In a wireless transmission system, such as radar or cellular communications, the size of the antenna is determined by the transmission characteristics. With the widespread application of wireless applications, the footprint and other parameters allocated for a given antenna, or radiating structure, are constrained. In addition, the demands on the capabilities of the antenna continue to increase, such as increased bandwidth, finer control, increased range and so forth. In automated applications, such as self-driving vehicles, the radar and other sensors are expected to scan the environment of the vehicle with sufficient speed to enable instructions to the vehicle and response time.
The present application may be more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, which are not drawn to scale and in which like reference characters refer to like parts throughout, and wherein
Methods and apparatuses for an orthogonal antenna array system are disclosed. The orthogonal antenna array system enables steering of beamforms on orthogonal axes, wherein the intersection of the beamform patterns has a directivity referred to herein as an artificial directivity or an effective directivity. In such systems, where a transmission pattern is on a first axis, such as a horizontal or azimuth axis, and a receive pattern is on a second axis orthogonal to the first axis, such as a vertical or elevation axis, the intersection of the patterns provides artificially enhanced directivity where a horizontal beam intersects with a vertical beam. Where the transmit and/or receive antenna represents an array of meta-structure or metamaterial cells that may be arranged into functional subarrays, there are a number of potential intersecting beams as the various beamforms cross. The various examples described herein enable a system to transmit signals along one axis and receive signals along another axis. In the disclosed examples, the geometries of the transmit and receive antennas are orthogonal.
It is appreciated that, in the following description, numerous specific details are set forth to provide a thorough understanding of the examples. However, it is appreciated that the examples may be practiced without limitation to these specific details. In other instances, well-known methods and structures may not be described in detail to avoid unnecessarily obscuring the description of the examples. Also, the examples may be used in combination with each other.
Referring now to
The received information is stored in a memory storage unit 114, wherein the information structure may be determined by the type of transmission and modulation pattern. The transmission signal controller 108 may generate a cellular modulated signal, such as an Orthogonal Frequency Division Multiplexing (“OFDM”) signal. In some systems, the signal is provided to the system 100 and the transmission signal controller 108 may act as an interface, translator or modulation controller, or otherwise as required for the signal to propagate through a transmission line system.
In operation, the antenna controller 112 receives information from other modules in system 100 indicating a next radiation beam, wherein a radiation beam may be specified by parameters such as beam width, transmit angle, transmit direction and so forth. The antenna controller 112 determines a voltage matrix to apply to reactance control mechanisms coupled to the radiating structure 150 to achieve a given phase shift or other parameters. In these examples, the radiating array structure 150 is adapted to transmit a directional beam without using digital beam forming methods, but rather through active control of the reactance parameters of the individual elements that make up the arrays.
Transceiver 110 prepares a signal for transmission, such as a signal for a radar device, wherein the signal is defined by modulation and frequency. The signal is received by each element of the radiating structure 150 (e.g., arrays 122-124) and the phase of the radiating arrays 122-124 is adjusted by the antenna controller 112. In some examples, transmission signals are received by a portion, or subarray, of the radiating arrays 122-124. These radiating arrays 122-124 are applicable to many applications, including radar and cellular antennas. The present examples consider application in autonomous vehicles as a sensor to detect objects in the environment of the car. Alternate examples may be applicable in wireless communications, medical equipment, sensing, monitoring, and so forth. Each application type incorporates designs and configurations of the elements, structures and modules described herein to accommodate their needs and goals.
In system 100, a signal is specified by antenna controller 112, which may be in response to Artificial Intelligence (“AI”) module 106 from previous signals, or may be from the interface to sensor fusion 104, or may be based on program information from memory storage 114. There are a variety of considerations to determine the beam formation, wherein this information is provided to antenna controller 112 to configure the various elements of arrays 122-124, which are described herein. The transmission signal controller 108 generates the transmission signal and provides same to feed distribution module 116, which provides the signal to feed networks 126-128 and transmission arrays 122-124. Note that the transmission arrays 122-124 are shown with separate feed networks 126-128, but could in some examples, share the same feed network.
