1. Technical Field
The invention relates to risk analysis. More particularly, the invention relates to an integrative method for modeling assets from many different asset classes. It is illustrated by application to the world equity market, when each country or regional equity market may be treated as an asset class.
2. Description of the Prior Art
All my fortunes are at sea.
My ventures are not in one bottom trusted, nor, to one place; nor is my whole estate upon the fortune of this present year.
Shakespeare reminds us that the perils of investment have been with us always. Likewise, the insight that these risks can be reduced through diversification is ancient. A very recent idea, however, is that the risks can be measured and the degree of diversification can be optimized. This new insight rests on a technological advance—the risk model—which itself rests on the technological revolution produced by the computer and, more specifically, by the silicon chip.
Within the world of risk modeling there has, until recently, been a need to compromise on objectives. As long as one's focus was confined to securities within a single market, U.S. equities say, detailed analyses have been possible. When one's perspective broadens to consider equities from around the world, currencies, etc., the depth of analysis contracts. Fundamentally this compromise between depth and breadth has been necessitated by the limitations of computing technology. In the last few years, however, these limitations have been much reduced.
It would be desirable to harness the recent increase in computing power to achieve an analysis of global asset risk which is both broad and deep.
Fundamental Concepts
The Covariance Matrix
A standard approach to characterizing financial risk is to measure the variance of the return series. Let ri(t) be the return to asset i in period t and define the asset-to-asset covariance matrix Ω by
Ωij(t)=cov(ri(t),rj(t))
where cov( ) is the covariance operator. Suppose h is the vector whose component hi gives the fraction of wealth invested in asset i by a particular portfolio. Then the variance of the portfolio return is given by
htΩh
More generally if h1 and h2 are vectors defining distinct portfolios, then the covariance of the returns to those portfolios is given by
h1tΩh2
This reduces the risk analysis of a portfolio to the problem of determining a good estimate {circumflex over (Ω)} of the asset-by-asset covariance matrix Ω.
In the last 25 years, there has been rapid growth in types of assets, such as options, where the variance may not be an adequate description of risk. In these cases, there is a set of underlying variables, such as underlying asset prices, whose riskiness is captured by their variances. Then Ω is the covariance matrix of the underlying variables, such as underlying asset prices. For expositional simplicity, and because the variance does provide a first measure of risk, we will use portfolio covariance as a risk measure and use Ω to denote the asset level covariance matrix. The simplest estimator {circumflex over (Ω)} is the historical covariance matrix
Ωijhist(t)=cov({ri(u)rj(u)}u=t,1)
An important practical point is that the number of periods t entering into this estimate is constrained by economic realities. Let T denote the total length of time over which returns are observed and let Δ denote the observation interval. Then t=T/Δ. In general T is limited by two circumstances. First, assets have finite lives. Second, the economy itself is evolving and this evolution limits the relevance of data from the distant past. It is desirable, though not essential, for T to be at least five years. For the risk horizons of interest in a portfolio management context, e.g. from one quarter to a few years, a rule of thumb is that the observation interval Δ is best set at a one month horizon. Taking T at five years and Δ at one month results in the number of periods t being 60. The choice of 60 is not a hard number, but it represents a reasonable and necessary compromise.
The statistical properties of the estimator {circumflex over (Ω)} depend crucially on two parameters: the number of periods t in the estimate and the number of assets, N, covered by the estimate. If N>t then we may find portfolios h such that
ht{circumflex over (Ω)}h=0
over the sample period. Such portfolios appear to be risk free, but in fact are not. Technically this condition is expressed by saying that {circumflex over (Ω)} fails to be positive definite. If a covariance matrix which is not positive definite is used for portfolio construction there will be a strong tendency to buy into the apparently risk free portfolios. The result is a severely biased risk estimate, with realized risks proving significantly higher than forecast risks. For this reason a positive definite covariance matrix is a basic requirement, and thus one requires t>N. Econometric considerations limit t to approximately 60, while practical applications may require N on the order of 1000. Thus, the historical asset-by-asset covariance matrix is of only limited practical utility.
The Factor Model
The limitations of the historical covariance matrix motivate the search for a more robust estimator of the asset covariances. The standard solution is to invoke a factor model. A factor model is a linear model for asset returns such that
where Xij(t) is termed the exposure of asset i to factor j, fj(t) is termed the return to factor j and εj (t) is termed the specific return to asset i. The returns need not be linear in the factors, as in the case of options. Our interest is in developing a covariance matrix for factors across many asset classes and the linearity assumption does not impact the interest in any manner: Non-linear instrument may by valued directly given factor realization. For portfolio risk analysis, the linear approach is a widely-used first order approximation which greatly speeds up computations. It is further assumed that the factors fj capture all common sources of return between assets, or equivalently that
cov(fj(t),εi(t))=0
for all factors fj(t) and specific returns εj (t) and that
cov(εi(t),εk(t))=0
for distinct assets i and k. In this case with a bit of algebraic manipulation one can show
Ω=XFXt+Δ where
Fij(t)=cov(fi(t),fj(t)) and
F is the common factor covariance matrix, and Δ is the (diagonal) matrix of specific risk. We estimate the quantities F and Δ historically.
