Method and apparatus for applying a material to a web

Information

  • Patent Grant
  • 6596125
  • Patent Number
    6,596,125
  • Date Filed
    Friday, September 21, 2001
    22 years ago
  • Date Issued
    Tuesday, July 22, 2003
    20 years ago
Abstract
A method and apparatus of manufacturing a web which is striped with add-on material, comprising: a first slurry supply which forms a sheet of base web and moves the sheet along a first path; a second slurry supply; and a moving orifice applicator operative so as to repetitively discharge the second slurry upon the moving sheet of base web. The moving orifice applicator includes a chamber box arranged to establish a reservoir of the second slurry across the first path, an endless belt having slotted orifices, the endless belt received through the chamber box, and a drive arrangement operative upon the endless belt to continuously move the orifices along an endless-path and repetitively through the chamber box. The orifices communicate with the reservoir to discharge the second slurry as bands of add-on material to the base web. The slotted orifices can be spaced apart along the belt and oriented so as to be angled with respect to the travel direction of the belt and parallel to each other.
Description




FIELD OF INVENTION




The present invention relates to method and apparatus for applying a predetermined pattern of add-on material to a base web, preferably in the form of stripes, and more particularly, to a method and apparatus for producing cigarettes papers having banded regions of additional material.




BACKGROUND AND CIRCUMSTANCES OF INVENTION




Techniques have been developed for printing or coating paper webs with patterns of additional material. These prior techniques have included printing with gravure presses, blade coating, roller coating, silkscreening and stenciling.




U.S. Pat. No. 4,968,534 to Bogardy describes a stenciling apparatus wherein a continuous stencil comes into intimate contact with a paper web during application of an ink or the like. The apparatus includes an arrangement which draws air through the stencil prior to the application of the ink. The mechanical arrangement is such that to change the pattern, the stencil must be changed. Additionally, such apparatus are unworkable at the wet-end of paper-making machines.




In the related, commonly assigned U.S. Pat. No. 5,534,114, an embodiment of a moving orifice applicator is disclosed which includes an elongate “cavity block” or chamber and a perforated endless belt whose lower traverse passes along the bottom portion of the chamber. The chamber is positioned obliquely across a web-forming device (such as a Fourdrinier wire). In operation, a slurry of additional material is continuously supplied to the chamber as the endless belt is looped through the bottom portion of the chamber such that plural streams of material are generated from beneath the chamber to impinge the web passing beneath the chamber. As a result, bands of additional material are applied repetitively to the web. The orientation, width, thickness and spacing of the bands are all determinable by the relative speed and orientation of the endless belt to the moving web.




Preferably, the pattern of additional material is applied as uniformly as possible so as to render consistent product across the entire span of the web. Commonly assigned U.S. Pat. No. 5,997,691 discloses a slurry applicator which can be used with Fourdrinier machines having a width of 10 to 20 feet or more.




In the cigarette papermaking art, it is conventional to convey the sheet of paper on a Fourdrinier papermaking machine at speeds of 1200 to 1400 feet/minute. In contrast, in making sheet paper such as wrapping paper, writing paper and the like, the machine is run at speeds of about 2500 feet/minute. Specialty paper is run at slower speeds. Banded paper such as that described in commonly owned U.S. Pat. Nos. 5,417,228; 5,474,095; and 5,534,114 (see also commonly owned European Pat. Publication Nos. 486213 A1, 532193 A1 and 559453 A1), the disclosures of which including characteristics of the banded paper and papermaking techniques are hereby incorporated by reference, has been produced at speeds of 400 to 600 feet/minute. In practice, banded cigarette paper having 5 to 6 mm wide bands of add-on slurry material has been produced on a Fourdrinier machine at speeds of about 500 feet/minute using a moving orifice device wherein the belt has {fraction (3/32)} inch diameter round holes. It has been discovered that when the speed of the paper sheet is increased, the band widths increase due to the high speed and higher stock flow of the material used to create the bands. It has also been discovered that reduction in stock flow for purposes of reducing band width results in lowered add-on weight of the banded regions. In order to increase production output, it would be desirable to provide a moving orifice applicator which achieves a desired band width and add-on weight at high production speeds.




OBJECTS OF THE INVENTION




Accordingly, it is an object of the present invention to provide uniformity in the application of a slurry from a moving orifice applicator onto a sheet traveling at high speed.




It is another object of the present invention to apply bands of slurry material to the sheet with band width and add-on weight within predetermined tolerance levels.




SUMMARY OF INVENTION




These and other objects are achieved with the present invention whose aspects include a method and apparatus for the production of a web having banded regions of add-on material, more particularly a cigarette paper having stripes of additional cellulosic material added thereto. A preferred method includes the steps of establishing a first slurry, and preparing a base web by laying the first slurry into a sheet form while moving the base web sheet along a first path. The method further comprises the steps of preparing a second slurry and repetitively discharging the second slurry so as to establish stripes upon the base web. The last step itself includes the steps of establishing a reservoir of the second slurry across the first path, moving a belt having slotted orifices along an endless path, which path includes an endless path portion along the reservoir where the orifices are communicated with the reservoir, and discharging the second slurry from the reservoir through the orifices onto the laid first slurry.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects and advantages of this invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawing, in which like reference characters refer to like parts throughout, and in which:





FIG. 1A

is a perspective of a paper making machine constructed in accordance with a preferred embodiment of the present invention;





