example, the vehicle rider might feel the vehicle's initial response to running over a large rock. Mechanical inertia valves have a response time that is measured at the speed of sound or less. Thus, a shock wave from a vehicle hitting a bump will be received and felt by the vehicle rider before the mechanical inertia valve can open and provide a “soft” ride. (A “soft” vs. “hard” mode of an inertia valve is explained below.)


Embodiments of the present technology include a set of sensors attached to the vehicle to sense vehicle motion and send control signals regarding these sensed vehicle motions to a control system of a vehicle suspension damper. The control system activates a power source of the vehicle suspension damper. The power source delivers a current to the electronic valve. The current causes a pilot valve assembly of the electronic valve to either open or close, thereby creating a “hard” mode having maximum damping force or a “soft” mode that provides a moderate damping force, respectively. Of significance, embodiments also enable components therein to provide damping functions other than via responding to a current delivered from a power source. The following lists some examples of alternative embodiments that operate to provide damping functions; it should be appreciated that the list is not exhaustive. In one example, a range of damping force may be manually selected by a user by manually adjusting a needle and jet arrangement. In another example, if the valve assembly is located on the main piston 245, a position sensitive bottom-out needle arrangement may provide for a needle engaging a jet deep into the travel of the suspension, thereby influencing a damping. Another example includes a pneumatic source (e.g., air bag springs) on a semi-truck, in which the pneumatic source drives pressure in the pilot pressure chamber 1520. As the vehicle is loaded and thereby decreases the semi-truck's ride height, the air bag pressure is increased to enable the vehicle to return to the proper ride height. This increase in air pressure also corresponds to an appropriate increase in damping. Thus, in various embodiments: 1) if the set of sensors did not exist, or became inoperable for some reason, the components within embodiments are still enabled to provide damping functions; and/or 2) if the power source for some reason became unavailable, the components within embodiments are still enabled to provide damping functions. As described herein, various embodiments provide some damping function options in addition to the operation of the set of sensors in combination with the inertia valve. These options include the following: an electro-mechanical device (e.g., solenoid, latching solenoid, electric motor, piezoelectric actuator); a manually adjustable needle and jet arrangement; and a pressure signal from an outside pressure source (e.g., suspension air bag).


When a vehicle moves, a set of sensors, such as a set of accelerometers, in accordance with an embodiment, sense the vehicle's acceleration first. Subsequent to the sensing of the vehicle's acceleration, the vehicle's velocity is sensed, and then the vehicle's displacement is sensed. The set of sensors sends a control signal to the control system of the vehicle suspension damper as soon as the acceleration is sensed. Thus, in contrast to the use of conventional mechanical inertia valves, a damping force is caused to be applied by the electronic valve prior to the vehicle rider experiencing any response to terrain changes. In contrast to embodiments, the conventional mechanical inertia valve responds to a terrain change at the speed of sound or slower, such that the vehicle rider experiences a pressure wave before the conventional mechanical inertia valve is able to apply a damping force.


Additionally, and of significance, embodiments include a control or orifice block with a control orifice therein. The control orifice functions to meter fluid flowing through the vehicle suspension damper such that the control orifice provides additional damping functions. The control orifice and the advantages thereof will be described in more detail below.



FIG. 14 shows a bicycle 1405, in accordance with an embodiment, having attached thereto a vehicle suspension damper 1410 and a set of sensors 1415. The vehicle suspension damper 1410, in this particular embodiment, is located within the front fork 1420 of the bicycle 1405. The set of sensors 1415 is configured for sensing a type of vehicle motion, such as tilt (roll), acceleration, velocity, etc. Further, the set of sensors 1415 may be positioned anywhere on the vehicle that enables the receipt of accurate sensed information and which enables communication of a control signal (regarding the sensed information) to the vehicle suspension damper 1410.


For example, in one embodiment, if the set of sensors 1415 senses that the vehicle is experiencing acceleration, the set of sensors 1415 sends a control signal to the vehicle suspension damper 1410.



FIG. 15 shows the vehicle suspension damper 1410, in accordance with an embodiment. The vehicle suspension damper 1410 includes an electronic valve 1500. The electronic valve 1500 includes at least a primary valve 1505, a first pressure reducing means which in this embodiment is an orifice block 1515, and a second pressure reducing means which in this embodiment is a pilot valve assembly 1510, all of which components cooperatively control the flow of fluid throughout the inertia valve and manipulate the fluid pressure within the pilot pressure chamber 1520.


In basic operation, the permanent magnet 1560 of the solenoid assembly conducts through the component 1565 to attract the pilot spool 1570. This is the latched position as shown. The spool spring 1575 resists this condition. When the coil is turned on with positive polarity, it cancels the effect of the permanent magnet 1560 and the spool spring 1575 moves the pilot spool 1570 to the left or closed position. With negative polarity applied to the coil, the electromagnet is added to the permanent magnet 1560 and the pilot spool 1570 is drawn to the right or open position.


The main oil flow path, or first fluid flow path, is through the center of the base valve and radially outwardly into piston port area 1525. Assuming there is enough pressure in the piston ports, it then blows off the valve shims 1530 and oil flows into the reservoir 40. A small amount of oil also flows in parallel through a second fluid flow path in the inertia valve 1500, and in particular through the control orifice 1535 and through the solenoid assembly 1580. This generates a pilot pressure inside the area of the primary valve 1505.


The valve member 1540 acts to resist the valve shims 1530 from opening. This resistive force is dependent on pressure inside the area of the primary valve 1505 which is controlled by the pressure drop across the solenoid. Basically, when the solenoid is closed, there is high pressure inside the area of the primary valve 1505 (resulting in locked-out fork or firm damping, depending on the damping characteristics determined for the inertia valve 1500, as described in greater detail below). When the solenoid is open, there is low pressure inside the area of the primary valve 1505 and the valve member 1540 pushes against valve shims 1530 with less force, allowing the valve shims 1530 to open under lower fluid pressure. This open position of the solenoid provides a normally-operating fork, by which is meant the damping characteristic of the inertia valve is determined predominantly by the tuning of the valve shims 1530 (although there is some damping effect provided by the control orifice 1535).


A more particular description follows. A control signal instructs the vehicle suspension damper 1410 to increase or decrease its damping force therein. The vehicle suspension damper 1410 is configured to respond to the control signal instruction. More particularly, the inertia valve of the vehicle suspension damper 1410, in response to the control signal instruction, quickly manipulates the pressure in the pilot pressure chamber 1520 of the inertia valve by moving/adjusting itself to at least partially close or open the flow ports 1550. The pressure in the pilot pressure chamber 1520 increases or decreases in proportion to the amount of closure or opening that the flow ports 1550 experience, respectively.


In general, in embodiments, fluid in the inertia valve flows along a first fluid flow path from the damping cylinder interior 35 and through the shims 1530 (unless the shims 1530 are held closed under pressure from the valve member 1540, as will be described herein) via the piston port area 1525. Additionally, fluid also flows along a second fluid flow path from the damping cylinder interior 35 and through the control orifice 1535 of the orifice block 1515. After having flowed through the control orifice 1535, the fluid moves into the pilot pressure chamber 1520. From the pilot pressure chamber 1520, the fluid moves out of the pilot spool valve 1545 (wherein the pilot spool valve 1545 is in at least a partially open position) through a set of flow ports 1550 and into the reservoir 40. Additionally, from the pilot pressure chamber 1520, the fluid also moves into the area of the primary valve 1505. When the fluid presents a predetermined pressure against surface 1580 of the valve member 1540, a force proportional to the pressure is exerted on the valve member 1540 which urges it against the shims 1530. The valve member 1540 pushes against the shims 1530, thereby biasing the shims 1530 toward a closed position, even though fluid is moving through the shims 1530 from the piston port area 1525 and into the reservoir 40. If the force of the valve member 1540 against the shims 1530 is greater than the force of the fluid moving from the piston port area 1525 against the shims 1530, then the shims 1530 will become biased toward closing. Likewise, if the force of the fluid moving from the piston port area 1525 against the shims 1530 is greater than the force of the valve member 1540 against the shims 1530, then the shims 1530 will be biased toward an open position, in which the fluid may remain flowing through the shims 1530.


During compression of the shock absorber, in order to change the fluid pressure within the pilot pressure chamber 1520 in quick response to changes in the vehicle's position and speed, for example, embodiments use a control system to receive control signals from the set of sensors 1415. In accordance with the control signals received from the set of sensors 1415, the control system activates a power source that is attached to the inertia valve. The power source delivers a current to the inertia valve. The inertia valve responds to the delivered current by causing the pilot valve assembly 1510 to move and block or open at least a portion of the flow ports 1550 through which fluid may flow there through from the pilot pressure chamber 1520 and into the reservoir 40, thereby at least partially closing or opening the flow parts 1550.


In general, upon compression of the shock absorber, the damper piston 5 moves into the damper cylinder interior 35. More particularly, when the flow ports 1550 are at least partially closed, the fluid pressure within the pilot pressure chamber 1520 increases such that the fluid pressure in the area of the primary valve 1505 also increases. This increase in the fluid pressure in the area of the primary valve 1505 causes the valve member 1540 to move toward the shims 1530 that are open and to push against the shims 1530, thereby causing the shims 1530 to at least partially or fully close. When these shims 1530 are at least partially or fully closed, the amount of fluid flowing there through decreases or stops. The movement of the damper piston 5 into the damper cylinder interior 35 causes fluid to flow through the piston port area 1525 and hence out through open shims 1530 and into the reservoir 40. The fluid also flows through the control orifice 1535 into the pilot pressure chamber 1520. If the shims 1530 are closed due to movement of the pilot valve assembly 1510 to block the flow ports 1550, then fluid may not flow out through the shims 1530 or out through the flow ports 1550 into the reservoir 40. Consequently, the ability of the damper piston 5 to move within the damper cylinder interior 35 to cause fluid to flow through the piston port area 1525 as well as through the flow ports 1550 is reduced or eliminated. The effect of the at least partial closure of the shims 1530 is to cause a damping function to occur. Thus, the movement of the pilot valve assembly 1510 to at least partially block the flow ports 1550 causes the damping (or slowing of movement) of the damper piston 5 into the damper cylinder interior 35.


In various embodiments, the control orifice 1535 operates cooperatively with the pilot valve assembly 1510 to meter the flow of fluid to the primary valve 1505. The control orifice 1535 is a pathway within the orifice block 1515 and is positioned between the damper cylinder interior 35 and the pilot pressure chamber 1520. The size of the control orifice 1535 is tunable according to the application; the size may be variously changed. The control orifice 1535 is a key component in enabling the quick and accurate response to sensed changes in a vehicle's motion. As will be explained herein, without the presence of the control orifice 1535, the vehicle would not experience damping during periods of low compression speed, or experienced too much damping during periods of high compression speeds. The pilot valve assembly 1510 would act like a bypass. In other words, without the control orifice, at low compression speed there would almost be no damping and the pilot valve assembly 1510 would act like a bypass; but at higher compression speeds, pressure drop across the pilot valve assembly 1510 would cause a high pressure in the pilot pressure chamber 1520 and therefore too much clamping force on the shims 1530. The control orifice 1535, thus, allows damping to occur even during periods of low compression speed, and slows the damping rate during period of high compression speed.


In this particular embodiment, it was discovered that (without the control orifice 1535) if the area of the primary valve is approximately 60% or more of the area of the piston port 1525, the valve member 1540 is hydraulically locked (at all speeds) onto the shims 1530. This led to undesirable high damping force at high compression speeds. Although in this particular embodiment the hydraulic lock occurred at about 60% area ratio and higher, this may not be true in all cases: there may be arrangements where a lock occurs at a higher or lower ratio than 60%, or where no lock occurs at all at any ratio. It is expected that that the particular ratio will be dependent on design parameters such as the valve shim arrangement and main piston design.


The solution is to cause a pressure drop of damping fluid before it enters the pilot pressure chamber 1520. This is achieved with the control orifice 1535. The control orifice 1535 provides some damping effect at low compression speeds (by enabling damping fluid to ‘bleed’ through the control orifice), but at high compression speeds provides a significant pressure drop to ensure that the pressure inside the pilot pressure chamber does not get too high, thereby preventing the valve member 1540 from locking onto the shims 1530.