The statistical properties of this model may be quickly summarized, based on our analysis of the sample covariance matrix. Since all assets have some specific risk, Δ>0, this insures that
{circumflex over (Ω)}fact=X{circumflex over (F)}histXt+Δhist
will be positive definite. The accuracy of the common factor risk forecasts {circumflex over (F)}hist depend on t in the average case and on the quality ratio t/m in the worst case, where m is the number of factors.
Another source of error in the factor model derives from error in the factor structure, for instance due to omission of an important factor. This source of error can be controlled for empirically. For instance, the importance of the smallest included factor gives an estimate of the likely importance of the largest missing factor, if a systematic process for constructing the factor model has been followed.
Factor Modeling Techniques
There are two basic approaches for generating factor models, which are termed the exploratory and confirmatory approaches, respectively. The exploratory approach assumes that the returns are generated by a factor model but that nothing is known about the factor model
r=Xf+ε
Various statistical techniques can then be applied to simultaneously estimate Xi and f(t) from the data ri(t). In this method X captures all the cross-sectional variation in i and f(t) captures all the temporal variation. Even so, however, X and f(t) are not uniquely defined, but rather are determined only up to a rotation of the exposures. Thus, the factors extracted by this technique are not directly interpretable. Interpretability of factors is an important consideration if a risk model is to be used for active portfolio management. In active management risks are deliberately taken in the effort to earn compensatory return. Thus, judgments must be formed as to whether or not one is willing to take on risk along a particular dimension. If the dimension is a statistical construct without an economic interpretation, there is little basis from which to form such judgments. It is usual in exploratory factor analysis to apply a rotation to the extracted factors in the hopes of arriving at an interpretation of the factors. The value of this interpretation, however, relies entirely on the analyst's judgment.
The confirmatory factor approach assumes that a priori information is available about the factor structure. In the returns based approach one assumes that the factor returns fj(t) are known. Then the exposures Xij(t) are found by regressing the asset returns on the factor returns. For instance, the market model assumes a single factor return, namely the market return m(t) in excess of the risk free rate r0(t) and it determines an asset exposure, the historical beta βhist by regressing asset returns in excess of the risk free rate on the market excess return
ri(t)−ro(t)=αi+βihist[m(t)−r0]+εi(t)
A limitation of the returns based approach is that the estimated factor exposures may not be very interpretable. A variant, known as style analysis, attempts to correct this defect by carrying out a least squares estimation in which the exposures are restricted to lie in an a priori reasonable range. For instance, restricting the exposures to lie between 0 and 1 and to sum to 1 allows them to be interpreted as weights which describe how the factor returns are mixed together to best approximate the asset return. Note that if the data do not conform to the imposed restrictions then in general the condition.
cov(fi(t),εj(t))=0
will fail to hold, so style analysis cannot simultaneously guarantee interpretable exposures and a consistent factor structure.
In contrast to the returns based analysis, the exposure based approach to confirmatory factor analysis assumes that the exposure matrix X is known a priori. The factor returns f(t) are then estimated by regressing the asset returns on the exposures. The exposure approach differs from other factor modeling methods in that
However one generates a factor structure, one is faced with the problem of assessing its adequacy. For exploratory techniques one is guaranteed to find a structure that meets the basic assumption (1) and (2) of the factor model over the time period in which the model is estimated. The essential assessment then is whether the factor exposures estimated in this way remain stable in subsequent time periods. For returns based confirmatory factor analysis, stability of the factor exposures is again the basic criteria of success. For confirmatory analysis, by contrast, the technique only guarantees only that property (1) will hold. Thus, a test of the model is verifying how well property (2) holds—i.e. are the specific returns of distinct assets uncorrelated within measurement error? It is an advantage of the confirmatory methodology that this check of the model's adequacy may be made on the estimation data itself. By contrast, the exploratory method requires data subsequent to the estimation data to arrive before the internal consistency of the model can be assessed.
Cross Asset Class and Single Asset Class Modeling
When analyzing assets in a single asset class, the most accurate risk predictions are obtained by identifying the factors appropriate to that asset class and estimating a corresponding factor model. The number of factors and length of factor realization history is almost certain to be different among the various classes. In addition, the precision of the modeling is likely to vary by asset class as is the richness of the factor structure. Each asset class is likely to have different accessibility of individual asset data so that varying levels of granularity imply that certain items of information may be available within one class but not available within another.
Confirmatory factor analysis for equities in a single country reveals that equity returns are driven by industry and style related factors. Industry related factors are self-explanatory: each firm functions within a single industry or across multiple industries, and the exposure of a firm to different industries may be computed by using a combination of sales, assets, and income from the different industries. Style related factors are based on firm fundamentals, such as size, growth, or relative trading activity, and exposure to style based factors are computed using fundamental accounting information, e.g assets, or market information, e.g. capitalization, trading volume. The prevalence of different industries, the availability of fundamental and market data, and the local behavior of the market then determine the final factor structure that is used for equities in a single country.
For fixed income securities, the set of factors are default free (sovereign) or high grade (swap) interest rates and spreads for lower grade instruments. The first set of factors is generally described by a set of zero coupon yields, or by the first three principle components of the set of zero coupon yields. Depending on the availability of data, the spread factors can be divided into sector and rating related spreads. In the U.S., for example, it is possible to get a fairly rich set of spread factors because of a long history of data, whereas such a history may not be available for other markets.