FIG. 1B

is a perspective view of a paper constructed in accordance with the methodologies and apparatus of the present invention;





FIG. 1C

is a perspective view of a cigarette constructed with the paper of

FIG. 1B

;





FIG. 2

is a side view of the moving orifice applicator constructed in accordance with a preferred embodiment of the present invention;





FIG. 3A

is a breakaway perspective view of the applicator of

FIG. 2

;





FIG. 3B

is a top planar view of tracking control system of the applicator as viewed in the direction of the double pointed arrow B—B in

FIG. 3A

;





FIG. 4

is a cross-sectional view of the chamber box taken at line IV—IV in

FIG. 2

;





FIG. 5

is a detail perspective view of the endless belt of the applicator shown in

FIG. 2

;





FIG. 6

is a detail, partial sectional view of an alternate embodiment of a chamber box of the applicator of

FIG. 2

; and





FIGS. 7A

,


7


B and


7


C show details of an exemplary slotted belt arrangement wherein

FIG. 7A

shows a top view of a belt having a plurality of slotted holes,

FIG. 7B

shows a top view of an individual slotted hole and

FIG. 7C

shows a cross-sectional side view of the slotted hole shown in FIG.


7


C.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1A

, a preferred embodiment of the present invention comprises a cigarette paper making machine


2


, which preferably includes a head box


4


operatively located at one end of a Fourdrinier wire


6


, a source of feed stock slurry such as a run tank


8


in communication with the head box


4


, and a moving orifice applicator


10


in operative communication with another source of slurry such as a day tank


12


.




The head box


4


can be one typically utilized in the paper making industry for laying down cellulosic pulp upon the Fourdrinier wire


6


. In the usual context, the head box


4


is communicated to the run tank


8


through a plurality of conduits


14


. Preferably, the feed stock from the run tank


8


is a refined cellulosic pulp such as a refined flax or wood pulp as is the common practice in the cigarette paper making industry.




The Fourdrinier wire


6


carries the laid slurry pulp from the head box


4


along a path in the general direction of arrow


16


in

FIG. 1A

, whereupon water is allowed to drain from the pulp through the wire


6


by the influence of gravity and at some locations with the assistance of vacuum boxes


18


at various locations along the Fourdrinier wire


6


as is the established practice in the art of cigarette paper making. At some point along the Fourdrinier wire


6


, sufficient water is removed from the base web pulp to establish what is commonly referred to as a dry line


20


where the texture of the slurry transforms from one of a glossy, watery appearance to a surface appearance more approximating that of the finished base web (but in a wetted condition). At and about the dry line


20


, the moisture content of the pulp material is approximately 85 to 90%, which may vary depending upon operating conditions and the like.




Downstream of the dry line


20


, the base web


22


separates from the Fourdrinier wire


6


at a couch roll


24


. From there, the Fourdrinier wire


6


continues on the return loop of its endless path. Beyond the couch roll


24


, the base web


22


continues on through the remainder of the paper making system which further dries and presses the base web


22


and surface conditions it to a desired final moisture content and texture. Such drying apparatus are well known in the art of paper making and may include drying felts


26


and the like.




Referring now to both

FIGS. 1A and 2

, the moving orifice applicator


10


preferably comprises an elongate chamber box


30


for establishing a reservoir of add-on slurry in an oblique relation across the path of the Fourdrinier wire


6


. The moving orifice applicator also includes an endless perforated steel belt


32


, whose pathway is directed about a drive wheel


34


, a guide wheel


36


at the apex of the moving orifice applicator


10


and a follower wheel


38


at the opposite end of the chamber box


30


from the drive wheel


34


. The endless belt


32


is directed through a bottom portion of the chamber box


30


and subsequently through a cleaning box


42


as it exits the chamber box


30


, moves toward the drive wheel


34


and continues along the remainder of its circumlocution.




As each slotted orifice


44


(

FIG. 5

) of the belt


32


passes through the bottom portion of the chamber box


30


, the orifice


44


is communicated with the reservoir of slurry established in the chamber box


30


. At such time, a stream


40


of slurry discharges from the orifice


44


as the orifice


44


traverses the length of the chamber box


30


. The discharge stream


40


impinges upon the base web


22


passing beneath the moving orifice


44


so as to create a stripe of additional (add-on) material upon the base web


22


. The operational speed of the belt


32


may be varied from one layout to another, but in the preferred embodiment, the belt is driven at 1500 or more feet per minute when the Fourdrinier wire is moving at approximately 800 or more feet per minute (e.g., 1000 to 3000 feet/minute) and the chamber box


30


is oriented at an angle relative to the direction of movement of the base web


22


. The spacing of the orifices


44


along the belt


32


and the operational speed of the belt


32


is selected such that a plurality of streams


40


,


40


′ emanate from beneath the chamber box


30


during operation of the moving orifice application, simultaneously. Because of the oblique orientation of the moving orifice applicator relative to the path


16


of the base web


22


and the relative speeds of the Fourdrinier wire


6


and the endless belt


32


, each stream


40


of add-on material will create a stripe of add-on material upon the base web


22


. By adjusting the speed of the belt and angle of the applicator


10


, the moving orifice applicator


10


can repetitively generate stripes of add-on material that are oriented normal to a longitudinal edge of the base web


22


. If desired, the angle and/or relative speeds may be altered to produce stripes which are angled obliquely to the edge of the base web


22


.




