An aspect of the invention relates to Metal Oxide Semiconductor Field Effect Transistor (MOSFET) amplifiers.
There is a growing demand for mobility in today's world. The rapid progress in the wireless industry makes the ubiquitous connection possible. Radio Frequency (RF) transceivers are important components for wireless devices. The majority of the RF ICs used in the wireless communication were implemented using either GaAs or silicon bipolar technologies. Not until recently, when the continuous scaling of CMOS technology brought the cutoff frequency (fT) of MOS transistors up to multi-tens of GHz, were such circuits built in CMOS technology possible. The advantage of using Complementary Metal-Oxide-Semiconductor (CMOS) RF is that it can be integrated with digital functions easily. As a result, it is possible to incorporate the whole system on one single chip which yields low cost, small form factor wireless devices. A Low Noise Amplifier (LNA) is an important building block in the wireless transceiver. For LNAs, the gain linearity applied to a signal is an important operating characteristic, especially when the incoming signal is large. Under that condition, amplification by the LNA actually could be greater or smaller than one, and the noise contribution from the LNA may be negligible compared to the input signal. In fact, the linearity of the LNA becomes the most important figure of merit. Gain linearity is generally characterized as a 1 dB compression point or third order Input Intercept Point (IIP3). The gain linearity is typically related to the transconductance of a MOSFET in an input stage of the amplifier. For example, the transconductance of a MOSFET operating in the saturation region is constant only when the input signal is small. When the input signal is large, the transconductance may vary as a function of the input signal, leading to nonlinear amplification of the signal. Source degeneration may be employed at lower frequencies to increase the linearity of the input stage. However, at higher frequencies source degeneration may not be effective due to the large parasitic capacitance of the device. Also, source degeneration may increase power consumption due to the relative low gm/Id for the MOSFET in comparison with a bipolar device. In addition, Gain control is also very important in practical applications since the gain of the LNA could vary with process and temperature if not properly controlled.
An LNA comprising an input stage to amplify an input signal. The LNA being particularly suitable for amplifying large input signals. The input stage includes a linearized transconductance and has reduced gain variations in response to changes in process and environmental conditions.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
A mixer 22 may combine the amplified input signal with a Radio Frequency (RF) LO signal 24. A filter 26 and amplifier 23 may filter and amplify the combined signal, and mix the generated signal with an Intermediate Frequency (IF) LO signal. An analog-to-digital converter (ADC) 28 may convert the mixed signal to a digital signal for further processing.
A digital-to-analog converter 27 may convert a digital signal to an analog signal for transmission by a transmitter 25.
the output AC current is as follows:
iout=vdsgds=β(Vgs−Vt)vdS
Which shows that iout may be a linear function of the input signal, leading to an increase in linearity. The amount of linearity achieved may be controlled by adjusting the ratio of the upper MOSFET size to the lower MOSFET size. A load resistor 39 may be connected to the upper MOSFET 34. Another way of looking at it is to view the lower MOSFET 36 as a normal MOSFET which has its own transconductance gm. The following derivation illustrates that the linearity of gm may be dependent on Vds for a MOSFET operated in the triode region.
thus the transconductance of the device is,
The sensitivity of gm to variations in the input signal may be reduced by reducing the sensitivity of Vds to variations in the input signal, thereby increasing the linearity of the amplification.
However, since β is function of process and temperature variation, the gain of the amplifier may vary too. One way to reduce that sensitivity is to bias the input stage so that βVds is less sensitive to environmental variations.
The following derivation may be used to select the devices for the linear input stage 82 and the bias circuit 60 of a preferred embodiment, and demonstrate how the gm of the input stage is controlled to be less sensitive to environmental variations. The linear input stage transconductance, gmA may be as follows:
gmA=βVds,A=β(Vb−Vdstat,B−Vth,B) where Vb is the voltage from the gate of MB to ground.
For discussion purpose, let's assume
and I1=I2, then Vdsa,2=Vdsat,B and Vth,2=Vth,B, the transconductance of MA becomes; gmA=β(Vb−Vdstat,2−Vth,2)=βVds,1. I1 is not limited to any specific ratio of I2 as long as the ratio of (W/L)1 to (W/L)A and (W/L)2 to (W/L)B are properly scaled so that the current densities are about the same for those devices. The ratio of the size of M2 to the size of M1 should be approximately equal to the ratio of the size of MB to the size of MA.
For the same reason, let's assume I3=I1, and
where X>1.0 and preferably 14. Then M1 is also in the triode region, and if M1 in deep triode region, Vgs−Vth>>Vds/2, then I1≈β(Vgs,1−Vth,1)Vds,1
If current I3 is a constant gm bias current which is;
where A can be chosen to only depend on an external resistor value and ratio of two transistors[1], then,
gmA=gm,3/2=√{square root over (2*I3*β)}/2=√{square root over (A/2)} which is a constant.
Here, I3 does not have to equal I1, instead “X”, the ratio of the size of M3 to the size of M1, can be set to a predetermined value and the ratio of I3 to I1 varied. Also, the ratios
and
may be varied to bias M1 into the triode region.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 11/435,995 now U.S. Pat. No. 7,190,230, filed on May 17, 2006 which is a continuation of Ser. No. 11/049,211 now U.S. Pat. No. 7,088,187, filed on Feb. 2, 2005 which is a continuation of Ser. No. 10/242,879 now U.S. Pat. No. 6,977,553, filed on Sep. 11, 2002. The disclosures of the above applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4296382 | Hoover | Oct 1981 | A |
4697153 | Lish | Sep 1987 | A |
5606287 | Kobayashi et al. | Feb 1997 | A |
5777518 | Bailey | Jul 1998 | A |
5789981 | Singer et al. | Aug 1998 | A |
5880631 | Sahota | Mar 1999 | A |
5959446 | Kuckreja | Sep 1999 | A |
6043709 | Shin | Mar 2000 | A |
6166592 | Walden | Dec 2000 | A |
6188093 | Isogai et al. | Feb 2001 | B1 |
6208177 | Knoedl, Jr. | Mar 2001 | B1 |
6265929 | Hauser | Jul 2001 | B1 |
6292034 | Koifman et al. | Sep 2001 | B1 |
6310512 | Briskin et al. | Oct 2001 | B1 |
6342816 | Gradzki | Jan 2002 | B1 |
6392490 | Gramegna et al. | May 2002 | B1 |
6556022 | To et al. | Apr 2003 | B2 |
6563369 | Comer et al. | May 2003 | B1 |
6590456 | Yang | Jul 2003 | B2 |
6600377 | Sasaki | Jul 2003 | B2 |
6803824 | Rategh et al. | Oct 2004 | B2 |
6822518 | Lin et al. | Nov 2004 | B1 |
Number | Date | Country |
---|---|---|
WO 0021205 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 11435995 | May 2006 | US |
Child | 11650681 | US | |
Parent | 11049211 | Feb 2005 | US |
Child | 11435995 | US | |
Parent | 10242879 | Sep 2002 | US |
Child | 11049211 | US |