When integrating across many assets classes, it has in the past been difficult to work with the factors from the single asset class models, particularly for equities. The problem, discussed in detail below, is simply that there are too many factors, differing factor histories, and different types of statistical analyses that may be applied to each asset class. The natural simplification, which eliminates the need for aggregating different types of model, is to impose a common factor model structure across all asset classes. For example, one could impose a single factor model so that the aggregation process requires only the estimation of the correlation between the various factors, while at the individual asset level one has only to estimate asset exposures and residual risk. As described below in detail, this has been past practice when modeling global equities. This greatly simplifies the aggregation task but either leaves the portfolio manager with an inferior model or yields inconsistent results between the various levels within the firm hierarchy, neither of which result is necessary, or desirable.
To motivate our solution to the cross-asset class problem, we next illustrate the natural tension that arises between cross and within asset class risk analysis by focusing our attention on the details of modeling of global and single country equities. We then show how the invention solves the tension by providing an approach that integrates single asset class models into an aggregate asset class model. Again, this resolution is illustrated by a detailed application to the global equity market.
Prior BARRA Research
The existing approach to global equity factor modeling is closely based on the Grinold, Rudd, and Stefek model of 1989. In this approach, local market residual returns
{tilde over (r)}i(t)=ri(t)−rfi(t)−βi(t)mi(t)
are calculated, where
The market residual returns are then fit to an exposure based factor model of the form
Here the Xij1(t) are Ni industry exposures where for every asset i there is a unique j such that
Xij1(t)=1 and for all k≠jXik1(t)=0
The quantities fj1(t) are interpreted as returns to globally defined industries. In addition, Barra's global equity model contains a set of style factors. These are embodied in Xik2(t), which are four statistical characterizations of asset i, termed SIZE, SUCCESS, VALUE and VARIABILITY IN MARKETS. These measures are based on asset characteristics normalized against the local market. The estimation of the Barra model is carried out over approximately 2000 assets, drawn from some 25 developed markets. The exact composition of the estimation universe varies through time. The commercial version of this model is known as the Global Equity Model. It exists in two different versions distinguished by slightly different industry classification schemes and estimation universes.
Since the original formulation of the Global Equity Model we have learned much about global equities:
Synthesizing all of this information, we are led to a new vision of global equities. Whereas the Global Equity Model saw global equities as a homogeneous group caught in a simple factor structure, we now see each local market as the homogeneous grouping with different markets linked together into a global matrix by various regional and global effects. The natural realization of this vision is to fit a factor model to each local market. The local models can be customized to each market to capture its special features and to best exploit the available data. The local analysis must then somehow be integrated into a global analysis. The work of Hui has been pointing in this direction since 1995. How to achieve the integration of local models has, however, been an elusive point. It would be advantageous to resolve this difficulty.
The invention provides a method and apparatus for combining two or more risk models to create a risk model with wider scope than its constituent parts.
The method insures that the combined risk model is consistent with the component models from which it is formed.
Starting with:
The following components are given:
Construct a risk model for x as follows:
Insure the risk model in Step 5 above is consistent with each component, asset class risk model as follows:
Construction of a Global Analysis
Combination of Models
One goal of the invention is to integrate factor models of local markets into a global analysis. For notational simplicity let us first focus on the problem of integrating just two models. Specifically, let (X1, F1, Δ1) and (X2, F2, Δ2) be two different factor models. In other words, if ri is a vector of returns from market i then
ri(t)=Xi(t)fi(t)+εi(t) where
cov(fi(t),fi(t))=Fi(t) and
cov(εi(t),εi(t))=Δi(t)
We may form new entities
and fit the model
r(t)=X(t)f(t)+ε(t) then
If we assume the factor exposures capture all sources of common return between any two assets then the covariance matrix
Δ(t)=cov(ε(t),ε(t))
continues to be diagonal and in fact
The covariance matrix of common factor returns
F(t)=cov(f(t),f(t)) is
where F1(t) and F2(t) are as given in the local market models and
F12(t)=cov(f1(t),f2(t))
is a new piece of data. Thus, (X(t), F(t), Δ(t)) constitutes a factor model for the union of the two local markets. In particular, the asset-by-asset covariance matrix Ω(t) for the combination of the two markets is given by
Ω(t)=X(t)F(t)X(t)t+Δ(t)
Given Ω(t), risk analysis may be performed on the union of the two markets exactly as it is performed on each market separately. Hence, in summary, we see that the only new piece of information required to join (X1, F1, Δ1) and (X2, F2, Δ2) into (X(t), F(t), Δ(t)) is F12(t).
Let us consider how we might estimate F12(t). The simplest approach is to form the sample covariance matrix
{circumflex over (F)}12(t)=cov [{f1(u),f2(u)}u=1t]
For combining just two models this approach might be adequate. However, the presently preferred embodiment of the invention may be used to combine 50 or so models, with each model containing, e.g. 40 factors. Thus, we could face up to 2000 factors. Computing a 2000 times 2000 sample covariance matrix from limited time series data leads to degenerate results.