For a particular orifice


44


, after it exits from the chamber box


30


, the adjacent portions of the belt


32


about the orifice


44


are cleansed of entrained add-on slurry at the cleaning station


42


and the orifice then proceeds along the circuit of the endless belt


32


to reenter the chamber box


30


to repeat an application of a stripe upon the base web


22


.




Referring particularly to

FIG. 1A

, the moving orifice applicator is preferably situated obliquely across the Fourdrinier wire


6


at a location downstream of the dry line


20


where the condition of the base web


22


is such that it can accept the add-on material without the add-on material dispersing itself too thinly throughout the local mass of the base web slurry. At that location, the base web


22


retains sufficient moisture content (approximately 85 to 90%) such that the add-on slurry is allowed to penetrate (or establish hydrogen bonding) to a degree sufficient to bond and integrate the add-material to the base web


22


.




Preferably, a vacuum box


19


is located coextensively beneath the chamber box


30


of the moving orifice applicator


10


so as to provide local support for the Fourdrinier wire


6


and facilitate the bonding/integration of the add-on slurry with the base web


20


. The vacuum box


19


is constructed in accordance with designs commonly utilized in the paper making industry (such as those of the vacuum boxes


18


) The vacuum box


19


is operated at a relatively modest vacuum level, preferably at approximately 60 inches of water or less. Optionally, additional vacuum boxes


18


′ may be located downstream of the moving orifice applicator


10


to remove the additional quantum of water that the add-on slurry may contribute. It has been found that much of the removal of water from the add-on material occurs at the couch roll


24


where a vacuum is applied of approximately 22-25 inches mercury.




The moving orifice applicator


10


is supported in its position over the Fourdrinier wire


6


preferably by a framework including vertical members


48


,


48


′ which include a stop so that the moving orifice applicator


10


may be lowered consistently to a desired location above the Fourdrinier wire


6


, preferably such that the bottom of the chamber box


30


clears the base web


22


on the Fourdrinier wire


6


by approximately one to two inches, preferably less than 1.5 inch.




Preferably, the chamber box


30


is of a length such that the opposite end portions


50


,


50


′ of the chamber box


30


extend beyond the edges of the base web


22


. The over-extension of the chamber box


30


assures that any fluid discontinuities existing arising at the end portions of the chamber box


30


do not affect the discharge streams


40


as the streams


40


deposit add-on material across the base web


22


. By such arrangement, any errant spray emanating from the ends of the chamber box


30


occurs over edge portions of the base web


22


that are trimmed away at or about the couch roll


24


.




Either or both of the vertical members


48


,


48


′ of the support framework for the moving orifice applicator


10


may be pivotal about the other so as to adjust angulation of the applicator


10


relative to the Fourdrinier wire


6


. However, the vertical members


48


,


48


′ of the support framework can be fixed in place and the speed of endless belt


32


can be adjusted in response to changes in operating conditions of the paper making machine


2


.




The chamber box


30


receives add-on slurry from the day tank


12


at spaced locations along the chamber box


30


. Uniform pressure can be maintained along the length of the chamber box


30


by the interaction of a flow distribution system


60


, a pressure monitoring system


62


and a programmable logic controller


64


such that the pumping action of the belt


22


and other flow disturbances along the length of the chamber box


30


are compensated locally and continuously to achieve the desired uniformity of pressure throughout the chamber box


30


. A main circulation pulp


15


delivers slurry from the day tank


12


to the flow distribution system


60


. Details regarding how the controller initiates and maintains uniform pressure along the chamber box


30


can be found in commonly assigned U.S. Pat. No. 5,997,691, the disclosure of which is hereby incorporated by reference.




Referring now to

FIGS. 2 and 3A

, the drive wheel


34


is driven by a selectable speed motor


52


which is operatively connected to the drive wheel


34


by a drive belt. Preferably, the motor


52


is supported by the framework of the moving orifice applicator, and both the motor


52


and the drive belt are encased within a housing


53


so as to capture any extraneous material (such as bits of slurry) that may find its way to and be otherwise flung from the drive system of the drive wheel


34


. Preferably, the motor is an Allen-Bradley Model 1329C-B007NV1850-B3-C2-E2, 7.5 hp., with a Dynapa Tach


91


Modular Encoder. Of course, other types and models of motors that are known to those of ordinary skill in the pertinent art would be suitable for this application.




The drive wheel


34


is advantageously positioned upstream of the chamber box


30


along the pathway of the belt


32


so that the belt


32


is pulled through the chamber box


30


. A significant degree of the directional stability is achieved by the close fit of the belt


32


throughout the length of the elongate chamber box


30


. However, precise control of the tracking of the belt


32


about its pathway circuit can be effected by placement of an infrared proximity sensor


54


at a location adjacent the guide wheel


36


. The infrared proximity sensor


54


can comprise an emitter


56


and a sensor


58


which are mutually aligned relative to one of the edges of the belt


32


such that if the belt strays laterally from its intended course, a signal from the sensor is affected by a relative increase or decrease in the interference of the edge with the emitter beam. A controller


59


in communication with the sensor


58


can be used to interpret the changes in the signal from the sensor


58


to adjust the yaw of the guide wheel


36


about a vertical axis so as to return the edge of the belt


32


to its proper, predetermined position relative to the beam of the emitter


56


.