In its present form, the control orifice 1535 is between 0.5 mm and 2 mm in diameter, but these sizes are dependent on the specific application and the desired damping curve. Pressure drop is directly proportional to the length of the control orifice 1535, but inversely proportional to its diameter. Either one or both of these parameters can be changed at the design stage to affect the performance of the control orifice 1535.


The essential function, in embodiments, of the control orifice 1535 is to create a pressure drop. Therefore, anything that will do this could be used in place of the specific arrangement shown. Some possible examples include: a diffuser; a labyrinth between parallel plates; leakage past a screw thread; etc.


A further key feature of embodiments is the combination of the area of the surface 1580 inside the valve member 1540, the control orifice 1535, the pilot valve assembly 1510, and the way this combination enables a variable force to be applied to the shims 1530 to control the damping force at any point in time.


In particular, the ratio of the surface area 1585 of the shims 1530 (The surface area 1585 is next to the piston port area 1525; the pressure is acting on the surface area 1585 of the shims 1530 as well as the surface area 1580 of the inside of the valve member 1540, within the primary valve area 1505) to the area of the surface 1580 inside the valve member 1540 controls the overall damping characteristic of the inertia valve 1500, i.e., what overall range of force can be applied to the shims 1530. By selecting this ratio appropriately, the valve member 1540 can be set up to move between full lockout and a completely soft state, or between a firm damping state and a soft state, for example.


Within that overall range of force, a particular force at any point in time is set by the position of the pilot valve assembly 1510, which, as explained above, controls the pressure drop across the flow ports 1550. By adjusting the pressure drop across flow ports 1550, the pressure of fluid in the pilot pressure chamber 1520 is also adjusted. Since the pressure inside the pilot pressure chamber 1520 acts against surface 1580 of the valve member 1540, the force applied by the valve member 1540 to the shims is controllable by adjustment of the position of the pilot valve assembly 1510.


It should be noted that the overall resistance to fluid flow along the first fluid flow path (i.e. through piston port area 1525 and past shims 1530) is given by the sum of the force provided by the shims 1530, and the force applied to the shims 1530 by the valve member 1540.


A significant feature is that force is generated on the valve member 1540 by control of pressure inside the area of the primary valve 1505 (in contrast to other valve bodies where force comes from pressure acting on the outside of the valve member 1540, usually from the damper reservoir). The ultimate source of pressure in the pilot pressure chamber 1520 is the pressure of the damping fluid in the main damping cylinder 35 during compression (but regulated by the control orifice 1535 and the pilot valve assembly 1510 to give a lower pressure in the pilot pressure chamber 1520).


There are significant advantages to the combination of the ratio of the area of the surface 1580 to the area of the piston port 1525, control orifice 1535, and the pilot valve assembly 1510. Some of them are as follows: 1) the damping force generated by inertia valve 1500 is not temperature sensitive; 2) the damping force generated by inertia valve 1500 is not position sensitive; 3) when using an electro-mechanical inertia device to control the pilot valve assembly 1510, the damping force can be turned on and off very quickly (recent experiments achieved 4 ms between full firm and full soft- to the best of the applicant's knowledge and belief the fastest turning on and off of damping force in other devices is 20 ms. The reason such fast speeds are achieved is because, when the pressure in the pilot pressure chamber 1520 is released, it is the pressure in the main damper (which is the same as the fluid pressure in the piston port area 1525) that pushes on the shims 1530 and moves the primary valve assembly 1510 back (which can happen very quickly). This is in contrast to other arrangements that rely on an electric motor to move a valve body, for example, which takes more time; 4) using a latching solenoid pilot valve enables full firm state to be maintained with no power; 5) the pilot valve assembly 1510 enables very large damping forces to be controlled using the same pilot valve assembly 1510—this is because: (a) the pilot pressure is ‘magnified’ according to the ratio of the area of the primary valve 1505 to the area of the piston port 1525; and (b) because the pilot valve assembly 1510 is not required to move any element against the high pressure damping fluid; and 5) the primary valve assembly 1510 allows the damper to utilize conventional shims, but with some level of controllability over the damping force applied by the shims. This allows the shims to be tuned in a conventional manner. Furthermore, if power to the pilot valve assembly 1510 fails, the shock absorber will continue to operate (in contrast to other electronically controlled shocks where power loss causes the shock to stop working completely).


Thus, the inertia valve 1500, including the primary valve 1505, the pilot valve assembly 1510, and the orifice block 1515, not only enables a variable force to be applied to shims 1530, but also enables the control of the damping force within the vehicle at any point in time. The pilot valve assembly 1510 meters a flow of fluid to the primary valve 1505 and enables the generation of relatively large damping forces by a relatively small solenoid (or other motive source), while using relatively low amounts of power.


Furthermore, since the incompressible fluid inside of the primary valve 1505 of the shock absorber assembly causes damping to occur as the primary valve 1505 opens and the valve member 1540 collapses, embodiments enable both a controllable preload on the shims 1530 and a controllable damping rate. In one embodiment, and particularly in 4 wheel vehicles, the solenoid continuously powers the inertia valve and does not have a latching mechanism. In one embodiment, a monitor will continuously monitor power source and its operation in order to make sure that the wires leading to the power source do not get cut, thereby providing a dangerous situation for the rider and other vehicles.


In regards to the area of the primary valve 1505, although it is shown as an internal base valve, it is not limited to this position or application. For example, it can be mounted externally of the vehicle suspension damper (for example in a ‘piggy-back’ reservoir). Further, it could be made part of the main damper piston (either in compression or rebound directions).


In considering the design of the control orifice 1535, it must have at least the following two functions: provision of low speed bleed; and provision of sufficient pressure drop at high speed to prevent hydraulic lock of the valve member 1540 onto the shims 1525. The general methodology for determining the diameter and/or length of the control orifice 1535 during design is as follows: (1) identify the desired damping curve that the damper should have; (2) determine from step (1) the target low speed damping force; (3) determine from step (1) the target high speed damping force; (4) make informed guess at control orifice diameter and/or length to achieve steps (2) and (3); (5) test the output damping forces produced by shock at different speeds within low to high speed range; (6) compare the measured damping curve against the desired damping curve; (7) if there is too much high speed damping force, then reduce the diameter of the control orifice (to lower the pressure inside the pilot pressure chamber 1520); (8) if there is too much low speed damping force, then decrease the area ratio (between the area of the primary valve 1505 and the piston port area 1525), and increase the diameter of the control orifice 1535; and (9) repeat steps (5)-(8) until a good approximate to a desired damping curve is obtained. It is to be noted that in steps (7) and (8) the length of the control orifice can also be adjusted, either separately or in addition to the diameter, to achieve a similar effect.


In various embodiments, it was found that the pilot valve assembly 1510 would “auto-close” at a certain oil high flow rate. In one embodiment, a diffuser pin inserted into the vehicle suspension damper downstream of the control orifice 1535 is used to eliminate this auto-closing issue. FIG. 16A shows an electronic valve 1600A with a diffuser pin 1605 positioned through one set of the cross holes 1610 going to the primary valve area 1505, in accordance with an embodiment. Another set of holes remains (normal to the page) to feed oil to the valve member 1540. The diffuser pin 1605 functions to disrupt the jet flow coming out of the control orifice 1535. FIG. 16B shows an electronic valve 1600B with a diffuser plug 1620 pressed into, at least one of and at least partially, the orifice block 1515 and the pilot pressure chamber 1520, in accordance with an embodiment. The diffuser plug 1620 also functions to disrupt the jet flow coming out of the control orifice 1535. FIG. 16C shows an electronic valve 1600C with a diffuser pin 1630, in accordance with an embodiment. In this embodiment, the spool retainer 1635 (see FIG. 16B) is replaced with the diffuser pin 1630. The diffuser pin 1630 and its position within the vehicle suspension damper 1600C functions to disrupt the jet flow coming out of the control orifice 1535 and to minimize the contact of the pilot spool assembly 1510 in the firm setting.


In another embodiment, the solenoid includes a “latching” mechanism to open and close the pressure-balanced pilot spool. Due to the latching configuration of the solenoid, power is only required to open or close the pilot valve assembly 1510. Power is not required to hold the pilot valve assembly 1510 open or closed in either setting. Consequently, embodiments enable reduced power consumption compared to the traditional shock absorber.


Further embodiments provide an externally-adjustable means of tuning the open state of the damper. An adjuster turns in or out to vary the effective orifice size of the pilot spool valve 1545 when in the open position. This allows the rider to adjust the soft setting of the damper to his preference.


In the embodiment described above in conjunction with FIGS. 14 and 15 it is to be noted that, whilst preferred, the use of a valve shims 1530 is optional. Instead, it would be possible for the valve member 1540 to act directly on the fluid flow ports 1525. In fact, valve shims are optional in any such embodiment described herein where it would be possible for the valve member 1540 (or any other similar valve member described herein) to act directly on the fluid flow ports that control the main flow through the valve assembly.


The following discussion describes the FIGS. 1-8B and embodiments shown therein.


Integrated damper/spring vehicle shock absorbers often include a damper body surrounded by or used in conjunction with a mechanical spring or constructed in conjunction with an air spring or both. The damper often consists of a piston and shaft telescopically mounted in a fluid filled cylinder. The damping fluid (i.e., damping liquid) or damping liquid may be, for example, hydraulic oil. A mechanical spring may be a helically wound spring that surrounds or is mounted in parallel with the damper body. Vehicle suspension systems typically include one or more dampers as well as one or more springs mounted to one or more vehicle axles. As used herein, the terms “down”, “up”, “downward”, “upward”, “lower”, “upper”, and other directional references are relative and are used for reference only.



FIG. 1A shows an asymmetric bicycle fork 100 having a damping leg and a spring leg. The damping leg includes an upper tube 105 mounted in telescopic engagement with a lower tube 110 and having fluid damping components therein. The spring leg includes an upper tube 106 mounted in telescopic engagement with a lower tube 111 and having spring components therein. The upper legs 105, 106 may be held centralized within the lower legs 110, 111 by an annular bushing 108. The fork 100 may be included as a component of a bicycle such as a mountain bicycle or an off-road vehicle such as an off-road motorcycle. In some embodiments, the fork 100 may be an “upside down” or Motocross-style motorcycle fork.


In one embodiment, the damping components inside the damping leg include an internal piston 166 disposed at an upper end of a damper shaft 136 and fixed relative thereto. The internal piston 166 is mounted in telescopic engagement with a cartridge tube 162 connected to a top cap 180 fixed at one end of the upper tube 105. The interior volume of the damping leg may be filled with a damping liquid such as hydraulic oil. The piston 166 may include shim stacks (i.e., valve members) that allow a damping liquid to flow through vented paths in the piston 166 when the upper tube 105 is moved relative to the lower tube 110. A compression chamber is formed on one side of the piston 166 and a rebound chamber is formed on the other side of the piston 166. The pressure built up in either the compression chamber or the rebound chamber during a compression stroke or a rebound stroke provides a damping force that opposes the motion of the fork 100.


The spring components inside the spring leg include a helically wound spring 115 contained within the upper tube 106 and axially restrained between top cap 181 and a flange 165. The flange 165 is disposed at an upper end of the riser tube 163 and fixed thereto. The lower end of the riser tube 163 is connected to the lower tube 111 in the spring leg and fixed relative thereto. A valve plate 155 is positioned within the upper leg tube 106 and axially fixed thereto such that the plate 155 moves with the upper tube 106. The valve plate 155 is annular in configuration, surrounds an exterior surface of the riser tube 163, and is axially moveable in relation thereto. The valve plate 155 is sealed against an interior surface of the upper tube 106 and an exterior surface of the riser tube 163. A substantially incompressible lubricant (e.g., oil) may be contained within a portion of the lower tube 111 filling a portion of the volume within the lower tube 111 below the valve plate 155. The remainder of the volume in the lower tube 111 may be filled with gas at atmospheric pressure.


During compression of fork 100, the gas in the interior volume of the lower tube 111 is compressed between the valve plate 155 and the upper surface of the lubricant as the upper tube 106 telescopically extends into the lower tube 111. The helically wound spring 115 is compressed between the top cap 181 and the flange 165, fixed relative to the lower tube 111. The volume of the gas in the lower tube 111 decreases in a nonlinear fashion as the valve plate 155, fixed relative to the upper tube 106, moves into the lower tube 111. As the volume of the gas gets small, a rapid build-up in pressure occurs that opposes further travel of the fork 100. The high pressure gas greatly augments the spring force of spring 115 proximate to the “bottom-out” position where the fork 100 is fully compressed. The level of the incompressible lubricant may be set to a point in the lower tube 111 such that the distance between the valve plate 155 and the level of the oil is substantially equal to a maximum desired travel of the fork 100.