In short, combining factor models has led us to exactly the same problem we faced when we tried to compute asset-by-asset covariance matrices directly. In the asset case we saw that the solution was a factor model. Hence, we turn to a factor model to solve our present difficulty. In particular, we identify factors g(t) that capture the covariance between f1(t) and f2(t). Let Y(t) be the exposures of
Then
f(t)=Y(t)g(t)+φ(t)
Then we can form
G(t)=cov(g(t),g(t))
Φ(t)=cov(φ(t),φ(t))
and take as our initial estimate of F(t)
{tilde over (F)}(t)=Y(t)G(t)Y(t)t+Φ(t)
Assuming that the exposures in Y(t) capture all sources of common covariance between f1(t) and f2(t), Φ(t) is a block diagonal matrix with the form
Let
H(t)=Y(t)G(t)Y(t)t
which we write in block form as
similarly we write
Then on the diagonal blocks
{tilde over (F)}i(t)=Hi(t)+Φi(t)
and on the off-diagonal block
{tilde over (F)}12(t)=H12(t)
Assuming we have found the correct factor structure, as the sample size goes to infinity, one has {tilde over (F)}i(t) converge to Fi(t). With finite samples, however, this convergence may be incomplete. We may rescale {tilde over (F)} to bring its diagonal blocks into agreement with the blocks Fi provided by the local models. Let M1/2 indicate the singular value square root of the matrix M. Introduce
Then
{circumflex over (F)}=R{tilde over (F)}Rt
is an estimator of F such that its diagonal blocks {circumflex over (F)}i are identical with the blocks provided by the local market model. Note that as {tilde over (F)}1 converges to Fi the resealing matrix R converges to the identity. We take {circumflex over (F)} as our final estimate of F. In particular its off-diagonal block {circumflex over (F)}12 is
To summarize the discussion, we saw that F12 was the information required to combine the two local market models and that its estimator {circumflex over (F)}12 can be constructed from the given data F1 and F2 plus the additional data H and Φ derived from the factor model
f(t)=Y(t)g(t)+φ(t)
The foregoing describes a completely general approach to combining two factor models. The foregoing technique, however, is not restricted to combining just two models. One could combine any number of local market models (Xi(t), Fi(t), Δi(t)) given a suitable factor model (Y, G, Φ). Thus, we have in fact described a mechanism for modeling the entire universe of investable assets. The essential property of this construction is that it integrates the detailed analysis of a local market into a global analysis. In particular, if h is a portfolio which happens to lie in a local market, then the risk analysis of h conducted in the local context is identical with the analysis of h conducted in the global framework.
Local Models
Let us apply the above discussion to the formulation of a global equity analysis. Following the formulation of the Global Equity Model we can decompose the excess return ri, num(t) to asset i in numeraire currency into its local excess return ri, loc(t) and its currency return ri, curcur(t) as
ri,num(t)=ri,loc(t)+ri,cur(t)
To achieve a global analysis we require local models for the equity asset returns and for the currency returns. Fortunately, we have a large number of such models already constructed. The following discussion briefly describes these models.
For the local analysis of an equity market we employ a factor structure containing two types of factors: industries and risk indices. The definition of the industry factors begins with the choice of an industrial classification system. While the precise definitions are usually chosen so as to be appropriate to the local market, the categories are sufficiently broad and distinct as to be largely similar from country to country. Once the classification system is defined, each company is assigned an industry exposure. Always the industry exposures of a company sum to not more than one. In some models, exposures are zero-one variables, so a company has an exposure of one to one industry and zero to all others. In other models, companies are exposed to multiple industries. In this case, the industry exposures are assigned to capture the importance of that industry to the company. The assignment is usually made based on a combination of accounting data, i.e. sales in a business segment, and a style analysis of company returns against industry index returns.
The risk indices capture other aspects of a security which are useful to understanding its return pattern. Examples of such indices are measures of size, liquidity, value, yield, exposure to foreign trade, blue chip quality, membership in indices on which futures contracts trade, past market performance, and volatility. Each local model contains a set of risk indices appropriate to that market and with definitions more or less specialized to the data available in that market. The construction of the indices follows a general pattern however. First a concept is identified, e.g. size. Then specific pieces of data (known as descriptors) are identified which have a bearing on the concept, for instance market capitalization or revenues. The descriptors are then combined to form a factor exposure which seems maximally informative about return patterns. For instance, one might take a linear combination of the descriptors where the coefficient attached to a descriptor could be interpreted as a measure of how accurately the descriptor realizes the concept. The need to handle the problems of missing data, outliers, and changing accounting definitions through time tends to make the details of factor exposure construction rather complex. Continuous factor exposures are usually standardized against the local asset universe, a step which makes the factor exposures comparable from factor to factor. Discrete factor exposures, e.g. a zero-one variable indicating membership in an index portfolio, are usually left unstandardized. Factor exposures are revised as new information arrives. For instance, if a company sells a division its industry exposures may differ after that point from those before that point.
Once the factor exposure matrix X has been defined, the factor returns and specific returns are measured through the regression
r(t)=X(t)f(t)+ε(t)
Different models generally employ a weighting scheme suitable to the local market, e.g. capitalization weighting or GLS weights. From returns data one constructs the covariance matrices F(t) and Δ(t). In some models, however, there is considerable detail to this construction.