Suitable devices for the proximity sensor


54


include a Model SE-11 Sensor which is obtainable from the Fife Corporation of Oklahoma City, Okla.




Referring now also to

FIG. 3B

, the guide wheel


36


rotates about a horizontally disposed axle


36




a


, which itself is pivotal about a vertical axis at a pivotal connection


57


by the controlled actuation of a pneumatic actuator


61


The actuator


61


is operatively connected to a free end portion


36




b


of the axle


36




a


and is responsive to signals received from the controller


59


. Preferably, both the pivotal connection


57


and the actuator


61


are fixed relative to the general framework of the applicator


10


during operation of the applicator


10


; and a connection


54




a


is provided between the sensor


54


and the free end


36




b


of the axle


36




a


so that the sensor


54


rotates as the yaw of the guide wheel


36


is adjusted. The connection


54




a


assures that the sensor


54


remains proximate to the edge of the belt


32


as the guide wheel


36


undergoes adjustments.




Preferably, the actuator


61


and the pivotal connection


57


are affixed upon a plate


39




a


which is vertically displaceable along fixed vertical guides


39




b


and


39




c


. Preferably, releaseable, vertical bias is applied to the plate


39




a


so as to urge the guide wheel


36


into its operative position and to impart tension in the endless belt


32


.




Along the return path of the endless belt


32


, from the drive wheel


34


over the guide wheel


36


and back to the follower wheel


38


, the belt


32


is enclosed by a plurality of housings, including outer housings


68


,


68


′ and a central housing


70


which also encloses the infrared proximity sensor


54


and the controller


59


of the tracking system


55


. The housing


68


,


68


′ and the housing


70


prevent the flash of errant slurry upon the base web


22


as the belt


32


traverses the return portion of its circuit.




Referring particularly to

FIG. 2

, the housings


68


,


68


′,


70


and various other components of the applicator


10


(such as the wheels


34


,


36


and


38


; the chamber box


30


; the cleaning box


42


; and the motor


52


) are supported by and/or from a planar frame member


72


. The planar frame member


72


itself is attached at hold-points


73


,


73


′ to a cross-member (an I-beam, box beam or the like), which cross-member is supported upon the vertical members


48


,


48


′. In the alternative, an I-beam member or a box beam member may be used as a substitute for the frame member


72


, with the chamber box


30


and other devices being supported from the beam member.




Referring again to

FIG. 3A

, in either support arrangement, the chamber box is preferably hung from the support member with two or more, spaced apart adjustable mounts


77




a


,


77




b


that permit vertical and lateral adjustment (along arrows y and x in

FIG. 3A

, respectively) of each end of the chamber box


30


so that the chamber box


30


may be accurately leveled and accurately angled relative to the Fourdrinier wire, and so that the chamber box


30


may be accurately aligned with the belt


32


to minimize rubbing.




Referring now to

FIG. 4

, the chamber box


30


includes at its bottom portion


76


a slotted base plate


78


and first and second wear strips


79


and


80


, which in cooperation with the base plate


78


define a pair of opposing, elongate slots


81


and


82


which slidingly receive edge portions of the endless belt


32


. Preferably, the elongate slots


81


and


82


are formed along a central bottom portion of the base plate


78


, but alternatively, could be formed at least partially or wholly in the wear strips


79


and


80


.




The central slot


84


in the base plate


78


terminates within the confines of the chamber box


30


adjacent to the end portions


50


,


50


′ of the chamber box


30


. Preferably, each terminus of the central slot


84


is scalloped so as to avoid the accumulation of slurry solids at those locations. The width of the central slot


84


is minimized so as to minimize exposure of the fluid within the chamber box


30


to the pumping action of the belt


32


. In the preferred embodiment, the slot


84


is approximately ⅜ inch wide, whereas the width of each of the orifices


44


in the endless belt


32


is preferably approximately {fraction (2/32)} inch.




Each of the wear strips


79


,


80


extends along opposite sides of the bottom portion


76


of the slurry box


30


, co-extensively with the base plate


78


. An elongate shim


86


and a plurality of spaced apart fasteners


88


(preferably bolts) affix the wear strips


79


,


80


to the adjacent, superposing portion of the base plate


78


.




The tolerances between the respective edge portions of the belt


32


and the slots


81


,


82


are to be minimized so as to promote sealing of the bottom portion


76


of the chamber box


30


. However, the fit between the belt


32


and the slots


81


,


82


should not be so tight as to foment binding of the endless belt


32


in the slots


81


,


82


. In the preferred embodiment, these countervailing considerations are met when the slots


81


,


82


are configured to present a {fraction (1/16)} inch total clearance tolerance in a width-wise direction across the endless belt


32


. In the direction normal to the plane of the belt, the belt has preferably a thickness 0.020 inch, whereas the slots


81


,


82


are 0.023 inch deep. These relationships achieve the desired balance of proper sealing and the need for facile passage of the belt


32


through the bottom portion


76


of the chamber box


30


.




Preferably, the wear strips


79


,


80


are constructed from ultra high molecular weight polyethylene or Dalron.




Included within the confines of the chamber box


30


are beveled inserts


89


,


90


which extend along and fill the corners defined between the base plate


78


and each of the vertical walls


91


,


92


of the chamber box


30


. The inserts preferably present a 45 degree incline from the vertical walls


91


,


92


toward the central slot


84


of the base plate


78


. This arrangement avoids stagnation of fluid in the confines of the chamber box


30


, which would otherwise tend to accumulate the solid content of the slurry and possibly clog the chamber box


30


and the orifices


44


of the endless belt


32


.