Referring now to FIG. 1B, a cross-sectional side elevation view of a shock absorber of a bicycle fork cartridge is depicted, in accordance with an embodiment. More particularly, FIG. 1B shows the inner portions of the bicycle fork leg assembly, comprising a damper piston 5. In practice, the top cap 20 is affixed to an upper tube (not shown) and the lower connector 10 is fixed to a lower leg tube (not shown) where the upper tube is typically telescopically mounted within the lower tube (although the reverse may also be the case). As the upper tube and the lower tube telescope in contraction or expansion in response to disparities in the terrain being traversed by a vehicle, including such for shock absorption, so also the damper piston 5 and piston rod 15 move telescopically into and out of damper cylinder 25. During compression, the volume of the piston rod 15 displaces, from the cylinder 25, a volume of damping liquid contained within the cylinder 25 corresponding to the volume of the piston rod 15 incurring into the damper cylinder 25. During extension or “rebound”, the volume of liquid must be replaced as the piston rod 15 leaves the interior of the damper cylinder 25.


Damping liquid displaced as described above moves from the damper cylinder 25, through a base valve assembly of detail 2 and ultimately into an elastic bladder 30 during compression, and from the elastic bladder 30, back through the base valve assembly of detail 2 and into the damper cylinder 25 during rebound. In one embodiment, the base valve assembly of detail 2 allows for the compression damping to be adjusted by the user.



FIG. 2, FIG. 3, and FIG. 4 show cross-sectional side elevation views of various operational positions of an embodiment of the base valve assembly of detail 2 of FIG. 1B. FIGS. 2-4 show a continuously variable semi active arrangement, in accordance with embodiments, and as will be described in more detail below. In brief, a solenoid balanced by an armature biasing spring 235 axially locates a pressure-balanced pilot spool 210. The pressure-balanced pilot spool 210 controls the pressure inside the valve body 230. As this pressure is increased inside the valve body 230, the axial force of the valve body 230 on the conventional valve shim increases. Due to the pilot spool assembly arrangement, a relatively small solenoid (using relatively low amounts of power) can generate relatively large damping forces. Furthermore, due to incompressible fluid inside the valve body 230, damping occurs as the valve opens and the valve body 230 collapses. The result is not only a controllable preload on the valve stack, but also a controllable damping rate. Embodiments discussed herein may optionally be packaged in a base valve, the compression adjuster of a shock absorber, and/or on the main piston of a shock absorber.



FIG. 2 is a detailed view of the base valve assembly of detail 2 of FIG. 1B, with the valve shown in the retracted soft position. This retracted position corresponds to minimum or no current in the solenoid. In FIG. 2, a first damping fluid flow path between damping cylinder interior 35 and annular reservoir 40 (including bladder 30 interior; see FIG. 1B) is substantially unobstructed via bleed passage 55, ports 50A and upper annulus 45. (Also shown in FIG. 2 is the main piston 245.)



FIG. 3 is a detailed view of the base valve assembly of detail 2 of FIG. 1B, with the valve shown in the mid-damping position. This corresponds to medium current supplied to the solenoid. FIG. 3 shows a partial obstruction of ports 50A by metering edge 205 of the pilot spool 210.



FIG. 4 is a detailed view of the base valve assembly of detail 2 of FIG. 1B, with the valve shown in the firm-damping position. FIG. 4 shows substantial blockage of ports 50A by the metering edge 205 of the pilot spool 210, which is axially displaced relative to its position in FIG. 2.


Of note, the pilot spool 210 shown in FIG. 2 is in a retracted soft position, in which the metering edge 205 of the pilot spool 210 is not obstructing the ports 50A. However, the pilot spool 210 shown in FIG. 3 is in a middle position, in which the metering edge 205 of the pilot spool 210 is partially obstructing the ports 50A. The pilot spool 210 shown in FIG. 4 is in a firm position, in which the metering edge 205 of the pilot spool 210 is fully obstructing ports 50A.


In one embodiment, the axial displacement of the pilot spool 210 is facilitated by an electromagnetic interaction between the armature 215 and the coil 220. Adjustment of the current in the coil 220 (via modulation of the current from a power source [not shown]) to predetermined values causes the armature 215, and hence the pilot spool 210, to move in corresponding predetermined axial positions relative to the coil 220. As such, the pilot spool 210 can be adjusted as shown in the FIGS. 2-4.


When the pilot spool 210 is closing ports 50A, as shown in FIG. 4, substantially all damping fluid compression flow must flow through port 70 and valve shims 225. In addition, the damping fluid pressure acting through and in annulus 60 on an interior of the valve body 230 is increased and therefore the valve body 230 exerts more closing force of the valve shims 225. The net result is an increased compression damping due to closure of ports 50A and a further compression damping increase due to a corresponding pressure increase in the compression damping within annulus 60. When the pilot spool 210 is located in a middle position as is shown in FIG. 3, the foregoing results apply in a diminished way because some of the compression flow (albeit less than full compression flow) may flow through partially open ports 50A. The embodiment of FIG. 2 also exhibits some effect of pressure boosting via annulus 60 on the valve body 230, but the phenomenon occurs at higher compression rates.



FIG. 5A and FIG. 5B depict a cross-sectional side elevation view of a valve assembly of detail 2 of the shock absorber of FIG. 1B, in accordance with an embodiment. FIG. 5A and FIG. 5B show an embodiment in which the valve body 230 acts on the valve shims 225 through a spring 75. In use, the valve body 230 increases or decreases the preload on the spring 75. FIG. 5A shows the pilot spool 210 in the retracted soft position, thereby causing the preload on the spring 75 to decrease. FIG. 5B shows the pilot spool 210 in the firm position, thereby causing the preload on the spring 75 to increase.



FIG. 6 and FIG. 7 depict a cross-sectional side elevation view of the valve assembly of detail 2 of the shock absorber of FIG. 1B, in accordance with an embodiment. FIG. 6 and FIG. 7 show an embodiment including a flow control orifice 605 for limiting flow through into the bleed passage 55 during compression. In limiting fluid flow, the flow control orifice 605 (by creating a pressure drop) places an upper limit on the amount of pressure in the annulus 60, and hence the amount of “boost” or closure force that the valve body 230 can exert on the valve shims 230. FIG. 6 shows the metering edge 205 of the pilot spool 210 obstructing ports 50A. FIG. 7 shows the metering edge 205 of the pilot spool 210 partially obstructing ports 50A.



FIG. 8A and FIG. 8B depict a cross-sectional side elevation view of one end of a piston and piston rod assembly of a shock absorber, in accordance with an embodiment. More particularly, FIG. 8A shows an embodiment having a separate valve body 805A and 805B corresponding to each of a rebound shim set 810 and a compression shim set 815, respectively, where a pilot spool 820 (performing, in one embodiment, similarly to the pilot spool 210 of FIGS. 1-7 described herein) alternatingly opens one area (e.g., 825A [similar to function to annulus 60]) while closing the other area (e.g., 825B [similar in function to annulus 60]). Of note, FIG. 8A shows a “hard/soft configuration”. For example, during compression, the area 825A and area 825B experience obstruction by a portion of the pilot spool 820, thereby creating a soft compression. During the rebound, the area 825A and area 825B are open to fluid flow, thereby creating a firm rebound. Thus, there would be a high amount of pressure experienced during rebound. However, for compression, the pressure is low, but there is no bleed. FIG. 8B shows a “hard/hard configuration” (a firm compression and a firm rebound), in accordance with an embodiment.



FIGS. 9-13 depicts a cross-sectional side elevation view of the base valve assembly of detail 2 of FIG. 1B, including a “latching solenoid”, in accordance with an embodiment. Embodiments further provide, in brief and as will be described below, a low-power bi-state electronic damper. The low-power bi-state electronic damper uses a latching solenoid to open and close a pressure-balanced pilot spool. Given the latching configuration of the solenoid, power is required only to open or close but not to hold in it in either setting, in accordance with an embodiment. The result is low power consumption.


Additionally, a further embodiment provides an externally-adjustable means of tuning the open state of the damper. There is an adjuster that can be turned in or out to vary the effective orifice size of the pilot spool when in the open position. This will allow the rider to adjust the soft setting of the damper to his/her preference.


With reference now to FIG. 9, the latching solenoid 905 primarily uses power to facilitate a change in position of the pilot spool 210 relative to the coil 220 but requires little or no power to maintain the pilot spool 210 in the desired position once that is achieved. In one embodiment, the latching solenoid assembly 905 (or latching spool valve assembly) includes: a pilot spool 210 which includes a magnetically active material; a spring 915 which is normally in compression and biases the pilot spool 210 toward a position obstructing ports 50A; a permanent magnet 920; and a coil 220 where power is supplied to the coil 220 by (in one embodiment) wires 925. The aforementioned components may be contained within a housing 240 or “cartridge” as shown.


The pilot spool valve assembly (including at least the pilot spool 210 and the metering edge 930 of the pilot spool 210) regulates damping fluid flow through a portion of the damper and adjusts the force applied to the valve shims 225 by the valve body 230 through ports 60. In one embodiment, the position of the spool valve assembly may be adjusted axially by means of the low speed adjuster 935. The low speed adjuster 935 (comprising multiple pieces), being for example, threaded at its lower end to the top cap 20 via the low speed adjuster threads 940, may be rotated to facilitate axial movement. In one embodiment, the low speed adjuster 935 includes a non-round shape (e.g., hexagonal) that facilitates the rotation with relative axial movement (see 1105 of FIG. 11).


With reference now to FIGS. 9-13, when the lower portion of the low speed adjuster 935 moves downward axially, the cartridge of the pilot spool 210 is correspondingly moved and thereby further compresses the spring 915. As the cartridge is moved downward, the low speed adjuster metering edge 950 is moved into further obstruction of ports 50B, thereby restricting flow of damping fluid through the damper from an interior of the pilot spool valve assembly to an exterior of the damping assembly (note the open ports 50B shown in FIG. 12, in which the pilot spool valve 920 is shown in the open pilot position with the low speed adjuster 935 in the soft position).


In one embodiment, the pilot spool 210 is biased by spring 915 toward a position wherein the metering edge 930 of the pilot spool 210 further obstructs ports 50A (see FIG. 13, wherein the pilot spool 210 is shown in the open pilot position with the low speed adjuster 935 in the middle position). A force opposing the bias of the spring 915 is exerted on the magnetic component of the pilot spool 210 by the permanent magnet 920. When the pilot spool 210 is in its uppermost (corresponding to open ports 50A) position, it is retained by the magnetic force between the permanent magnet 920 and the pilot spool valve 925 where that force is sufficient to overcome the bias of the spring 915 (thereby holding the spring 915 in a compressed state). As such, when the pilot spool valve 925 and ports 50A are in the open position (see FIG. 12), no power input is required to maintain that state.


In one embodiment, when it is desired to close or partially close ports 50A by means of the metering edge 930 of the pilot spool 210, a current is applied to the coil 220 via the wires 925. The current causes a magnetic flux around the coil 220, which acts on the magnetic component of the pilot spool 210 causing the pilot spool 210 to move axially within the cartridge. When the pilot spool 210 has moved a relatively small distance axially away from the permanent magnet 920, the spring 915 bias moves the pilot spool 210 toward closure of ports 50A with little or no additional power input to the coil 220.


Of note, FIG. 10 shows the pilot spool 210 in the closed pilot position with the low speed adjuster 935 in the firm position. FIG. 11 shows the pilot spool 210 in the open pilot position with the low speed adjuster 935 in the firm position. FIG. 10 additionally shows the low speed adjuster metering edge 1005 and the spool valve assembly housing 1010, in accordance with an embodiment.