In investigating factor structures we have found them to differ along time and capitalization dimensions. Thus, in the U.S., for instance, we actually estimate three separate models—a model of large capitalization stocks based on monthly returns, a model of large capitalization stocks based on daily returns, and a model of small capitalization stocks based on monthly returns. In Europe, we estimate models for many of the individual national markets. However, we also estimate a pan-European model. As we have noted, a factor model should be fit over a homogenous group of assets. There are degrees of homogeneity and how much homogeneity a group of assets exhibits depends in part on one's perspective. For some investors, European equities as a whole currently represent a homogenous group, while other investors follow strategies which continue to see the national markets as the primary homogenous groups.
Our global analysis is constructed by combining local models. The wealth of local models gives us considerable flexibility in producing a global analysis. For instance, we can combine local models estimated over daily time horizons to achieve a global analysis suitable for short-term risk assessment. Alternatively, we can combine local models estimated for small capitalization stocks to produce a global small capitalization analysis. In treating European assets we can choose to combine several nationally focused local models, or instead we can use our European region model.
In addition to local equity models we also require a model of currency returns. Our currency model is an example of a degenerate factor model in that it has one factor per currency. In other words, the exposure matrix X is the identity, so the asset returns equal the factor returns and the specific returns are zero. The subtlety of the model comes in how the factor covariance matrix is constructed. We write
Fij=σiσjρij
where σi is the volatility of currency i and ρij is the correlation between currencies i and j. The volatilities σi are estimated from GARCH models chosen appropriately for each currency model fit over fairly high frequency data. The correlations are estimated by an exponentially weighted moving average method applied to lower frequency data. Additional detail has been provided by Goldberg (see Currency Risk Modeling, Barra 2000 Research Seminar, Section C).
The Equity Covariance Structure
Methodology
Given the local models, our task now is to construct the global model which unifies them. Hence, the first order of business is to determine the global factor structure Y. We focus first on the factors relating local equity markets. Our research on global equity factors has already identified a number of possible factors (See Table 1):
The global macroeconomic factor is a new element given the current structure of equity risk models. It is formed from two descriptors. The first descriptor is the country's inflation rate standardized cross-sectionally. The second descriptor is the ratio of the country's current account to its reserve bank holdings of foreign exchange, also standardized cross-sectionally. The factor is defined as the difference of these two descriptors standardized cross-sectionally. Thus, this factor is sensitive to either internal or external monetary disequilibrium. Reflecting its definition, we term this factor Gloom & Doom.
Having determined the factor concepts, we must next specify the factor loadings. Let
We have in essence two models. The first model is
mi(t)=Di1(t){tilde over (g)}1(t)+Di2(t){tilde over (g)}2(t)+ci(t)
where
Substituting the first model into the second and rearranging terms we get
by setting
These equations define the global factor loadings.
In this notation the restriction is
In other words, we force the country factor returns to be active to the combination of the World return and Gloom & Doom. With this constraint imposed, the model is now fully identified and may be estimated by a cross-sectional regression for each time period t.
Construction of the Equity Covariance Matrix
Our next task is to generate a covariance matrix G of global factor returns. Here, we face the difficulty that our local models begin at different dates. Consequently, the country factor returns which we are able to estimate have different starting dates. It is desirable that all the time series entering the covariance matrix estimation have the same length. Accordingly, we need to extend some of the country factor return series backwards in time. Our solution is to proxy the missing country factor return data with data derived from a local market return index. Once all the time-series have been completed to the same length we form the exponentially weighted expanding window sample covariance matrix. In other words, the matrix estimated at time t uses all information from periods prior to t with data n periods in the past being weighted by αn for α a suitable constant. We pick α to have a 90 month half-life, i.e. α=0.5. The exponentially weighted estimate has approximately the same statistical weight as an equal weighted moving window estimate with window width 1/(1−α). For α90=0.5 the equivalent equal weighted window has a width of 130 months. We prefer an exponentially weighted expanding window to an equal weighted moving window because it permits outlier observations to fade away gradually, whereas the moving window method causes outliers to generate artificial shocks as the far edge of the window frame moves past them.
The Currency-Equity Covariance Structure
We now turn to the currency part of the global equity model. There are two sets of covariances. We must estimate currency-to-currency covariances and currency-to-equity covariances. The currency-to-currency part is immediately disposed of by our currency model. Hence, it is enough to consider covariances between currency returns and local equity factor returns. In modeling the relationship between equity factors and currencies, our first observation is that the dimensionalities are such that a simple historical covariance matrix contains many spurious correlation. Accordingly, a more structured approach is required.
We identified four factors which could link equity and currency returns. The first factor is an indicator variable for Russian distress. It is defined as
where r(t) is the ruble-dollar exchange rate return and σ(t) is an exponentially weighted estimator of the standard deviation of that return. The other three factors, c2 (t), c3 (t) and c4 (t) are defined for each country as the exchange return between local currency and dollar, Euro, and pound, respectively.
For each equity factor f(t) we selected the best single factor model of the form
f(t)=α+βci(t)+ε(t)
for i ranging from one to four. Here, f was taken to range over both size and market factors. However, no size factor led to a meaningful result and only results for the market factor are tabulated. The results are shown in Table 2. We also considered the best two factor model, however, no two factor model was meaningfully superior to the one factor mode. In considering two factor models we had to disallow the combination of c3 and c4 due to multicolinearity. The cases which result in non-negligible R2 with reasonably significant T-statistics on beta in general seem economically intuitive. They are listed in Table 3.