As illustrated, radiating structure 150 includes the arrays 122-124, composed of individual radiating elements discussed herein. The arrays 122-124 may take a variety of forms and are designed to operate in coordination with the feed distribution module 116, wherein individual radiating elements 130-132 correspond to elements within the arrays 122-124. As illustrated, each of the arrays 122-124 is an 8×16 array of unit cell elements 130-132, wherein each of the unit cell elements has a uniform size and shape; however, some examples incorporate different sizes, shapes, configurations and array sizes. When a transmission signal is provided to the radiating structure 150, such as through a coaxial cable or other connector, the signal propagates through the feed distribution module 116 to the feed networks 126-128 and then arrays 122-124 for transmission through the air.
The impedance matching element 118 and the reactance control module 120 may be positioned within the architecture of feed distribution module 116; one or both may be external to the feed distribution module 116 for manufacture or composition as an antenna or radar module. The impedance matching element 118 works in coordination with the reactance control module 120 to provide phase shifting of the radiating signal(s) from arrays 122-124. The present examples are a dramatic contrast to the traditional complex systems incorporating multiple antennas controlled by digital beam forming. Antenna system 100 increases the speed and flexibility of conventional systems, while reducing the footprint and expanding performance.
As illustrated, there are multiple arrays for transmission, where at least one of the arrays is for transmission in the azimuth, or horizontal, direction, transmission array structure for azimuth 124, and the other is for receiving signal over the elevation of the array, receive array 122. The two antennas have orthogonal radiation beams. Note that as illustrated, there are two arrays 122-124. However, radiating structure 150 may incorporate multiple other antenna arrays. In various examples, each antenna array may be for transmission and/or receiving of radiation patterns.
As illustrated in
For structures incorporating a dielectric substrate to form a transmission path, such as a substrate integrate waveguide (“SIW”), the reactance control structure may be integrated into the transmission line by inserting a microstrip or strip line portion that will support the reactance control modules. Where there is such an interruption in the transmission line, a transition is made to maintain signal flow in the same direction. Similarly, the reactance control structure may require a control signal, such as a DC bias line or other control means, to enable the system to control and adjust the reactance of the transmission line. To isolate the control signal from the transmission signal, examples include a resonant controller that acts to isolate the control signal from the transmission signal. In the case of an antenna transmission structure, the resonant controller isolates the DC control signal from the AC transmission signal.
The present examples are applicable in wireless communication and radar applications, and in particular in meta-structures (“MTS”) capable of manipulating electromagnetic waves using engineered radiating structures. A meta-structure, as generally defined herein, is an engineered, non- or semi-periodic structure that is spatially distributed to meet a specific phase and frequency distribution. In some examples, MTS cells may be metamaterial (“MTM”) cells. Each MTM cell has some unique properties. These properties may include a negative permittivity and permeability resulting in a negative refractive index; these structures are commonly referred to as left-handed materials (“LHM”). The use of LHM enables behavior not achieved in classical structures and materials, including interesting effects that may be observed in the propagation of electromagnetic waves, or transmission signals. Metamaterials can be used for several interesting devices in microwave and terahertz engineering such as antennas, sensors, matching networks, and reflectors, such as in telecommunications, automotive and vehicular, robotic, biomedical, satellite and other applications. For antennas, metamaterials may be built at scales much smaller than the wavelengths of transmission signals radiated by the metamaterial. Metamaterial properties come from the engineered and designed structures rather than from the base material forming the structures. Precise shape, dimensions, geometry, size, orientation, arrangement and so forth result in the smart properties capable of manipulating EM waves by blocking, absorbing, enhancing, or bending waves.