FIGS. 9-13 show an orifice block 955 having a tailored orifice 960 there through. The orifice 960 meters low speed damping fluid for low speed bump response of the suspension (when magnitude and rate is insufficient to open the shims). The size of the orifice 960 may be chosen to allow a desired amount or range of pressure to be applied to the valve body 230 through annulus 60 (ports). The use of the pilot spool 210 then further specifies that the pressure acts on the valve body 230 by modulating the flow restriction “downstream” (during a compression stroke of the suspension) of the orifice 960.



FIGS. 9-13 also show a pressure relief valve 965 or “blow off” valve, which is biased toward a closed position by Bellville spring(s) 970. The pressure relief valve 965 opens in response to an interior damper pressure above a predetermined threshold and thereby prevents damage to the damper and vehicle in the event of rapid pressure build up (usually associated with extreme suspension compression rate). The pressure relief valve 965 may have an adjustable threshold value (in one embodiment, by modification of the compression in the Bellville spring 970).


With reference again to FIGS. 14 and 15, it should be again noted that the set of sensors 1415 may be positioned in various locations on various types of vehicles. For example, in one embodiment, the set of sensors 1415 is positioned on the seat post of a bicycle. In another embodiment, a first set of sensors is positioned near the front wheel, while a second set of sensors is positioned near the rear wheel.


In one embodiment, the set of sensors includes three accelerometers. The accelerometers define a plane of the vehicle's body, such that the acceleration and the tilt (i.e., pitch and roll) of the vehicle body may be measured. When the set of sensors senses vehicle motion which is determined to meet and/or exceed a predetermined threshold, then the set of sensors sends a control signal to the control system attached to the vehicle suspension damper. The predetermined threshold may be a constant in one embodiment. However, in another embodiment, the predetermined threshold may be a variable based on other situations sensed on the vehicle. Once a control signal is received by the power source, the power source that is attached to the vehicle suspension damper becomes activated. Upon activation, the power source sends a current to the vehicle suspension damper, thereby causing the pilot valve assembly to move, as was described herein. Various methods of sensing via accelerometers and other forms of motion via sensors are known in the art.


As described herein, the vehicle upon which a set of sensors and a vehicle suspension damper may be attached may be a bicycle, a Side by Side, a snowmobile, etc. In the situation in which the vehicle is a Side by Side, such as a recreational off highway vehicle (ROV), more than one set of sensors may be used. For example, each wheel base (4) may include an embodiment of the system of the present technology. More specifically, each wheel base has attached thereto a different set of sensors, such as a set of accelerometers, each set being attached to a separate vehicle suspension damper. In another embodiment, one set of sensors (e.g., set of accelerometers) is attached to the ROV, as well as being attached to one or more vehicle suspension dampers.


If the ROV is traveling along a path that does not have any bumps or uneven terrain, then the vehicle suspension dampers may each be programmed to operate in a fully open mode (i.e., soft mode), in which the pilot spool valve 1545 of the pilot valve assembly 1510 is open to the flow ports 1550, thereby allowing fluid to flow from the damper cylinder interior 35 and into the reservoir 40 either through the first fluid flow path, with resistance provided by the shims 1530 (and no additional force provided by the valve member 1540), and/or through the control orifice 1535 that permits low speed bleed of damping fluid via the second fluid flow path. Thus, for example, when the right front tire of an ROV hits a large rock, the right front tire and a portion of the suspension attached to the tire (or attached wheel base) may rise upwards to move over the rock. The set of sensors attached to the ROV's right front side will sense the tire's upward movement, and will sense the tire reaching its peak upward movement (the peak of the rock), and will sense the tire beginning to move downwards. In one embodiment, the set of sensors on the ROV's right front side would send control signals to the vehicle suspension damper attached to the ROV's right front side throughout the tire's movement upward and downward. The control system attached to the vehicle suspension damper receives the control signals and causes the power source also attached to the vehicle suspension damper to deliver a current to the vehicle suspension damper in accordance with the control signals. In one embodiment, the delivered current functions to cause the pilot valve assembly 1510 to move to cause the flow ports 1550 to be at least partially blocked. As described herein, the pressure within the pilot pressure chamber 1520 increases due to the at least partially blocked flowports 1550, thereby causing the pressure within the area of the primary valve 1505 to increase. The valve member 1540, in response increased pressure in the area of the primary valve 1505, is urged against the shims 1530, thereby changing the damping characteristics of the shims 1530. Thus, the fluid flowing along the first fluid flow path from the damper cylinder interior 35 and through the piston port area 1525 is reduced, resulting in an increased damping effect to the vehicle's motion.


Embodiments enable a faster reaction time in applying damping than conventional shock absorbers provide. For example, in conventional mechanical inertia valves, the inertia valve senses a pressure wave (occurring at the speed of sound) after a vehicle's tire hits a bump. The mechanical inertia valve opens in response to receiving the pressure wave. However, the vehicle rider experiences some form of response to the terrain before the mechanical inertia valve has a chance to open into a “soft” mode. In embodiments using an electronic valve attached to accelerometers, the inertia valve opens into a “soft” mode before a motion significant enough for a vehicle rider to experience it has begun. For example, when a motion occurs, such as an ROV wheel base beginning to move upward while running over a large rock, and thus experience a gross wheel movement, an acceleration occurs first and is thus measured first by embodiments. A velocity, and then a displacement follows and are also measured in some embodiments. A control signal is sent from the set of accelerometers to the control system before enough of a vehicle motion has occurred such that the vehicle rider experiences a minimal response to the terrain and certainly less than would be provided should a mechanical inertia valve be provided. It should be appreciated that one or more set of sensors may be attached to each ROV wheel base, and independently control the vehicle suspension damper to account for and respond to various rolls and other types of vehicle motion. Embodiments enable the quick response to sensed acceleration such that the acceleration may be prevented, or at least reduced.


In one embodiment, one or more motion sensor is provided on a forward or front part of a vehicle, and a signal or signals from the one or more motion sensor is used to control a damper mounted on a rear part of the vehicle. In use, motion information learned from the movement of the front part of the vehicle can be used to anticipate movement of the rear part of the vehicle, and adjustments made to control the damper on the rear part accordingly.


Thus, one embodiment enables the control of both compression and the rebound state of the vehicle suspension damper, such that acceleration as measured at each wheel base is maintained as close to zero as possible throughout off-road riding over varied terrain. Embodiments enable the quick recovery from and/or prevention of a vehicle rider experiencing a vehicle's response to terrain, such as a roll.


In another embodiment, more than one type of sensor is used. For example and not limited to such example, an accelerometer and a gyrometer may be used. It should also be noted that numerous methods for determining orientation in a plane in space using a sensor attached to an object are well known in the art.


It should be noted that any of the features disclosed herein may be useful alone or in any suitable combination. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be implemented without departing from the scope of the invention, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A vehicle suspension damper comprising: a damping chamber containing a damping fluid, and a piston and a piston rod moveable in a damping cylinder;a valve for controlling movement of said damping fluid in compression and/or rebound of said vehicle suspension damper, said valve comprising: a primary valve including a primary valve member, said primary valve member resisting flow of said damping fluid along a first fluid flow path from a first side of said valve to a second side of said valve;a first pressure reducing means and a second pressure reducing means disposed in a second fluid flow path between said first side of said valve and said second side of said valve;wherein a surface of said primary valve member is exposed to said damping fluid in said second fluid flow path between said first pressure reducing means and second pressure reducing means;said valve configured such that, during compression or rebound of said vehicle suspension damper, said damping fluid is urged to flow through said first fluid flow path at a first fluid pressure resisted by said primary valve member, and pressure of said damping fluid in said second fluid flow path is reduced by said first pressure reducing means and said second pressure reducing means to a second fluid pressure lower than said first fluid pressure; andsaid second fluid pressure acts on said surface of said primary valve member such that said primary valve member increases resistance to flow of said damping fluid along said first fluid flow path, and;a diffuser disposed in said second fluid flow path between said first pressure reducing means and said second pressure reducing means, said diffuser disrupting substantially linear flow of said damping fluid flow in said second fluid flow path, wherein said diffuser further comprises: a plug having at least one fluid flow port, said fluid flow port configured to change a direction of said substantially linear flow of said damping fluid.
  • 2. The vehicle suspension damper of claim 1 further comprising: a first area of said primary valve member, said first fluid pressure acting over said first area of said primary valve member to urge said primary valve member open;a second area of said primary valve member, said second fluid pressure acting over said second area of said primary valve member to urge said primary valve member closed; andwherein a ratio of said first area of said primary valve member to said second area of said primary valve member determines how much resistance is provided by said primary valve member and thereby determines damping characteristics of said vehicle suspension damper.
  • 3. The vehicle suspension damper of claim 2 wherein: said second area of said primary valve member is smaller than said first area of said primary valve member.
  • 4. The vehicle suspension damper of claim 3 wherein: said second area of said primary valve member is approximately 60% than said first area of said primary valve member.
  • 5. The vehicle suspension damper of claim 1 further comprising: an exterior surface of said primary valve member, said exterior surface of said primary valve member exposed to said damping fluid on said second side of said valve; andan interior surface of said primary valve member, said interior surface of said primary valve member exposed to said damping fluid in said second fluid flow path.
  • 6. The vehicle suspension damper of claim 1 wherein: said first pressure reducing means is configured to provide a bleed for said damping fluid at low compression or rebound velocities.
  • 7. The vehicle suspension damper of claim 1 wherein: said first pressure reducing means is configured to provide a reduction in pressure of said damping fluid pressure at high compression or high rebound velocities.
  • 8. The vehicle suspension damper of claim 7 wherein: said reduction in said pressure of said damping fluid is directly proportional to a velocity of a flow of said damping fluid through said first pressure reducing means such that hydraulic locking of said primary valve member is inhibited.
  • 9. The vehicle suspension damper of claim 1 wherein said first pressure reducing means further comprises a feature selected from the group consisting of: an orifice, a diffuser, a labyrinth, and a screw thread.
  • 10. The vehicle suspension damper of claim 1 wherein said second pressure reducing means is adjustable wherein adjustment of said second pressure reducing means adjusts said second fluid pressure, and generates a corresponding change in resistance by said primary valve member to flow of said damping fluid flow along said first fluid flow path.
  • 11. The vehicle suspension damper of claim 10 wherein said second pressure reducing means is adjustable via a feature selected from the group consisting of: a manual adjuster, an automatic adjuster controllable by a computing device.
  • 12. The vehicle suspension damper of claim 1 wherein said second pressure reducing means further comprises: a pilot valve controllable by an electro-mechanical device.
  • 13. The vehicle suspension damper of claim 1 wherein said second pressure reducing means further comprises a feature selected from the group consisting of: a spool valve controlled by a magnetic latching solenoid, a needle positionable relative to a seat, a vane valve, a solenoid valve, and a moveable screw.
  • 14. The vehicle suspension damper of claim 1 wherein: said primary valve member acts directly against said first fluid pressure; andwhen said second pressure reducing means is adjusted to reduce said second fluid pressure, said primary valve member is moved by said first fluid pressure to increase flow of said damping fluid through said first fluid flow path.
  • 15. The vehicle suspension damper of claim 1 wherein: said first pressure reducing means is configured to produce turbulent flow of said damping fluid downstream of said first pressure reducing means.
  • 16. The vehicle suspension damper of claim 1 wherein said diffuser causes a change in velocity of said substantially linear flow of said damping fluid.
  • 17. The vehicle suspension damper of claim 1 wherein said diffuser further comprises: a pin having a longitudinal axis oriented substantially perpendicular to a direction of said substantially linear flow of said damping fluid.
  • 18. The vehicle suspension damper of claim 1 wherein said primary valve member further comprises: an annular piston, said annular piston axially moveable along a valve body.
  • 19. The vehicle suspension damper of claim 1 wherein said primary valve member further comprises: a valve body including a fluid port; andan annular piston, said annular piston axially moveable along said valve body, said fluid port of said valve body providing fluid communication between an interior of said valve body interior and an interior of said annular piston.
  • 20. The vehicle suspension damper of claim 19 wherein said valve body further comprises: said first pressure reducing means and said second pressure reducing means, said interior of said valve body comprises a pilot pressure chamber hydraulically coupled between said first pressure reducing means and said second pressure reducing means, said pilot pressure chamber in fluid communication with said annular piston interior via said fluid port.
  • 21. The vehicle suspension damper of claim 1 further comprising: a shim for controlling flow of said damping fluid along said first fluid flow path, said primary valve member configured to apply a variable force to said shim, such that resistance to flow of said damping fluid along said first fluid flow path is a sum of resistance to flow of said damping fluid provided by said shim and resistance to flow of said damping fluid provided by said primary valve member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of and claims the benefit of co-pending U.S. patent application Ser. No. 13/934,067, filed on Jul. 2, 2013, entitled “METHOD AND APPARATUS FOR AN ADJUSTABLE DAMPER” by Ericksen et al., assigned to the assignee of the present application, and is hereby incorporated by reference in its entirety herein.