Using these relationships between equity and currency returns, we may now derive a consistent covariance structure connecting any equity factor and currency exchange rate.
Let
f(t)=α+βc(t)+ε(t)
be the fitted model for some market. If {tilde over (f)}(t) is a second equity factor in that market and {tilde over (c)}(t) is a second currency factor we assume that the covariance between {tilde over (f)}(t) and {tilde over (c)}(t) derives from the linkage through f(t) and c(t). Then
{tilde over (f)}(t)=α1+β1f(t)+ε1(t)
{tilde over (c)}(t)=α2+β2c(t)+ε2(t)
and thus
cov({tilde over (f)},{tilde over (c)})=β1β2cov(f,c)
=β1β2βvar(c)
Here, only the quantity β is actually estimated. The quantities β1, β2 and var(c) are calculated from the equity and currency covariance matrices respectively. In this way, we may compute the covariance block between the currencies and local equity markets.
The Total Covariance Structure
Let i=0 indicate currencies and for i>0 let i denote the ith local equity market. We have described the construction of the covariance block Ci,j giving the covariances between the factors of the ith and jth markets. We assemble these blocks into a large covariance matrix {tilde over (F)} where
This is our preliminary estimate of the common factor covariance matrix. We rescale it as described above to bring the diagonal blocks to their target values, thus achieving our final estimate of common factor covariance matrix {circumflex over (F)}. This completes our construction of the New Global Equity Model.
Properties and Applications of the Model
Having formulated the Global Equity Model, it is of interest to probe the model's properties and to apply this new tool to some questions in global equity analysis.
Properties of the Global Model
We first consider the fit of the model.
R2(t)=α+β|w(t)|+ε(t)
on the absolute world return w(t) has the properties shown in Table 5. In particular, the magnitude of the world return explains 37% of the variation in the fit of the global model.
In Table 6 we show for each global factor some summary statistics on its t-statistic. Excepting the risk indices, every factor is clearly significant judged by the absolute value of the t-statistic being greater than two more often than can be explained by chance. Of the three risk indices, Momentum is marginally significant by this test, whereas Size and Volatility are not. The low level of significance for the risk indices provides some validation for our choice of cut-off in the factor selection process. Shortly, we shall present evidence that Size and Volatility are highly correlated with the World factor. This finding suggests that at the global level these factors have been cannibalized by the World factor. The interesting implication is that at the local level these factors may be picking up a projection of the World factor into the national market. Certainly for Size this would be a credible interpretation. This thought provides an interesting side light on the work of Chaumeton and Coldiron on the one hand and Chandrashekaran, Hui, and Rudd on the other. These investigators searched for a global company factor, but were stymied by the sought for factor apparently being confounded with the size factor. Perhaps the global company factor and the size factor should be seen as imperfect descriptions of the same concept, rather than as confounded factors.
A key assumption of our model is that the global factor structure Y accounts for all significant covariances between local models. An implication is that the sample covariance matrix
should be block diagonal. We test this hypothesis by computing the mean of the cells of the off-diagonal blocks in Φ and also the mean magnitude of these off diagonal cells.
To summarize the discussion to this point, the global model fits well, appears free of degenerate behavior, and conforms to the posited model structure.
Properties of the Global Factors
We turn from a consideration of the model as a whole to a consideration of the properties of its factors. Table 7 summarizes the important time-series properties of the model's factors. The typical factor appears to be an independent identically distributed normal variable with mean close to 0 and standard deviation of about 3% per month. Some notable exceptions to this pattern occur however:
Here we call attention to several of the more interesting comparisons.
Three extractive industries are shown in FIG. 8. Here, we see Precious Metals to be in a prolonged bear market. By contrast, Energy is trending gradually upwards and Mining is trending gradually downwards with a cyclical modulation.
The three risk indices are shown in FIG. 9. The trend in Momentum makes a strong contrast with the aimless behavior of the other two.
By contrast, the technology industries shown in
Finally,
The average correlation between different groups of factors are given in Table 8. Except for the World-Risk Index correlation, most cross-group correlation are on average small. Note that industries and countries are more correlated within themselves than with other groups. Additional insight into the factor covariance structure can be gleaned from Table 9, which shows for each factor its volatility and most important correlation. In general, the correlation are quite intuitive. For countries regional groupings emerge (Table 10), but the correlation remain sufficiently low that we do not find a need to replace country concepts with regional concepts. Looking at subperiods, increasing integration within the European region is particularly notable. Similarly industries tend to correlate within sector groupings, but again the correlation are not so strong as to suggest replacing industry concepts with sector concepts.
Properties of the Purely Local Factors
A new analytical concept introduced with the model is that of the purely local factor return. We may investigate the structures which it reveals in several ways. First, for each country we would like to form a measure of how much of the variability in that market derives from purely local factors. For a covariance matrix M the total variation statistic is tr M (trace of M). It gives a measure of how much variability there is in the covariance structure described by M. The quantity tr Φi/tr Fi suggests itself as such a measure of the relative level of purely local variation in market i. As a tool for making comparisons among countries, however, this measure proves not entirely suitable. The difficulty is that Fi contains the variability due to the country market return, while ρi does not. As market volatility varies strongly across countries, this effect confounds the attempt to use tr Φi/tr Fi as a measure of how important the purely local effects are in country i. Accordingly, we introduce a modified measure. Let λ1i be the largest eigenvalue of Fi. Then λ1i essentially represents the variability of the market return in country i. We take
Li(t)=trΦi(t)/[trFi(t)−λ1i(t)]
as our measure of how important the local factors are in country i at time t. Table 11 tabulates these ratios.