Near the bottom portion


76


of the chamber box


30


, a plurality of spaced-apart pressure ports


94


communicate the pressure monitoring system


62


with the interior of the slurry box


30


. A detailed discussion of the pressure monitoring system


62


can be found in commonly assigned U.S. Pat. No. 5,997,691, the disclosure of which is hereby incorporated by reference.




Along the upper portion of the chamber box


30


, a plurality of spaced-apart feed ports


96


are located along the vertical wall


91


. The feed ports


96


communicate the flow distribution system


60


with the interior of the slurry box


30


. Preferably, the feed ports


96


are located close to the lid plate


31


of the chamber box


30


. A detailed discussion of the flow distribution system


60


can be found in commonly assigned U.S. Pat. No. 5,997,691, the disclosure of which is hereby incorporated by reference.




The feed ports


96


are spaced vertically by a distance (h) above where the endless belt


32


traverses through the bottom portion


76


of the chamber box


30


. The feed ports


96


introduce slurry into the chamber box


30


in a substantially horizontal direction. The vertical placement and the horizontal orientation of the ports


96


dampens vertical velocities in the fluid at or about the region of endless belt


32


at the bottom portion


76


of the chamber box


30


. The arrangement also decouples the discharge flows


40


through the orifices


44


from the inlet flows at the feed ports


96


.




The height (h) in the preferred embodiment is approximately 8 inches or more; however, the vertical distance (h) between the feed ports


96


and the endless belt


32


may be as little as 6 inches. With greater distances (h), there is lesser disturbance and interaction between the fluid adjacent the endless belt


32


and the fluid conditions at the feed ports


96


.




In order to obtain uniform pressure on the slurry across the slurry box


30


, the number of feed ports


96


can be adjusted accordingly. In the embodiment described above, the number of feed ports


96


amounted to twelve (12), but the invention is workable with as fewer or more inlet feed ports


96


. The number of feed ports


96


depends upon the width of the paper making machine in any particular application. While a preferred spacing between the feed ports


96


is approximately 12 inches, larger or smaller spacings can be used, e.g., 8 to 24 inches.




Referring now to

FIG. 5

, each of the orifices


44


along the endless belt


32


includes a beveled portion


45


adjacent the side of the endless belt


44


facing into the chamber box


30


. By such arrangement, the solids content of the slurry is not allowed to collect at or about the orifices


44


during operation of the applicator


10


. More particularly, slurry fiber is not allowed to collect about the orifice and deflect the jets of slurry being discharged. Accordingly, the beveled portions


45


of the orifices


44


promote consistent delivery of slurry from the applicator


10


and reduce malfunctions and maintenance.




Referring now to

FIG. 6

, in an alternate embodiment of the chamber box


30


′, the vertical walls


91


′,


92


′, together with the base plate


78


′ and inclined beveled elements


89


′,


90


′ cooperate with retractable armatures


100


,


101


which at their operative end portions support an elongate wear strip


79


′,


80


′. The elongate wear strips extend the length of the chamber box


30


′ and are supported at spaced locations along each side of the chamber


30


′ by the retractable armatures


100


and


101


. In this embodiment, the wear strips


70


′ and


80


′ are mounted upon and are retractable with the armatures


100


and


101


, respectively. In

FIG. 6

, a plurality of armatures


100


along one side of the chamber box


30


are shown in a retracted position, while the opposed armatures


101


along the opposite side of the chamber box


30


′ are shown in an engaged position, where the respective wear strip


80


′ is biased against the base plate


78


′. In actual operation, the armatures


100


and


101


are pivoted between the retracted and engaged positions simultaneously.




Each retractable armature


100


,


101


is pivotally mounted upon one or a pair of vertical flanges


106


, which preferably provides support for an actuator mechanism


107


for moving the retractable armature


100


,


101


from an operative, engaging position where the wear strips


79


′,


80


′ are urged against base plate


78


′ to a retracted position where the wear strips


79


′,


80


′ are spaced away from the base plate


78


′ and the endless belt


32


′. The actuator mechanism


107


is preferably an air cylinder


108


which is operatively connected to the pivot arms


109


,


110


of the armatures


100


and


101


, respectively. Other mechanical expediencies could be selected for pivoting the retractable armatures


100


and


101


, as would be readily apparent to one of ordinary skill in the art upon reading this disclosure.




An elastomeric seal


104


is provided between the lower portions of the chamber box walls


91


′,


92


′ and the base plate


78


′ so as to create a fluid-proof seal about the entire periphery of the base plate


78


′.




In operation, all of the armatures


100


,


101


along both sides of the chamber box


30


′ are pivoted simultaneously so that the wear strips


79


′,


80


′ are moved as units to and from their operative and engaged positions. The retractable armatures


100


,


101


facilitate quick and speedy maintenance, repair and/or replacement of the endless belt


32


′, the wear strips


79


′,


80


′ and the base plate


78


′.




Referring now to

FIG. 2

, after progressing through the chamber box


30


, the endless belt


32


enters the cleaning box


42


which is arranged to sweep away any entrained slurry that may have been carried from the box


30


by the belt


32


. Preferably, the cleaning box


42


is supported from the planar frame member


72


by a bracket


110


and includes an upper and lower plate which are connected to one another so as to be biased toward each other by a spring so as to create a moderate positive clamping action toward the belt


32


. Further details of the cleaning box can be found in commonly assigned U.S. Pat. No. 5,997,691, the disclosure of which is hereby incorporated by reference.