US Referenced Citations (796)
Number Name Date Kind
435995 Dunlop Sep 1890 A
1492731 Kerr May 1924 A
1575973 Coleman Mar 1926 A
1655786 Guerritore et al. Jan 1928 A
1923011 Moulton Aug 1933 A
1948600 Templeton Feb 1934 A
1970239 Klaas Aug 1934 A
2018312 Moulton Oct 1935 A
2098119 White Nov 1937 A
2115072 Hunt et al. Apr 1938 A
2122407 Chisholm Jul 1938 A
2186266 Henry Jan 1940 A
2259437 Dean Oct 1941 A
2492331 Spring Dec 1949 A
2540525 Howarth et al. Feb 1951 A
2559633 Maurice et al. Jul 1951 A
2588520 Halgren et al. Mar 1952 A
2697600 Gregoire Dec 1954 A
2705119 Ingwer Mar 1955 A
2725076 Hansen et al. Nov 1955 A
2729308 Koski et al. Jan 1956 A
2784962 Sherburne Mar 1957 A
2809722 Smith Oct 1957 A
2838140 Rasmusson et al. Jun 1958 A
2846028 Gunther Aug 1958 A
2879971 Demay Mar 1959 A
2883181 Hogan et al. Apr 1959 A
2897613 Davidson et al. Aug 1959 A
2941629 Etienne et al. Jun 1960 A
2967065 Schwendner Jan 1961 A
2991804 Merkle Jul 1961 A
3003595 Patriquin et al. Oct 1961 A
3056598 Ransom et al. Oct 1962 A
3073586 Hartel et al. Jan 1963 A
3074709 Ellis et al. Jan 1963 A
3085530 Williamson Apr 1963 A
3087583 Bruns Apr 1963 A
3202413 Colmerauer Aug 1965 A
3206153 Burke Sep 1965 A
3216535 Schultze Nov 1965 A
3284076 Gibson Nov 1966 A
3286797 Leibfritz et al. Nov 1966 A
3405625 Carlson et al. Oct 1968 A
3419849 Anderson et al. Dec 1968 A
3420493 Kraft et al. Jan 1969 A
3528700 Janu et al. Sep 1970 A
3537722 Moulton Nov 1970 A
3556137 Billeter et al. Jan 1971 A
3559027 Arsem Jan 1971 A
3560033 Barkus Feb 1971 A
3575442 Elliott et al. Apr 1971 A
3584331 Richard et al. Jun 1971 A
3603575 Arlasky et al. Sep 1971 A
3605960 Singer Sep 1971 A
3621950 Lutz Nov 1971 A
3650033 Behne et al. Mar 1972 A
3701544 Stankovich Oct 1972 A
3714953 Solvang Feb 1973 A
3750856 Kenworthy et al. Aug 1973 A
3784228 Hoffmann et al. Jan 1974 A
3791408 Saitou et al. Feb 1974 A
3830482 Norris Aug 1974 A
3842753 Ross et al. Oct 1974 A
3861487 Gill Jan 1975 A
3903613 Bisberg Sep 1975 A
3941402 Yankowski et al. Mar 1976 A
3981204 Starbard et al. Sep 1976 A
3981479 Foster et al. Sep 1976 A
3986118 Madigan Oct 1976 A
3995883 Glaze Dec 1976 A
4022113 Blatt et al. May 1977 A
4032829 Schenavar et al. Jun 1977 A
4036335 Thompson et al. Jul 1977 A
4072087 Mueller et al. Feb 1978 A
4103881 Simich Aug 1978 A
4114735 Kato Sep 1978 A
4121610 Harms et al. Oct 1978 A
4131657 Ball et al. Dec 1978 A
4139186 Postema et al. Feb 1979 A
4153237 Supalla May 1979 A
4159106 Nyman et al. Jun 1979 A
4174098 Baker et al. Nov 1979 A
4183509 Nishikawa et al. Jan 1980 A
4236613 Van Der Lely Dec 1980 A
4287812 Iizumi Sep 1981 A
4291850 Sharples Sep 1981 A
4305566 Grawunde Dec 1981 A
4333668 Hendrickson et al. Jun 1982 A
4334711 Mazur et al. Jun 1982 A
4337850 Shimokura et al. Jul 1982 A
4348016 Milly Sep 1982 A
4351515 Yoshida Sep 1982 A
4366969 Benya et al. Jan 1983 A
4387781 Ezell et al. Jun 1983 A
4437548 Ashiba et al. Mar 1984 A
4465299 Stone et al. Aug 1984 A
4474363 Numazawa et al. Oct 1984 A
4491207 Boonchanta et al. Jan 1985 A
4500827 Merritt et al. Feb 1985 A
4502673 Clark et al. Mar 1985 A
4529180 Hill Jul 1985 A
4546959 Tanno Oct 1985 A
4548233 Woelfges Oct 1985 A
4570851 Cirillo et al. Feb 1986 A
4572317 Isono et al. Feb 1986 A
4616810 Richardson et al. Oct 1986 A
4620619 Emura et al. Nov 1986 A
4624346 Katz et al. Nov 1986 A
4630818 Saarinen Dec 1986 A
4634142 Woods et al. Jan 1987 A
4647068 Asami et al. Mar 1987 A
4655440 Eckert Apr 1987 A
4657280 Ohmori et al. Apr 1987 A
4659104 Tanaka et al. Apr 1987 A
4660689 Hayashi et al. Apr 1987 A
4673194 Sugasawa Jun 1987 A
4696489 Fujishiro et al. Sep 1987 A
4709779 Takehara Dec 1987 A
4723753 Torimoto et al. Feb 1988 A
4729459 Inagaki et al. Mar 1988 A
4732244 Verkuylen Mar 1988 A
4743000 Karnopp May 1988 A
4744444 Gillingham May 1988 A
4750735 Furgerson et al. Jun 1988 A
4765648 Mander et al. Aug 1988 A
4773671 Inagaki Sep 1988 A
4786034 Heess et al. Nov 1988 A
4815575 Murty et al. Mar 1989 A
4821852 Yokoya Apr 1989 A
4826207 Yoshioka et al. May 1989 A
4830395 Foley May 1989 A
4836578 Soltis Jun 1989 A
4838306 Horn et al. Jun 1989 A
4838394 Lemme et al. Jun 1989 A
4846317 Hudgens Jul 1989 A
4858733 Noguchi et al. Aug 1989 A
4919166 Sims et al. Apr 1990 A
4936423 Karnopp Jun 1990 A
4936424 Costa Jun 1990 A
4938228 Righter Jul 1990 A
4949262 Buma et al. Aug 1990 A
4949989 Kakizaki et al. Aug 1990 A
4958706 Richardson et al. Sep 1990 A
4975849 Ema et al. Dec 1990 A
4984819 Kakizaki et al. Jan 1991 A
4986393 Preukschat et al. Jan 1991 A
5027303 Witte Jun 1991 A
5031455 Cline Jul 1991 A
5036934 Nishina et al. Aug 1991 A
5040381 Hazen Aug 1991 A
5044614 Rau Sep 1991 A
5060910 Iwata et al. Oct 1991 A
5060959 Davis et al. Oct 1991 A
5072812 Imaizumi Dec 1991 A
5074624 Stauble et al. Dec 1991 A
5076404 Gustafsson Dec 1991 A
5080392 Bazergui Jan 1992 A
5094325 Smith Mar 1992 A
5105918 Hagiwara et al. Apr 1992 A
5113980 Furrer et al. May 1992 A
5127634 Le Jul 1992 A
5152547 Davis Oct 1992 A
5161653 Hare Nov 1992 A
5163742 Topfer et al. Nov 1992 A
5178242 Nakamura et al. Jan 1993 A
5186481 Turner Feb 1993 A
5203584 Butsuen et al. Apr 1993 A
5207774 Wolfe et al. May 1993 A
5230364 Leng et al. Jul 1993 A
5231583 Lizell Jul 1993 A
5236169 Johnsen et al. Aug 1993 A
5248014 Ashiba Sep 1993 A
5259487 Petek et al. Nov 1993 A
5263559 Mettner Nov 1993 A
5265902 Lewis Nov 1993 A
5277283 Yamaoka et al. Jan 1994 A
5283733 Colley Feb 1994 A
5284330 Carlson et al. Feb 1994 A
5293971 Kanari Mar 1994 A
5295074 Williams Mar 1994 A
5295563 Bennett Mar 1994 A
5297045 Williams et al. Mar 1994 A
5307907 Nakamura et al. May 1994 A
5318066 Burgorf et al. Jun 1994 A
5328004 Fannin et al. Jul 1994 A
5346242 Karnopp Sep 1994 A
5347186 Konotchick et al. Sep 1994 A
5348112 Vaillancourt Sep 1994 A
5372223 Dekock et al. Dec 1994 A
5372224 Samonil et al. Dec 1994 A
5381952 Duprez Jan 1995 A
5390949 Naganathan et al. Feb 1995 A
5392885 Patzenhauer et al. Feb 1995 A
5392886 Drummond Feb 1995 A
5396973 Schwemmer et al. Mar 1995 A
5398787 Woessner et al. Mar 1995 A
5413196 Forster May 1995 A
5467280 Kimura Nov 1995 A
5480011 Nagai et al. Jan 1996 A
5485417 Wolf et al. Jan 1996 A
5487006 Kakizaki et al. Jan 1996 A
5503258 Clarke et al. Apr 1996 A
5542150 Tu Aug 1996 A
5551674 Johnsen Sep 1996 A
5553836 Ericson Sep 1996 A
5566794 Wiard Oct 1996 A
5578877 Tiemann Nov 1996 A
5588510 Vvilke Dec 1996 A
5592401 Kramer Jan 1997 A
5597180 Ganzel et al. Jan 1997 A
5598337 Butsuen et al. Jan 1997 A
5601164 Ohsaki et al. Feb 1997 A
5611413 Feigel Mar 1997 A
5651433 Wirth Jul 1997 A
5657840 Lizell Aug 1997 A
5687575 Keville et al. Nov 1997 A
5697477 Hiramoto et al. Dec 1997 A
5699885 Forster Dec 1997 A
5722645 Reitter Mar 1998 A
5803443 Chang Sep 1998 A
5806159 Inoue et al. Sep 1998 A
5810128 Eriksson et al. Sep 1998 A
5810384 Iwasaki et al. Sep 1998 A
5813456 Milner et al. Sep 1998 A
5813731 Newman et al. Sep 1998 A
5816281 Mixon Oct 1998 A
5818132 Konotchick et al. Oct 1998 A
5826935 Defreitas et al. Oct 1998 A
5828843 Samuel et al. Oct 1998 A
5829733 Becker Nov 1998 A
5850352 Moezzi et al. Dec 1998 A
5850896 Tanaka Dec 1998 A
5853071 Robinson Dec 1998 A
5872418 Wischnewskiy Feb 1999 A
5884921 Katsuda et al. Mar 1999 A
5937975 Forster Aug 1999 A
5947238 Jolly et al. Sep 1999 A
5952823 Sprecher et al. Sep 1999 A
5954318 Kluhsman Sep 1999 A
5956951 O'Callaghan Sep 1999 A
5957252 Berthold Sep 1999 A
5971116 Franklin Oct 1999 A
5988655 Sakai et al. Nov 1999 A
5992450 Parker et al. Nov 1999 A
5996745 Jones et al. Dec 1999 A
5996746 Turner et al. Dec 1999 A
5999868 Beno et al. Dec 1999 A
6000702 Streiter Dec 1999 A
6013007 Root et al. Jan 2000 A
6017047 Hoose Jan 2000 A
6035979 Foerster Mar 2000 A
6050583 Bohn Apr 2000 A
6058340 Uchiyama et al. May 2000 A
6067490 Ichimaru et al. May 2000 A
6073536 Campbell Jun 2000 A
6073700 Tsuji et al. Jun 2000 A
6073736 Franklin Jun 2000 A
6092011 Hiramoto et al. Jul 2000 A
6092816 Sekine et al. Jul 2000 A
6105988 Turner et al. Aug 2000 A
6131709 Jolly et al. Oct 2000 A
6135434 Marking Oct 2000 A
6141969 Launchbury et al. Nov 2000 A
6151930 Carlson Nov 2000 A
6152856 Studor et al. Nov 2000 A
6157103 Ohta et al. Dec 2000 A
6179098 Hayakawa et al. Jan 2001 B1
6196555 Gaibler Mar 2001 B1
6199669 Huang et al. Mar 2001 B1
6203026 Jones Mar 2001 B1
6213263 De Frenne Apr 2001 B1
6215217 Kurosawa et al. Apr 2001 B1
6217049 Becker Apr 2001 B1
6219045 Leahy et al. Apr 2001 B1
6244398 Girvin et al. Jun 2001 B1