The table clearly shows that barely local factors come as significant source of risk for concentrated portfolios.
We may also study the pattern of purely local returns from a factor viewpoint. For each factor i we may take the ratio var(Φ1)/var(fi) as a measure of how local that factor is. Collecting the means of these ratios over factors of a given type, e.g. Technology or Size, we get a measure of how much local variation in behavior there is within the scope of a globally defined concept. Here, the results are presented in Table 12.
There is an important economic interpretation which can be put on the purely local factor return. Within a market these factor returns represent common risk factors which cannot be eliminated through diversification. For investors who operate globally, however, the purely local factor risk can be reduced by diversification across markets. The implications are two. First, markets where Li(t) are high are the markets in which the benefits of international diversification may be large. Second, the trend in Li(t) through time shows how these benefits have varied through time. In Table 13 we present the results of the regression
Li(t)=α+βt+εi(t)
Some marked trends are evident. In particular, most markets appear to be trending towards lower values of Li(t). This finding could be interpreted as evidence of increasing global integration. However, we caution that the properties of Li(t) have not yet been investigated sufficiently in depth for us to lay much stress on this finding.
We have not made any systematic investigation of the contribution of purely local common factors to performance. However, we have permitted ourselves a simple case study. We considered the MSCI U.S. index portfolio and decomposed its return over the October 1989-November 1999 period into various components. The results are given in Table 14. Unsurprisingly, the U.S. factor in the Global Equity Model contributed most of the returns. However, the return from purely local U.S. common factors was slightly greater than the contribution from the global industries and risk indices. The net contribution of the purely local factors was 1.9% per annum. Thus, purely local effects can make a meaningful contribution to performance. We note that the number of purely local effects is ten to twenty times the number of global effects. Thus, for equal skill in picking global and local factors, the fundamental law of active management favors strategies based on purely local factors over those based on global factors.
Portfolio Analysis
Market Portfolios
Next, we turn to a consideration of portfolios. The simplest portfolio to consider is the market portfolio hmi of country i. The analysis of this portfolio in the Global Equity Model Version 2.0 is identical with its analysis in the single country model for that country. By contrast, the analysis in the Global Equity Model is different. Table 15 compares the Global Equity Model Version 2.0 estimate of risk with the Global Equity Model estimate.
The next level of analysis considers the covariance between hmi and hmj for two countries i and j. In the Global Equity Model Version 2.0, this measure probes the off diagonal block Cij. Table 16 presents the Global Equity Model Version 2.0 and the Global Equity Model analyses. It will be seen that the Global Equity Model Version 2.0 typically estimates a lower correlation, which implies a greater benefit from international diversification. Here, an important difference in the two analyses appears to be the Global Equity Model Version 2.0 recognition that much cross-market correlation derives from the world factor which displays pronounced conditional heteroscedasticity. By contrast, the Global Equity Model assumes a homoscedastic world. If we drop from the empirical data the months when the world return was greatest (October 1987, August 1998) and calculate the correlation of the empirical data series, we see that the Japan correlation in particular shift to being closer to the Global Equity Model Version 2.0 estimates than to the Global Equity Model estimates. However, other empirical correlation remain significantly higher than the Global Equity Model Version 2.0 estimates.
A Case Study
To gain further insight we consider a simple case study. We take our investable universe to consist of just four stocks: Toyota, Mitsubishi Trust Bank, General Motors, and BankAmerica. We take the benchmark portfolio to be the equally weighted portfolio holding these four assets. We take the managed portfolio to consist equally of Mitsubishi Trust Bank and General Motors. Thus, the active portfolio, i.e. the difference between the managed portfolio and the benchmark, is:
It will be noted that the active portfolio has no net exposure to Yen/Dollar, Japan/U.S. or Autos/Banks. We analyze the risks of the active portfolio in both the Global Equity Model and the Global Equity Model Version 2.0. In the Global Equity Model the risk exposures are as shown in Table 17.
It will be noted that the Global Equity Model perceives a country risk, despite there being no active distribution in portfolio wealth between countries, because the Global Equity Model calculates the country exposures based on historical beta and the betas of these assets are not all 1.0. In Table 18 we present the Global Equity Model risk decomposition.
Most of the risk is specific. Such common factor risk as there is derives largely from the country exposures. Next, we turn to the Global Equity Model Version 2.0 analysis. As with the Global Equity Model, the Global Equity Model Version 2.0 sees no currency exposure in the active portfolio. In other details, however, the Global Equity Model Version 2.0 paints a significantly different picture. The risk exposures revealed by the Global Equity Model Version 2.0 are given in Table 19.
Two exposures in particular are revealed which the Global Equity Model analysis missed. First, the Mitsubishi Trust Bank is more domestically focused than Toyota, so the active portfolio contains a significant tilt towards the Japanese domestic economy as revealed by the negative exposure to the foreign sensitivity risk index. Second, General Motors has significant exposure to the financial service industry through its credit corporation subsidiary, a fact which is captured by the multi-industry exposures supported by the USE3 model underlying the Global Equity Model Version 2.0. The Global Equity Model Version 2.0 risk decomposition is shown in Table 20.