Additionally, the present examples provide methods and apparatuses for generating wireless signals, such as radar signals, having improved directivity and reduced undesired radiation patterns' aspects, such as side lobes. The present examples provide antennas with unprecedented capability of generating Radio Frequency (“RF”) waves for radar systems. These examples provide improved sensor capability and support autonomous driving by providing one of the sensors used for object detection.
The present examples provide smart active antennas with unprecedented capability of manipulating RF waves to scan an entire environment in a fraction of the time of current systems. The present invention provides smart beam steering and beam forming using MTS or MTM radiating structures in a variety of configurations, wherein electrical changes to the antenna are used to achieve phase shifting and adjustment reducing the complexity and processing time and enabling fast scans of up to approximately 360° field of view for long range object detection.
As shown in
The reactance control module 120 enables control of the reactance of a fixed geometric transmission line. One or more reactance control mechanisms may be placed within a transmission line. Similarly, reactance control mechanisms may be placed within multiple transmission lines to achieve a desired result. The reactance control mechanisms may have individual controls or may have a common control. In some examples, a modification to a first reactance control mechanism is a function of a modification to a second reactance control mechanism.
These examples support autonomous driving with improved sensor performance, all-weather/all-condition detection, advanced decision-making algorithms and interaction with other sensors through sensor fusion. These configurations optimize the use of radar sensors, as radar is not inhibited by weather conditions in many applications, such as for self-driving cars. The ability to capture environmental information early aids control of a vehicle, allowing anticipation of hazards and changing conditions. The sensor performance is also enhanced with these structures, enabling long-range and short-range visibility to the controller. In an automotive application, short-range is considered within 30 meters of a vehicle, such as to detect a person in a cross walk directly in front of the vehicle; and long-range is considered to be 250 meters or more, such as to detect approaching cars on a highway. These examples provide automotive radars capable of reconstructing the world around them and are effectively a radar “digital eye,” having true 3D vision and capable of human-like interpretation of the world.
In some examples, a radar system steers a highly-directive RF beam that can accurately determine the location and speed of road objects. The present examples use radar to provide information for 2D image capability as they measure range and azimuth angle, providing distance to an object and azimuth angle identifying a projected location on a horizontal plane, respectively, without the use of traditional large antenna elements.
The present examples provide methods and apparatuses for radiating structures, such as for radar and cellular antennas, and provide enhanced phase shifting of the transmitted signal to achieve transmission in the autonomous vehicle range, which in the US is approximately 77 GHz and has a 5 GHz range, specifically, 76 GHz to 81 GHz, reduce the computational complexity of the system, and increase the transmission speed. The present examples accomplish these goals by taking advantage of the properties of MTS and MTM structures coupled with novel feed structures. In some examples, these goals are accomplished by taking advantage of the properties of hexagonal structures coupled with novel feed structures. The MTS and MTM antennas may take any of a variety of forms, some of which are described herein for comprehension; however, this is not an exhaustive compilation of the possible embodiments of the present invention.
The transmission lines are formed in the substrate of the radiating structure 150 of
The present examples provide methods and apparatuses for radiating a signal, such as for radar or wireless communications, using a lattice array of radiating elements and a transmission array and a feed structure. The feed structure distributes the transmission signal throughout the transmission array, wherein the transmission signal propagates along the rows of the transmission array and discontinuities are positioned along each row. The discontinuities are positioned to correspond to radiating elements of the lattice array. The radiating elements are coupled to an antenna controller that applies voltages to the radiating elements to change their electromagnetic characteristics. This change may be an effective change in capacitance that acts to shift the phase of the transmission signal. By phase shifting the signal from individual radiating elements, the system forms a specific beam in a specific direction. A resonant coupler may be used to keep the transmission signal isolated and avoid any performance degradation from any of the processing. In some examples, the radiating elements are MTS or MTM elements. These systems are applicable to radars for autonomous vehicles, drones and communication systems. The radiating elements have a shape that is conducive to dense configurations optimizing the use of space and reducing the size of a conventional antenna.