6254067 Yih Jul 2001 B1
6279702 Koh Aug 2001 B1
6290034 Ichimaru Sep 2001 B1
6293530 Delorenzis et al. Sep 2001 B1
6296092 Marking et al. Oct 2001 B1
6311962 Marking Nov 2001 B1
6318525 Vignocchi et al. Nov 2001 B1
6321888 Reybrouck et al. Nov 2001 B1
6322468 Wing et al. Nov 2001 B1
6336648 Bohn Jan 2002 B1
6343807 Rathbun Feb 2002 B1
6359837 Tsukamoto et al. Mar 2002 B1
6360857 Fox et al. Mar 2002 B1
6371262 Katou et al. Apr 2002 B1
6371267 Kao et al. Apr 2002 B1
6378816 Pfister Apr 2002 B1
6378885 Ellsworth et al. Apr 2002 B1
6382370 Girvin May 2002 B1
6389341 Davis May 2002 B1
6390747 Commins May 2002 B1
6394238 Rogala May 2002 B1
6401883 Nyce et al. Jun 2002 B1
6412788 Ichimaru Jul 2002 B1
6415895 Marking et al. Jul 2002 B2
6418360 Spivey et al. Jul 2002 B1
6427812 Crawley et al. Aug 2002 B2
6434460 Uchino et al. Aug 2002 B1
6446771 Sintorn et al. Sep 2002 B1
6458060 Watterson et al. Oct 2002 B1
6460567 Hansen et al. Oct 2002 B1
6467593 Corradini et al. Oct 2002 B1
6474454 Matsumoto et al. Nov 2002 B2
6474753 Rieth et al. Nov 2002 B1
6501554 Hackney et al. Dec 2002 B1
6502837 Hamilton et al. Jan 2003 B1
6510929 Gordaninejad et al. Jan 2003 B1
6520297 Lumpkin et al. Feb 2003 B1
6527093 Oliver et al. Mar 2003 B2
6592136 Becker et al. Jul 2003 B2
6609686 Malizia Aug 2003 B2
6619615 Mayr et al. Sep 2003 B1
6623389 Campagnolo Sep 2003 B1
6648109 Farr et al. Nov 2003 B2
6659240 Dernebo Dec 2003 B2
6659241 Sendrea Dec 2003 B2
6672687 Nishio Jan 2004 B2
6701234 Vogelsang et al. Mar 2004 B1
6732033 Laplante et al. May 2004 B2
6755113 Shih Jun 2004 B2
6782980 Nakadate Aug 2004 B2
6817454 Nezu et al. Nov 2004 B2
6837827 Lee et al. Jan 2005 B1
6840257 Dario et al. Jan 2005 B2
6853955 Burrell et al. Feb 2005 B1
6857625 Löser et al. Feb 2005 B2
6863291 Miyoshi Mar 2005 B2
6902513 McClure et al. Jun 2005 B1
6905203 Kremers et al. Jun 2005 B2
6920951 Song et al. Jul 2005 B2
6921351 Hickman et al. Jul 2005 B1
6923853 Kremers et al. Aug 2005 B2
6935157 Miller Aug 2005 B2
6952060 Goldner et al. Oct 2005 B2
6959906 Hoenig et al. Nov 2005 B2
6959921 Rose Nov 2005 B2
6966412 Braswell et al. Nov 2005 B2
6978871 Holiviers Dec 2005 B2
6978872 Turner Dec 2005 B2
6991076 McAndrews Jan 2006 B2
7025367 McKinnon et al. Apr 2006 B2
7076351 Hamilton et al. Jul 2006 B2
7128192 Fox Oct 2006 B2
7128693 Brown et al. Oct 2006 B2
7135794 Kühnel Nov 2006 B2
7147207 Jordan et al. Dec 2006 B2
7163222 Becker et al. Jan 2007 B2
7166062 Watterson et al. Jan 2007 B1
7166064 Ashby et al. Jan 2007 B2
7204466 Hsieh Apr 2007 B2
7208845 Schaefer et al. Apr 2007 B2
7217224 Thomas May 2007 B2
7234575 Anderfaas et al. Jun 2007 B2
7234680 Hull et al. Jun 2007 B2
7243763 Carlson Jul 2007 B2
7255210 Larsson et al. Aug 2007 B2
7270221 McAndrews Sep 2007 B2
7287760 Quick et al. Oct 2007 B1
7289138 Foote et al. Oct 2007 B2
7292867 Werner et al. Nov 2007 B2
7293764 Fang Nov 2007 B2
7299112 Laplante et al. Nov 2007 B2
7306206 Turner Dec 2007 B2
7316406 Kimura et al. Jan 2008 B2
7325660 Norgaard et al. Feb 2008 B2
7363129 Barnicle et al. Apr 2008 B1
7374028 Fox May 2008 B2
7397355 Tracy Jul 2008 B2
7413062 Vandewal Aug 2008 B2
7413063 Davis Aug 2008 B1
7415336 Burch et al. Aug 2008 B1
7422092 Hitchcock et al. Sep 2008 B2
7441638 Hanawa Oct 2008 B2
7469910 Münster et al. Dec 2008 B2
7484603 Fox Feb 2009 B2
7490705 Fox Feb 2009 B2
7523617 Colpitts et al. Apr 2009 B2
7558313 Feher Jul 2009 B2
7558574 Feher et al. Jul 2009 B2
7566290 Lee et al. Jul 2009 B2
7569952 Bono et al. Aug 2009 B1
7581743 Graney et al. Sep 2009 B2
7591352 Hanawa Sep 2009 B2
7600616 Anderfaas et al. Oct 2009 B2
7628259 Norgaard et al. Dec 2009 B2
7631882 Hirao et al. Dec 2009 B2
7654369 Murray et al. Feb 2010 B2
7673936 Hsu et al. Mar 2010 B2
7684911 Seifert et al. Mar 2010 B2
7694785 Nakadate Apr 2010 B2
7694987 McAndrews Apr 2010 B2
7699753 Daikeler et al. Apr 2010 B2
7703585 Fox Apr 2010 B2
7722056 Inoue et al. May 2010 B2
7722069 Shirai May 2010 B2
7726042 Meschan Jun 2010 B2
7730906 Kleinert et al. Jun 2010 B2
7736272 Martens Jun 2010 B2
7764990 Martikka et al. Jul 2010 B2
7766794 Oliver et al. Aug 2010 B2
7770701 Davis Aug 2010 B1
7775128 Roessingh et al. Aug 2010 B2
7779974 Timoney et al. Aug 2010 B2
7795711 Sauciuc et al. Sep 2010 B2
7837213 Colegrove et al. Nov 2010 B2
7840346 Huhtala et al. Nov 2010 B2
7841258 Komatsu et al. Nov 2010 B2
7845602 Young et al. Dec 2010 B1
7857325 Copsey et al. Dec 2010 B2
7872764 Higgins-Luthman et al. Jan 2011 B2
7874567 Ichida et al. Jan 2011 B2
7901292 Uhlir et al. Mar 2011 B1
7909348 Klieber et al. Mar 2011 B2
7927253 Dibenedetto et al. Apr 2011 B2
7931132 Braun Apr 2011 B2
7931563 Shaw et al. Apr 2011 B2
7946163 Gartner May 2011 B2
7975814 Soederdahl Jul 2011 B2
8016349 Mouri et al. Sep 2011 B2
8021270 D'Eredita Sep 2011 B2
8042427 Kawakami et al. Oct 2011 B2
8056392 Ryan et al. Nov 2011 B2
8069964 Deferme et al. Dec 2011 B2
8087676 McIntyre Jan 2012 B2
8091910 Hara et al. Jan 2012 B2
8104591 Barefoot et al. Jan 2012 B2
8121757 Extance et al. Feb 2012 B2
8121785 Swisher et al. Feb 2012 B2
8127900 Inoue Mar 2012 B2
8136877 Walsh et al. Mar 2012 B2
8141438 Roessingh et al. Mar 2012 B2
8151952 Lenz et al. Apr 2012 B2
8191964 Hsu et al. Jun 2012 B2
8201476 Tsumiyama Jun 2012 B2
8210106 Tai et al. Jul 2012 B2
8210330 Vandewal Jul 2012 B2
8246065 Kodama et al. Aug 2012 B1
8256587 Bakke et al. Sep 2012 B2
8256732 Young et al. Sep 2012 B1
8262058 Kot Sep 2012 B2
8262062 Kamo et al. Sep 2012 B2
8262100 Thomas Sep 2012 B2
8265825 Kajino et al. Sep 2012 B2
8285447 Bennett et al. Oct 2012 B2
8286982 Plantet et al. Oct 2012 B2
8291889 Shafer et al. Oct 2012 B2
8292274 Adoline et al. Oct 2012 B2
8307965 Föster et al. Nov 2012 B2
8308124 Hsu Nov 2012 B2
8317261 Walsh et al. Nov 2012 B2
8328454 McAndrews et al. Dec 2012 B2
8336683 McAndrews et al. Dec 2012 B2
8364389 Dorogusker et al. Jan 2013 B2
8393446 Haugen Mar 2013 B2
8413773 Anderfaas et al. Apr 2013 B2
8423244 Proemm et al. Apr 2013 B2
8430770 Dugan et al. Apr 2013 B2
8458080 Shirai Jun 2013 B2
8480064 Talavasek Jul 2013 B2
8550551 Shirai Oct 2013 B2
8556048 Maeda et al. Oct 2013 B2
8556049 Jee Oct 2013 B2
8596663 Shirai et al. Dec 2013 B2
8616351 Roessle et al. Dec 2013 B2
8622180 Wootten et al. Jan 2014 B2
8627932 Marking Jan 2014 B2
8641073 Lee et al. Feb 2014 B2
8651251 Preukschat et al. Feb 2014 B2
8655548 Ichida et al. Feb 2014 B2
8684367 Haugen Apr 2014 B2
8727947 Tagliabue May 2014 B2
8744699 Yamaguchi et al. Jun 2014 B2
8752682 Park et al. Jun 2014 B2
8763770 Marking Jul 2014 B2
8770357 Sims et al. Jul 2014 B2
8781680 Ichida et al. Jul 2014 B2
8781690 Hara et al. Jul 2014 B2
8814109 Calendrille et al. Aug 2014 B2
8833786 Camp et al. Sep 2014 B2
8838335 Bass et al. Sep 2014 B2
8845496 Arrasvuori et al. Sep 2014 B2
8857580 Marking Oct 2014 B2
8868253 Hashimoto et al. Oct 2014 B2
8888115 Chubbuck et al. Nov 2014 B2
8935036 Christensen et al. Jan 2015 B1
8936139 Franklin et al. Jan 2015 B2
8950771 Felsl et al. Feb 2015 B2
8955653 Marking Feb 2015 B2
8967343 Battlogg et al. Mar 2015 B2
8985594 Yabumoto Mar 2015 B2
8991571 Murakami Mar 2015 B2
9033122 Ericksen et al. May 2015 B2
9038791 Marking May 2015 B2
9047778 Cazanas et al. Jun 2015 B1
9057416 Talavasek Jun 2015 B2
9073592 Hsu Jul 2015 B2
9103400 Becker Aug 2015 B2
9108098 Galasso et al. Aug 2015 B2
9120362 Marking Sep 2015 B2
9126647 Kuo Sep 2015 B2
9140325 Cox et al. Sep 2015 B2
9157523 Miki et al. Oct 2015 B2
9186949 Galasso et al. Nov 2015 B2
9194456 Laird et al. Nov 2015 B2
9199690 Watarai Dec 2015 B2
9229712 Takamoto et al. Jan 2016 B2
9239090 Marking et al. Jan 2016 B2
9278598 Galasso et al. Mar 2016 B2
9353818 Marking May 2016 B2
9366307 Marking Jun 2016 B2
9415659 Kikuchi et al. Aug 2016 B2
9422018 Pelot et al. Aug 2016 B2
9452654 Ericksen et al. Sep 2016 B2
9523406 Galasso et al. Dec 2016 B2
9550405 Marking et al. Jan 2017 B2
9556925 Marking Jan 2017 B2
9616728 Marking Apr 2017 B2
9650094 Laird et al. May 2017 B2
9663181 Ericksen et al. May 2017 B2
9682604 Cox et al. Jun 2017 B2
9784333 Marking Oct 2017 B2
9810282 Roessle et al. Nov 2017 B2
9975598 Bender et al. May 2018 B2
10036443 Galasso et al. Jul 2018 B2
10040329 Ericksen et al. Aug 2018 B2
10072724 Haugen et al. Sep 2018 B2
10086670 Galasso et al. Oct 2018 B2
10089868 Hayward Oct 2018 B1
10094443 Marking Oct 2018 B2
10330171 Cox et al. Jun 2019 B2
10336148 Ericksen et al. Jul 2019 B2
10336149 Ericksen et al. Jul 2019 B2
10400847 Marking Sep 2019 B2