Superficially, the Global Equity Model Version 2.0 analyses seems similar to the Global Equity Model analysis in that the estimated total active risk is roughly comparable in the two analyses (183.4 vs 285.2). Probing more deeply, however, we find striking differences in the risk decomposition. The common factor risk estimated by the Global Equity Model Version 2.0 is 88.6, more than three times the Global Equity Model estimate of 26.8. Most of this common factor risk derives from the Japan subportfolio, and may be attributed nearly equally to industry tilts and to risk index tilts. The unimportant contribution to the total of cross-market covariance between the U.S. and Japan subportfolios (−4.1) indicates that relatively little hedging occurs between those portfolios. The Global Equity Model assumed that the industry tilts within the U.S. and Japan subportfolios canceled one another. The Global Equity Model Version 2.0 is skeptical of this cancellation.
A Second Case Study
Let us consider the implication of this study. As we know, the specific risk of a portfolio (measured in variance term) scales as 1/N for N the number of assets in the portfolio. The common factor risk, however, generally does not scale down so quickly with increasing N. As we have seen, the Global Equity Model and the Global Equity Model Version 2.0 differ in their perception of how much common factor risk a portfolio contains. By allowing N to increase, we should be able to dramatize the difference in the two analyses. To demonstrate this effect, we take our investable universe to consist of Banks and Chemicals. We switch from Autos to Chemicals as the Chemical industry is less consolidated than the Auto industry and thus we are able to increase N to a greater degree.
We construct a case for N=4 and a case for N=74. In the case N=4 the benchmark is:
In the case N=74 the benchmark is allocated
and the benchmark is capitalization weighted within each subdivision. In both cases the managed portfolio holds the Japan Chemicals and the U.S. Banks contained in the benchmark. The resulting exposures are as given in Table 21 and 22. It will be noted that in both the Global Equity Model and the Global Equity Model Version 2.0 analyses the mean absolute exposures move somewhat towards zero as N increases. For risk indices this effect occurs as the indices are normalized to zero across the estimation universe, so as N increases they tend to move closer to the universe mean, namely 0. For countries in the Global Equity Model the mean asset beta is one, and as the number of assets in the portfolio grows the mean country exposure moves towards one, thus reducing the active country exposure. For industries, as N increases one picks up exposure to more industries through the secondary operations of the firms. Consequently, the mean industry exposure decreases. The total absolute active industry exposure will tend to increase, however. The summary risk decomposition is given in Table 22. In both cases the specific risk decreases by 88%, exactly as expected from the increase in N. In the Global Equity Model risk index and country risk both decrease by 60-70% resulting in a similar decrease in common factor risk. In the Global Equity Model Version 2.0 risk index risk decreases more, by 80%. However, industry risk actually increases by 33%, and so common factor risk decreases by only 54%. In the N=4 case the Global Equity Model Version 2.0 common factor risk started out as 5.8 times larger than the Global Equity Model common factor risk. Because the Global Equity Model Version 2.0 common factor risk decreases less with increasing N, the Global Equity Model Version 2.0 common factor risk ends up 8.9 times larger than the Global Equity Model common factor risk. For specific risk, the Global Equity Model Version 2.0 estimate starts out 1.5 times larger than the Global Equity Model estimate. Since the specific risk declines nearly equally with increasing N in both analyses, the Global Equity Model Version 2.0 specific risk estimate ends up as 1.7 times the Global Equity Model estimate. Finally, the total risk estimate moves from being twice as large with the Global Equity Model Version 2.0 to being 3.4 times larger than the Global Equity Model estimate. Thus, the Global Equity Model Version 2.0 sees 90 units of risk versus the Global Equity Model's estimate of 27 units. In units of standard definition per annum, the Global Equity Model Version 2.0 sees a 33% risk versus the Global Equity Model's estimate of an 18% risk. The differences in the analyses are indeed dramatic.
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the claims included below.
Number | Name | Date | Kind |
---|---|---|---|
5832465 | Tom | Nov 1998 | A |
6012044 | Maggioncalda et al. | Jan 2000 | A |
6021397 | Jones et al. | Feb 2000 | A |
6282520 | Schirripa | Aug 2001 | B1 |
6405179 | Rebane | Jun 2002 | B1 |
6453303 | Li | Sep 2002 | B1 |
20020004775 | Kossovsky et al. | Jan 2002 | A1 |
20020091605 | Labe et al. | Jul 2002 | A1 |
20020165841 | Quaile | Nov 2002 | A1 |
20030009408 | Korin | Jan 2003 | A1 |
20030009409 | Horner et al. | Jan 2003 | A1 |
20030014356 | Browne et al. | Jan 2003 | A1 |
20030033240 | Balson et al. | Feb 2003 | A1 |
20030046212 | Hunter et al. | Mar 2003 | A1 |
20030055765 | Bernhardt | Mar 2003 | A1 |
20030078867 | Scott et al. | Apr 2003 | A1 |
20030126058 | Hunter | Jul 2003 | A1 |
20030139993 | Feuerverger | Jul 2003 | A1 |
20030208429 | Bennett | Nov 2003 | A1 |
20040103056 | Ikeda et al. | May 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20030110016 A1 | Jun 2003 | US |