The preparation of the slurry for the production of the cigarette paper using the moving orifice applicator


10


can include cooking of flax straw feed stock, preferably using the standard Kraft process that prevails in the paper making industry. The cooking step is followed by a bleaching step and a primary refining step. The preferred process includes a secondary refining step before the majority of the refined slurry is directed to the run tank


8


of the headbox


4


. Preferably, both refining steps are configured to achieve a weighted average fiber length in the flax slurry of approximately 0.8 to 1.2 mm, preferably approximately 1 mm. Preferably, a chalk tank can be communicated with the run tank


8


so as to establish a desired chalk level in the slurry supplied to the headbox .




Preferably, a portion of the slurry from the second refining step is routed to a separate operation for the preparation of an add-on slurry for application by the moving orifice applicator


10


. This operation begins with the collection of refined slurry in a recirculation chest wherefrom it is recirculated about a pathway including a multi-disc refining step and a heat exchanging step before returning to the circulation chest. Preferably, in the course repeating the refining step and the heat exchanging step, heat is removed from the slurry at a rate sufficient to prevent a runaway escalation of temperature in the slurry, and more preferably, to maintain the slurry at a temperature that is optimal for the refining step, in the range of approximately 135 to 1450° F., most preferably approximately 1400° F. for a flax slurry. The add-on slurry is recirculated along this pathway of steps until such time that the add-on slurry achieves a Freeness value of a predetermined value in the range of approximately −300 to −900 milliliter °Schoppler-Riegler (ml °SR). The upper end of the range is preferable (near-750 ml °SR).




An explanation of negative freeness values can be found in “Pulp Technology and Treatment for Paper”, Second Edition, James d' A. Clark, Miller Freeman Publications, San Francisco, Calif. (1985), at page 595.




Upon completion of the recirculation operation, the extremely refined add-on slurry is ready for delivery to the day tank


12


associated with the moving orifice applicator


10


, wherefrom it is distributed along the length of the chamber box


30


of the moving orifice applicator as previously described. However, it is usually preferred to undertake a further recirculation step wherein the add-on slurry is recirculated from the second chest again through the heat exchanger with little or no further refining so as to achieve a desired final operational temperature in the add-on slurry (preferably, approximately 95° F.) prior to delivery to the day tank


12


and the applicator


10


. Accordingly, the heat exchanger is preferably configured to serve at least dual purposes, to maintain an optimal temperatures in the add-on slurry as it is recirculated through the refiners and to remove excess heat in the add-on slurry at the conclusion of refining steps in anticipation of delivery to the applicator


10


.




The second slurry chest also accommodates a semi-continuous production of slurry.




Preferably, the multi-disc refining of the recirculation pathway is performed using refiners such as Beloit double multi-disc types or Beloit double D refiners. The heat exchangers used in the recirculation pathway avoid the build-up of heat in the slurry which might otherwise result from the extreme refining executed by the multi-disc refiners. Preferably, the heat exchanger is a counter-flow arrangement such as a Model 24B6-156 (Type AEL) from Diversified Heat Transfer Inc. For the preferred embodiment, the heat exchanger is configured to have a BTU rating of 1.494 MM BTU per hour.




Fines levels in the add-on slurry range from approximately 40-70% preferably about 60%. Percentiles of fines indicate the proportion of fibers of less than 0.1 mm length.




Preferably, the slurry that is supplied to the head box


4


(the “base sheet slurry”) is approximately 0.5% by weight solids (more preferably approximately 0.65%); whereas the slurry that is supplied to the moving orifice applicator


10


(the “add-on slurry”) is preferably at approximately a 2 to 3% by weight solids consistency. For flax pulp, the Freeness value of fibers in the base sheet slurry at the head box


4


is preferably in the range of approximately 150 to 300 ml °SR, whereas the add-on slurry at the chamber box


30


is preferably at a Freeness value in the range of approximately −300 to −900 ml °SR, more preferably at approximately −750° SR. Preferably, the solids fraction of the base sheet slurry is approximately 50% chalk and 50% fiber, whereas in the add-on slurry, the relationship is 0 to 10% chalk and 90% or more fiber. Optionally, the add-on slurry may include a 5 to 20% chalk content, preferably a Multiflex that is obtainable from Speciality Minerals, Inc. or the add-on material can be chalk-free.




As previously described in reference to

FIG. 1A

, the add-on slurry is applied to the base web by the applicator


10


, whereupon water is further removed and the sheet is dried upon passage through the drying felts


26


. Referring now also to

FIG. 1B

, at the conclusion of the paper making process, a paper is constructed having a base sheet portion


3


and a plurality of uniformly applied, uniformly spaced, mutual parallel banded regions


5


of highly refined add-on cellulosic material of weighted average fiber length in the range of approximately 0.15 mm to 0.20 mm. In these banded regions


5


, the cigarette paper has a reduced air permeability in comparison to that of the regions of the base sheet


3


between the banded regions


5


. Referring now also to

FIG. 1C

, the paper is wrapped about a column of tobacco to form the tobacco rod of a cigarette


7


, which will at the banded regions exhibit a slower burn rate in comparison to those regions of the base sheet


3


between the banded regions


5


.