10406883 Marking Sep 2019 B2
10415662 Marking Sep 2019 B2
10443671 Marking Oct 2019 B2
10550909 Haugen Feb 2020 B2
10677309 Ericksen et al. Jun 2020 B2
10697514 Marking Jun 2020 B2
10718397 Marking Jul 2020 B2
20010017334 Vincent Aug 2001 A1
20010022621 Squibbs Sep 2001 A1
20010030408 Miyoshi et al. Oct 2001 A1
20010042663 Marking et al. Nov 2001 A1
20010055373 Yamashita Dec 2001 A1
20020000352 Matsumoto et al. Jan 2002 A1
20020032508 Uchino et al. Mar 2002 A1
20020045987 Ohata et al. Apr 2002 A1
20020050112 Koch et al. May 2002 A1
20020050518 Roustaei May 2002 A1
20020055422 Airmet et al. May 2002 A1
20020063469 Nishio May 2002 A1
20020089107 Koh Jul 2002 A1
20020095979 Shirai et al. Jul 2002 A1
20020113347 Robbins et al. Aug 2002 A1
20020121416 Katayama et al. Sep 2002 A1
20020130000 Lisenker et al. Sep 2002 A1
20020130003 Lisenker et al. Sep 2002 A1
20020185581 Trask et al. Dec 2002 A1
20020187867 Ichida et al. Dec 2002 A1
20030001346 Hamilton et al. Jan 2003 A1
20030001358 Becker et al. Jan 2003 A1
20030034697 Goldner et al. Feb 2003 A1
20030040348 Martens et al. Feb 2003 A1
20030051954 Sendrea Mar 2003 A1
20030054327 Evensen et al. Mar 2003 A1
20030065430 Lu et al. Apr 2003 A1
20030075403 Dernebo Apr 2003 A1
20030103651 Novak Jun 2003 A1
20030128275 Maguire Jul 2003 A1
20030160369 Laplante et al. Aug 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030216845 Williston Nov 2003 A1
20040004659 Foote et al. Jan 2004 A1
20040017455 Kremers et al. Jan 2004 A1
20040021754 Kremers et al. Feb 2004 A1
20040075350 Kuhnel Apr 2004 A1
20040091111 Levy et al. May 2004 A1
20040099312 Boyer et al. May 2004 A1
20040103146 Park May 2004 A1
20040172178 Takeda et al. Sep 2004 A1
20040208687 Sicz et al. Oct 2004 A1
20040220708 Owen et al. Nov 2004 A1
20040220712 Takeda et al. Nov 2004 A1
20040222056 Fox Nov 2004 A1
20040256778 Verriet Dec 2004 A1
20050055156 Maltagliati et al. Mar 2005 A1
20050056507 De Molina et al. Mar 2005 A1
20050077131 Russell Apr 2005 A1
20050098401 Hamilton et al. May 2005 A1
20050107216 Lee et al. May 2005 A1
20050110229 Kimura et al. May 2005 A1
20050121269 Namuduri Jun 2005 A1
20050173849 Vandewal Aug 2005 A1
20050195094 White Sep 2005 A1
20050199455 Browne et al. Sep 2005 A1
20050216186 Dorfman et al. Sep 2005 A1
20050227798 Ichida et al. Oct 2005 A1
20050239601 Thomas Oct 2005 A1
20050288154 Lee Dec 2005 A1
20060040793 Martens et al. Feb 2006 A1
20060064223 Voss Mar 2006 A1
20060065496 Fox Mar 2006 A1
20060066074 Turner et al. Mar 2006 A1
20060076757 Bromley Apr 2006 A1
20060081431 Breese et al. Apr 2006 A1
20060096817 Norgaard et al. May 2006 A1
20060113834 Hanawa Jun 2006 A1
20060124414 Hanawa Jun 2006 A1
20060136173 Case et al. Jun 2006 A1
20060137934 Kurth Jun 2006 A1
20060163551 Coenen et al. Jul 2006 A1
20060163787 Munster et al. Jul 2006 A1
20060175792 Sicz et al. Aug 2006 A1
20060176216 Hipskind Aug 2006 A1
20060185951 Tanaka Aug 2006 A1
20060213082 Meschan Sep 2006 A1
20060219503 Kim Oct 2006 A1
20060225976 Nakadate Oct 2006 A1
20060237272 Huang Oct 2006 A1
20060253210 Rosenberg Nov 2006 A1
20060289258 Fox Dec 2006 A1
20070006489 Case et al. Jan 2007 A1
20070007743 Becker et al. Jan 2007 A1
20070008096 Tracy Jan 2007 A1
20070021885 Soehren Jan 2007 A1
20070032981 Merkel et al. Feb 2007 A1
20070034464 Barefoot Feb 2007 A1
20070039790 Timoney Feb 2007 A1
20070051573 Norgaard et al. Mar 2007 A1
20070070069 Samarasekera et al. Mar 2007 A1
20070080515 McAndrews et al. Apr 2007 A1
20070088475 Nordgren et al. Apr 2007 A1
20070090518 Sauciuc et al. Apr 2007 A1
20070119669 Anderfaas et al. May 2007 A1
20070170688 Watson Jul 2007 A1
20070199401 Kawakami et al. Aug 2007 A1
20070213126 Deutsch et al. Sep 2007 A1
20070239479 Arrasvuori et al. Oct 2007 A1
20070272458 Taniguchi et al. Nov 2007 A1
20080006494 Vandewal Jan 2008 A1
20080009992 Izawa et al. Jan 2008 A1
20080015089 Hurwitz et al. Jan 2008 A1
20080018065 Hirao et al. Jan 2008 A1
20080029730 Kamo et al. Feb 2008 A1
20080041677 Namuduri Feb 2008 A1
20080059025 Furuichi et al. Mar 2008 A1
20080067019 Jensen et al. Mar 2008 A1
20080093820 McAndrews Apr 2008 A1
20080096726 Riley et al. Apr 2008 A1
20080099968 Schroeder May 2008 A1
20080109158 Huhtala et al. May 2008 A1
20080116622 Fox May 2008 A1
20080119330 Chiang et al. May 2008 A1
20080163718 Chiang Jul 2008 A1
20080185244 Maeda et al. Aug 2008 A1
20080200310 Tagliabue Aug 2008 A1
20080250844 Gartner Oct 2008 A1
20080254944 Muri et al. Oct 2008 A1
20080303320 Schranz et al. Dec 2008 A1
20080312799 Miglioranza Dec 2008 A1
20080314706 Lun et al. Dec 2008 A1
20090001684 McAndrews et al. Jan 2009 A1
20090020382 Van Weelden Jan 2009 A1
20090038897 Murakami Feb 2009 A1
20090048070 Vincent et al. Feb 2009 A1
20090069972 Templeton et al. Mar 2009 A1
20090070037 Templeton et al. Mar 2009 A1
20090071772 Cho et al. Mar 2009 A1
20090071773 Lun Mar 2009 A1
20090098981 Del et al. Apr 2009 A1
20090118100 Oliver et al. May 2009 A1
20090121398 Inoue May 2009 A1
20090131224 Yuen May 2009 A1
20090138157 Hagglund et al. May 2009 A1
20090171532 Ryan et al. Jul 2009 A1
20090192673 Song et al. Jul 2009 A1
20090200126 Kondo et al. Aug 2009 A1
20090236807 Wootten et al. Sep 2009 A1
20090258710 Quatrochi et al. Oct 2009 A1
20090261542 McIntyre Oct 2009 A1
20090277736 McAndrews et al. Nov 2009 A1
20090288924 Murray et al. Nov 2009 A1
20090294231 Carlson et al. Dec 2009 A1
20090302558 Shirai Dec 2009 A1
20090314592 Nygren Dec 2009 A1
20090324327 McAndrews et al. Dec 2009 A1
20100004097 D'Eredita Jan 2010 A1
20100010709 Song Jan 2010 A1
20100032254 Anderfaas et al. Feb 2010 A1
20100044975 Yablon et al. Feb 2010 A1
20100059964 Morris Mar 2010 A1
20100066051 Haugen Mar 2010 A1
20100109277 Furrer May 2010 A1
20100133764 Greaves Jun 2010 A1
20100139442 Tsumiyama Jun 2010 A1
20100147640 Jones et al. Jun 2010 A1
20100160014 Galasso et al. Jun 2010 A1
20100170760 Marking Jul 2010 A1
20100186836 Yoshihiro et al. Jul 2010 A1
20100198453 Dorogusker et al. Aug 2010 A1
20100207351 Klieber et al. Aug 2010 A1
20100224454 Chen et al. Sep 2010 A1
20100244340 Wootten et al. Sep 2010 A1
20100252972 Cox et al. Oct 2010 A1
20100276238 Crasset Nov 2010 A1
20100276906 Galasso et al. Nov 2010 A1
20100308628 Hsu et al. Dec 2010 A1
20100314917 Hsieh et al. Dec 2010 A1
20100327542 Hara et al. Dec 2010 A1
20110067965 McAndrews Mar 2011 A1
20110086686 Avent et al. Apr 2011 A1
20110095507 Plantet et al. Apr 2011 A1
20110097139 Hsu et al. Apr 2011 A1
20110109060 Earle et al. May 2011 A1
20110127706 Sims et al. Jun 2011 A1
20110174582 Wootten et al. Jul 2011 A1
20110202236 Galasso et al. Aug 2011 A1
20110204201 Kodama et al. Aug 2011 A1
20110214956 Marking Sep 2011 A1
20110257848 Shirai Oct 2011 A1
20110284333 Krog et al. Nov 2011 A1
20110315494 Marking Dec 2011 A1
20120006949 Laird et al. Jan 2012 A1
20120007327 Talavasek Jan 2012 A1
20120018263 Marking Jan 2012 A1
20120018264 King Jan 2012 A1
20120048665 Marking Mar 2012 A1
20120074660 Thomas Mar 2012 A1
20120080279 Galasso et al. Apr 2012 A1
20120136537 Galasso et al. May 2012 A1
20120181126 De Kock Jul 2012 A1
20120222927 Marking Sep 2012 A1
20120228906 McAndrews et al. Sep 2012 A1
20120253599 Shirai Oct 2012 A1
20120253600 Ichida et al. Oct 2012 A1
20120274043 Lee et al. Nov 2012 A1
20120305350 Ericksen et al. Dec 2012 A1
20120312648 Yu et al. Dec 2012 A1
20130001030 Goldasz et al. Jan 2013 A1
20130037361 Park et al. Feb 2013 A1
20130090195 Yamaguchi et al. Apr 2013 A1
20130119634 Camp et al. May 2013 A1
20130144489 Galasso et al. Jun 2013 A1
20130168195 Park et al. Jul 2013 A1
20130220110 Zhan et al. Aug 2013 A1
20130221713 Pelot et al. Aug 2013 A1
20130292218 Ericksen et al. Nov 2013 A1
20130333993 Yu Dec 2013 A1
20140008160 Marking et al. Jan 2014 A1
20140027219 Marking et al. Jan 2014 A1
20140048365 Kim Feb 2014 A1
20140061419 Wehage et al. Mar 2014 A1
20150073656 Takamoto et al. Mar 2015 A1
20150081171 Ericksen et al. Mar 2015 A1
20150175236 Walthert et al. Jun 2015 A1
20150179062 Ralston et al. Jun 2015 A1
20150197308 Butora et al. Jul 2015 A1
20150291248 Fukao et al. Oct 2015 A1
20160025178 Kamakura Jan 2016 A1
20160031506 Lloyd et al. Feb 2016 A1
20160076617 Marking Mar 2016 A1
20160153515 Ebersbach et al. Jun 2016 A1
20160153516 Marking Jun 2016 A1
20160185178 Galasso et al. Jun 2016 A1
20160265615 Marking Sep 2016 A1
20160290431 Marking Oct 2016 A1
20160319899 Franklin et al. Nov 2016 A1
20160355226 Pelot et al. Dec 2016 A1
20170008363 Ericksen et al. Jan 2017 A1