As illustrated in
Note that both the arrays 400, 500 are directed into the z-direction, so they have an overlap region as they scan. The cross-over areas are illustrated in
The SWGA includes the following structures and components: a full ground plane, a dielectric substrate, a feed network, such as direct feeds to the multi-ports transceiver chipset, an array of antenna or complementary antenna apertures, such as a slot antenna, to couple the electromagnetic field propagating in the Substrate Integrated Waveguide (“SIW”) with MTS or MTM structures located on top of the top of the antenna aperture. The feed network may include passive or active components for matching phase control, amplitude tampering, and other RF enhancement functionalities. The distances between the MTM structures can be much lower than half wavelength of the radiating frequency of the antenna. Active and passive components can be placed on the MTM structures with control signals either routed internally through the SWGA or externally through upper portions of the substrate. MTM structures act as an effective medium presenting their own effective permittivity, which implies a dispersive media that adjusts the phase with radiating frequencies. The difference between the effective permittivity of separate sections of the metamaterial superstrate, realizes a different phase shift for each of the metamaterial cells, resulting in a tilted beam. Alternate examples may reconfigure and/or modify the SWGA structure to improve radiation patterns, bandwidth, side lobe levels, and so forth. The SWGA loads the MTM structures to achieve the desired results.
The composition of an array is illustrated in
The apparatus and structures disclosed herein may be formed as conductive traces on a substrate having a dielectric layer. The feed structure provides the transmission signal energy to each of the array elements by way of multiple parallel transmission paths. While the same signal is provided to each MTM element, the antenna controller controls the phase of each transmission line and/or each MTM element by a variable reactance element. For example, a varactor control may be a capacitance control array, wherein each of a set of varactor diodes is controlled by an individual reverse bias voltage resulting in an effective capacitance change to at least one individual MTM element. The varactor then controls the phase of the transmission of each MTM element, and together the entire MTM antenna array transmits an electromagnetic radiation beam. Control of reverse bias voltages or other controls of the capacitance control element may incorporate a Digital-to-Analog Converter (“DAC”) device. The incorporation of a resonant coupler allows separation of the control or other signals that are used in operation of the apparatus.
Note that in
The system may adjust the active aperture toward a specific field of view or portion of a field of view. The control of the antenna systems may make multiple transmit and/or multiple receive antennas active to achieve a variety of active apertures. As the antenna is made of metamaterial unit cells, the antenna controller is able to quickly and dynamically change its active apertures, such as to follow a user, or respond to a detected object.
Returning to
The various examples provided herein are not meant to be limiting. A system may have any number of transmit antennas and/or any number of receive antennas, wherein the number of transmit antennas may be different than the number of receive antennas. The MTM elements may be any of a variety of configurations depending on application, design, cost and other criteria.
The subarray 1504 has directivity at boresight and therefore forms a 0° angle with boresight. The radiation pattern is illustrated and directed in the z-direction. The subarray 1502 generates a radiation pattern directed in the z-direction and forming an angle −θ1 from the boresight direction. In this way, a large array of MTM elements may be divided into subarrays, each having associated radiation patterns that are directed and shaped differently. Note, also the subarrays may be a configuration of transmit and receive subarrays and need not all be similarly used.
In these various illustrations, the transmit and receive antenna arrays may be spatially positioned to achieve desired radiation patterns. In some examples, the transmit antennas and receive antennas are portions, or subarrays, of a metamaterial array. The present examples provide antennas and antenna systems using orthogonal antenna arrays to generate artificial directivity that reduces the number and size of antenna elements, reduces the phase shifting mechanisms, reduces or eliminates digital circuitry, and so forth.
It is appreciated that the previous description of the disclosed examples is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these examples will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the examples shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application claims priority to U.S. Provisional Application No. 62/673,814, filed on May 18, 2018, and incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62673814 | May 2018 | US |