The operation of the cigarette paper making machine and method of the preferred embodiment has been described with respect to flax feedstock. The apparatus and associated methodologies are readily workable with other feedstocks such as hardwood and softwood pulps, eucalyptus pulps and other types of pulps used in the paper making industry. The alternate pulps may have different characteristics from flax, such as differences in average fiber length, which may necessitate adjustment of the degree of refining in the preparation of the base sheet slurry with some pulps. With an alternative pulp, it may be acceptable to skip one or both of the refining steps, particularly if the pulp exhibits a very short average fiber length in comparison to flax. However, in order for the preparation of the add-on slurry to progress satisfactorily, the slurry which is to be diverted to the recirculation chest should exhibit an initial weighted average fiber length approximating that previously described for the refined flax base sheet slurry, that is, having a weighted fiber length of approximately 0.7 mm to 1.5 mm and more preferably approximately 0.8 mm to 1.2 mm. With these alternative pulps, the add-on slurry is recirculated through the refining step and the heat exchanging step until a comparable desired Freeness value is obtained (in the range of −300 to −900 ml °SR, preferably approximately −750 ml °SR). As with flax, the extreme degree of refining of the add-on slurry avoids fiber build-up at or about the orifices


44


of the belt, which in turn avoids jet deflections at the orifices


44


.




Because the flow of the fluid stream


40


emanating from each orifice


44


as the orifice


44


passes along the bottom portion of the chamber box


30


is proportional to the pressure differential across the orifice


44


, it is desirable that fluid pressure be established and then held as uniformly as possible along the entire journey of each orifice


44


along the bottom portion


76


of the chamber box


30


. Details of suitable flow controls of the slurry add-on material can be found in commonly assigned U.S. Pat. No. 5,997,691, the disclosure of which is hereby incorporated by reference.




It will be apparent from the foregoing that the invention provides a slotted orifice device for use in applying banded regions to a sheet of material such as a sheet of cigarette paper during high speed production of the sheet. The slotted orifice device can be used with large-capacity (e.g., widths of 8 feet and greater) papermaking machines which tend to operate at high machine speeds (e.g., over 800 feet/minute).




In a preferred embodiment, the slotted orifice device includes a hopper supplying a slurry to a slotted belt. The slotted belt travels around the sheet and slurry from the hopper and is deposited as spaced apart bands across a sheet of cigarette paper with the bands extending perpendicularly to the travel direction of the paper. The slotted belt includes slots which are spaced apart and parallel to each other. For example, the slots can be inclined relative to a direction of travel of the belt, e.g., the slots can be elongated in directions forming an angle of 15 to 75°, preferably 25 to 65° with the travel direction of the belt. The slots preferably have the same size and are preferably at the same angle with respect to the direction of belt travel. The slot dimensions may be tailored to execute various applications by selecting total area of an orifice sufficient to achieve a desired flow rate at desired operational pressure and by selecting an orifice width that provides a desired band width at the same desired flow rate and desired operational pressure.




In general, the slots can be identical in size and parallel to each other. A preferred slot length is approximately {fraction (1/16)} to {fraction (3/16)} inch and a preferred slot width is approximately {fraction (1/16)} to {fraction (3/32)} inch. As an example, to make 3 to 10 mm wide bands such as 5 to 6 mm wide bands on a base web of a paper sheet traveling at speeds of 800 feet/minute and higher on a Fourdrinier wire, the slots can have dimensions of {fraction (2/32)} inch by {fraction (4/32)} inch. Further, in order to provide bands perpendicular to the travel direction of the base web, the slotted orifice device is preferably oriented at an angle to the travel direction of the base web such that the slotted belt travels in a direction which deposits the bands perpendicular to the travel direction of the base web.





FIGS. 7A

,


7


B and


7


C show details of an exemplary slotted belt arrangement wherein

FIG. 7A

shows a top view of a belt having a plurality of slotted holes,

FIG. 7B

shows a top view of an individual slotted hole and

FIG. 7C

shows a cross-sectional side view of the slotted hole shown in FIG.


7


C. In an exemplary embodiment, the slotted holes


200


in

FIG. 7A

are spaced apart by about 1 inch (e.g., 27 mm), the long axis of the holes are angled at about 25 to 30° (e.g., 27°) with respect to the centerline “CL” of the belt, and located along the center line of a 2 inch wide stainless steel belt


202


. As shown in

FIG. 7B

, each hole


200


can include parallel side walls


204


,


206


and semi-circular end walls


208


,


210


. In the exemplary embodiment, the holes are tapered by wall


212


which extends 0.01 inch to one-half the thickness of the 0.02 inch thick belt, as shown in FIG.


7


C and the holes have a length of 0.125 inch and a width of 0.063 inch.




The slotted belt can provide advantages over a belt having round holes in that bands of desired width and add-on weight can be applied to a sheet traveling at high speed. If higher add-on weight is desired while maintaining a desired band width, the slots can be made wider. If wider bands are desired, the slots can be made longer. Conversely, if thinner bands are desired, the slots can be made shorter. The slots are preferably tapered so as to become more narrow in a direction facing away from the hopper (e.g., 40 to 80° taper, preferably 60° taper) and the ends of the slots are preferably rounded to minimize clogging of the slurry passing through the slots.