20170136843 Marking May 2017 A1
20170184174 Marking Jun 2017 A1
20170247072 Laird et al. Aug 2017 A1
20170259876 Ericksen et al. Sep 2017 A1
20170282669 Cox et al. Oct 2017 A1
20170291466 Tong Oct 2017 A1
20180010666 Marking Jan 2018 A1
20180031071 Marking Feb 2018 A1
20180326808 Ericksen et al. Nov 2018 A1
20180328442 Galasso et al. Nov 2018 A1
20180334007 Ericksen et al. Nov 2018 A1
20180334008 Ericksen et al. Nov 2018 A1
20180335102 Haugen Nov 2018 A1
20180339565 Ericksen et al. Nov 2018 A1
20180339566 Ericksen et al. Nov 2018 A1
20180339567 Ericksen et al. Nov 2018 A1
20180355946 Ericksen et al. Dec 2018 A1
20190030975 Galasso et al. Jan 2019 A1
20190032745 Marking Jan 2019 A1
20190176557 Marking et al. Jun 2019 A1
20190184782 Shaw et al. Jun 2019 A1
20190203798 Cox et al. Jul 2019 A1
Foreign Referenced Citations (82)
Number Date Country
1555311 Aug 1970 DE
3613386 Oct 1986 DE
3532292 Mar 1987 DE
3536655 Apr 1987 DE
3709447 Oct 1988 DE
3711442 Oct 1988 DE
3738048 May 1989 DE
3924166 Feb 1991 DE
4029090 Mar 1992 DE
4406918 Sep 1994 DE
202004005229 Aug 2004 DE
10326675 Dec 2004 DE
102005025811 Dec 2006 DE
102007063365 Jul 2009 DE
202008015968 Apr 2010 DE
202010012738 Dec 2010 DE
207409 Jan 1987 EP
304801 Mar 1989 EP
0403803 Dec 1990 EP
552568 Jul 1993 EP
0735280 Nov 1996 EP
1050696 Nov 2000 EP
1138530 Oct 2001 EP
1188661 Mar 2002 EP
1241087 Sep 2002 EP
1355209 Oct 2003 EP
1394439 Mar 2004 EP
1449688 Aug 2004 EP
1623856 Feb 2006 EP
1757473 Feb 2007 EP
1825220 Aug 2007 EP
2103512 Sep 2009 EP
2116739 Nov 2009 EP
2189191 May 2010 EP
2248691 Nov 2010 EP
2357098 Aug 2011 EP
2410203 Jan 2012 EP
2479095 Jul 2012 EP
2495472 Sep 2012 EP
2357098 Oct 2014 EP
2848582 Mar 2015 EP
3786049 Mar 2021 EP
1343760 Nov 1963 FR
2432424 Feb 1980 FR
2449236 Sep 1980 FR
2529002 Dec 1983 FR
2617928 Jan 1989 FR
2952031 May 2011 FR
806307 Dec 1958 GB
1185074 Mar 1970 GB
2104183 Mar 1983 GB
2159234 Nov 1985 GB
2159604 Dec 1985 GB
2180320 Mar 1987 GB
2289111 Nov 1995 GB
57173632 Oct 1982 JP
57173632 Nov 1982 JP
57182506 Nov 1982 JP
01106721 Apr 1989 JP
H0193637 Apr 1989 JP
H02168038 Jun 1990 JP
H03113139 May 1991 JP
04203540 Jul 1992 JP
05149364 Jun 1993 JP
06101735 Apr 1994 JP
06185562 Jul 1994 JP
H084818 Jan 1996 JP
2005119548 May 2005 JP
2005119549 May 2005 JP
2007302211 Nov 2007 JP
2008238921 Oct 2008 JP
20070076226 Jul 2007 KR
20100041679 Apr 2010 KR
2469224 Dec 2012 RU
9840231 Sep 1998 WO
9906231 Feb 1999 WO
0027658 May 2000 WO
03070546 Aug 2003 WO
2007017739 Feb 2007 WO
2007117884 Oct 2007 WO
2008086605 Jul 2008 WO
2008114445 Sep 2008 WO
Non-Patent Literature Citations (52)
Entry
Electronic Translation of DE3709447A1.
English language abstract for EP 0207409 (no date).
Fachkunde Fahrradtechnik 4 Auflage, Gressman_Ininhaltv und S, 2011, 206-207.
Statement of Grounds of Appeal, EP App. No. 11153607.4, May 28, 2018, 88 Pages.
European Search Report, European Patent Application No. 14189773.6, dated May 4, 2015, 4 Pages.
Grounds of Appeal, EP App. No. 11153607.4, Jun. 1, 2018, 28 Pages.
EP Search Report for European Application No. 15163428.4, dated Jul. 3, 2017, 7 Pages.
“Communication Re Oral Proceedings for European Application No. 10161906, dated Feb. 15, 2013 (Feb. 15, 2013)”.
“European Patent Office Final Decision dated Mar. 21, 2013”, European Patent Application No. 10161906.2.
“European Search Report for European Application No. 09177128, 4 pages, Aug. 25, 2010 (Aug. 25, 2010)”.
“European Search Report for European Application No. 10161906 , 3 pages, Sep. 15, 2010 (Sep. 15, 2010)”.
“European Search Report for European Application No. 10187320, 12 pages, Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 11153607, 3 pages, dated Aug. 10, 2012 (Aug. 10, 2012))”.
“European Search Report for European Application No. 11172553, 2 pages, dated Sep. 25, 2017 (Sep. 25, 2017)”.
“European Search Report for European Application No. 11172612 , 2 pages, dated Oct. 6, 2011 (Oct. 6, 2011))”.
“European Search Report for European Application No. 11175126, 2 pages, dated Sep. 25, 2017 (Sep. 25 2017)”.
“European Search Report for European Application No. 11275170 , 2 pages, dated Jan. 10, 2018 (Jan. 18, 2018)”.
“European Search Report for European Application No. 12170370 , 2 pages, dated Nov. 15, 2017 (Nov. 15, 2017)”.
“European Search Report for European Application No. 12184150, 10 pages, dated Dec. 12, 2017 (Dec. 12, 2017)”.
“European Search Report for European Application No. 13158034 , 4 pages, dated Jun. 28, 2013 (Jun. 28, 2013))”.
“European Search Report for European Application No. 13174817.0, 13 pages, dated Jan. 8, 2018 (Jan. 8, 2018))”.
“European Search Report for European Application No. 13189574, 2 pages, dated Feb. 19, 2014 (Feb. 19, 2014)”.
“European Search Report for European Application No. 15167426 , 4 pages, dated Sep. 18, 2015 (Sep. 18, 2015))”.
“European Search Report for European Application No. 16167306 , 2 pages, dated Mar. 23, 2017 (Mar. 23, 2017)”.
“European Search Report for European Application No. 17154191, 2 pages, dated Jun. 28, 2017 (Jun. 28, 2017)”.
“European Search Report for European Application No. 17188022 , 9 pages, dated Feb. 1, 2018 (Feb. 1, 2018))”.
“European Search Report and Written Opinion, European Patent Application No. 13165362.8”, dated Sep. 24, 2014, 6 Pages.
“Office Action for European Application No. 13158034.2, 5 pages, dated May 22, 2014”.
Nilsson, “Opposition Letter Against EP-2357098”, Oct. 13, 2017, 7.
Puhn, “How to Make Your Car Handle”, HPBooks, 1981, 7 Pages.
Shiozaki, et al., “SP-861-Vehicle Dynamics and Electronic Controlled Suspensions SAE Technical Paper Series No. 10661”, International Congress and Exposition, Detroit, Mich., Feb. 25-Mar. 1, 1991.
Smith, ““The Bump Stop” in Engineer to win—Chapter 13: Springs and Shock Absorbers”, MBI Publishing Company and Motorbooks, USA XP055430818, ISBN: 978-0-87938-186-8, Dec. 31, 1984, 207.
U.S. Appl. No. 61/175,422, filed May 4, 2009, Mario Galasso et al., 17 Pages.
U.S. Appl. No. 61/302,070, filed Feb. 5, 2010, Mario Galasso et al., 39 Pages.
“Basis for Claims Filed Jan. 23, 2015”, European Patent Application No. 14189773.6, 2 Pages.
“17 Years of Innovation and Still Evolving”, https://www.powertap.com/post/blog-15-17-years-of-innovation-and-still-evolving, Nov. 28, 2018, 8 Pages.
“ANT Message Protocol and Usage”, Dynastream Innovations, Inc., Jul. 2, 2007, 68 Pages.
Thum, Notice of Opposition to a European Patent, EP App. No. 14189773.6, Dec. 13, 2018, 49 Pages.
“European Search Report for EP Application No. 18154672, 3 pages, dated Aug. 28, 2018 (Aug. 28, 2018))”.
Healey, “The Tyre as Part of the Suspension System”, The Institution of Automobile Engineers, Nov. 1924, 26-128.
Kasprzak, “Understanding Your Dampers: A guide from Jim Kasprzak”, http://www.kaztechnologies.com/downloads/kaz-tech-tips/ Accessed: Oct. 24, 2018, 25 pages.
Litchfield, “Pneumatic Tires”, Transactions (Society of Automobile Engineers), vol. 8, Part II, 1913, 208-223.
Thum, “Oppostion Letter Against EP2357098”, Oct. 16, 2018, 39.
Waechter, et al., “A Multibody Model for the Simulation of Bicycle Suspension Systems”, Vehicle System Dynamics vol. 37, No. 1, 2002, 3-28.
European Search Report for European Application No. 19157767, dated Oct. 16, 2019, 9 Pages.
Thum, “Oppostion Letter Against EP2357098”, Dec. 17, 2019, 25 Pages.
European Search Report for European Application No. 19206334.5, 6 pages, dated May 12, 2020 (May 12, 2020).
European Search Report for European Application No. 19212356.0, 8 pages, dated May 7, 2020 (May 7, 2020).
Machine translation DE3613386; Oct. 1986.
Machine translation EP 0403803; Dec. 1990.
Machine translation KR20100041679; Apr. 2010.
European Search Report for European Application No. 20187747, dated Nov. 18, 2020, 11 Pages.
Related Publications (1)
Number Date Country
20180328446 A1 Nov 2018 US
Provisional Applications (7)
Number Date Country
61709041 Oct 2012 US
61667327 Jul 2012 US
61491858 May 2011 US
61645465 May 2012 US
61143152 Jan 2009 US
61296826 Jan 2010 US
61361127 Jul 2010 US
Continuations (1)
Number Date Country
Parent 13934067 Jul 2013 US
Child 16045403 US
Continuation in Parts (6)
Number Date Country
Parent 13843704 Mar 2013 US
Child 13934067 US
Parent 13485401 May 2012 US
Child 13843704 US
Parent 12684072 Jan 2010 US
Child 13485401 US
Parent 13189216 Jul 2011 US
Child 12684072 US
Parent 13010697 Jan 2011 US
Child 13189216 US
Parent 13175244 Jul 2011 US
Child 13010697 US