EXAMPLE I




Three runs were carried out using slurry flow rates of 4.7, 3.7 and 5.7 gallons/minute with a round holed belt and a slotted hole belt, each belt having the same open area of the holes. The perforated belt was a steel belt having {fraction (3/32)} inch diameter holes tapered 60° and extending therethrough. The slotted belt included 60° tapered {fraction (2/32)} by {fraction (4/32)} inch slots located at an angle of 27° to the direction of travel of the belt. The slurry passing through the circular holes and slotted holes formed bands on grade


603


cigarette paper having a basis weight of 25 grams/m


2


, 33 corresta unit, and 28% filler. The slurry add-on material had a solids content of 2.59%, a freeness value of −740 ml °SR, 61.73% fines, 21 “FLI” and 0% Albacar chalk. Both belts were located 0.75 inch above the Fourdrinier wire. As a result of these tests, it was surprisingly discovered that the slotted belt provided a reduction in band width of about 8 to 10% compared to the round holed belt.















TABLE 1













Belt with Holes




Belt with Slots






Belt Design





({fraction (3/32)}″) dia)




({fraction (2/32)} × {fraction (4/32)}″)


















Variant #





328




328A




328B




328C




328D




328E





















Target Stock




gpm




4.7




3.7




5.7




4.7




3.7




5.7






Flow






Actual Stock




gpm




4.65




3.70




5.74




4.63




3.68




5.62






Flow






Pressure




Inch (Water)




9.5




6.7




13.1




8.5




6.0




11.3






Band Width




mm






Average





5.72




4.74




6.70




5.28




4.44




6.03






Standard





0.37




0.38




0.38




0.44




0.44




0.46






Deviation






Band




CU






Permeability






Average





8.03




10.2




9.4




8.4




9.1




9.0






Standard





2.32




2.11




2.28




1.40




2.10




1.35






Deviation














EXAMPLE II




A high speed trial was conducted using the following three slotted belt designs wherein the slots were oriented at 45° to the travel direction of the belt:





















A. {fraction (2/32)} × ⅛ inch




area = 1 × {fraction (3/32)} inch diameter hole







B. {fraction (1/32)} × {fraction (2/8)} inch




area = 1 × {fraction (3/32)} inch diameter hole







C. {fraction (1/32)} × ⅜ inch




area = 1.5 × {fraction (3/32)} inch diameter hole















As a result of the test, it was determined that as slot width decreases (e.g., from {fraction (2/32)} inch to {fraction (1/32)} inch), the width of the resulting bands also decreases.




While the invention has been described in detail with reference to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made, and equivalents employed, without departing from the scope of the appended claims.



Claims
  • 1. A method of manufacturing a web having an applied pattern of add-on material, the method comprising the steps of:moving a base web along a first path; preparing a slurry of add-on material; repetitively discharging the slurry of add-on material upon the moving base web by establishing a reservoir of the add-on material across the first path and moving a belt having at least one slotted orifice along an endless path, wherein the at least one slotted orifice includes parallel side edges joined by arcuate end edges, the slurry of add-on material being discharged from the at least one slotted orifice as a non-circular stream, and said belt moving step including the step of moving said belt along a first portion of said endless path where said at least one slotted orifice is communicated with said reservoir so as to discharge said slurry of add-on material from said reservoir through said at least one slotted orifice onto said base web as said at least one slotted orifice traverses said first path portion.
  • 2. A method of manufacturing a web having an applied pattern of add-on material, the method comprising the steps of:moving a base web along a first path; preparing a slurry of add-on material; repetitively discharging the slurry of add-on material upon the moving base web by establishing a reservoir of the add-on material across the first path and moving a belt having at least one slotted orifice along an endless path, said belt moving step including the step of moving said belt along a first portion of said endless path where said at least one slotted orifice is communicated with said reservoir so as to discharge said slurry of add-on material from said reservoir through said at least one slotted orifice onto said base web as said at least one slotted orifice traverses said first path portion, wherein the at least one slotted orifice is tapered, the slurry of add-on material entering the at least one slotted orifice at a wider portion thereof and exiting the at least one slotted orifice at a narrower portion thereof.
  • 3. A method of manufacturing a web having an applied pattern of add-on material, the method comprising the steps of:moving a base web along a first path; preparing a slurry of add-on material; repetitively discharging the slurry of add-on material upon the moving base web by establishing a reservoir of the add-on material across the first path and moving a belt having at least one slotted orifice along an endless path, said belt moving step including the step of moving said belt along a first portion of said endless path where said at least one slotted orifice is communicated with said reservoir so as to discharge said slurry of add-on material from said reservoir through said at least one slotted orifice onto said base web as said at least one slotted orifice traverses said first path portion, wherein the at least one slotted orifice comprises spaced apart slotted orifices, each of the slotted orifices having a length at least 1.5 times longer than its width and rounded end walls.
US Referenced Citations (5)
Number Name Date Kind
4968534 Bogardy Nov 1990 A
5417228 Baldwin et al. May 1995 A
5474095 Allen et al. Dec 1995 A
5534114 Cutright et al. Jul 1996 A
5997691 Gautam et al. Dec 1999 A
Foreign Referenced Citations (3)
Number Date Country
0486213 May 1992 EP
532193 Mar 1993 EP
559453 Sep 1993 EP
Non-Patent Literature Citations (1)
Entry
“Pulp Technology and Treatment for Paper”, Second Edition, James D' A. Clark, Miller Freeman Publications, Inc., San Francisco, CA (1985), p. 595.