This patent application relates generally to apparatuses and methods for manufacturing cylindrical products, such as tobacco products. More specifically, this patent application relates to methods and apparatuses for assembling the components of multi-segmented smoking articles, such as cigarettes.
Conventional smoking articles, such as cigarettes, typically include a tobacco rod, a filter, and a layer or layers of paper surrounding the tobacco rod and filter. However, the design of cigarettes has evolved to include other components or segments, such as solid heat sources, flavor pellets, flavor capsules, and/or other items. Some of these components may be small in size, difficult to manipulate, and/or difficult to combine. Accordingly, the demands on cigarette manufacturing techniques and related equipment have increased as a result of the evolution in cigarette design.
According to an embodiment, an apparatus for assembling a multi-segmented cylindrical product is described. The apparatus can comprise: a feeder adapted to supply segments of a pliable material; and a rotating drum having an outer periphery and a plurality of fixtures distributed around the outer periphery, each fixture adapted to support a substantially cylindrical object, and wrap a segment of the pliable material around the substantially cylindrical object and a portion of the fixture to form a fill tube defining a pocket in the pliable material.
According to another embodiment, a method for assembling a multi-segmented cylindrical product is described. The method comprises wrapping a segment of pliable material around a substantially cylindrical object to form a fill tube with a pocket extending from the substantially cylindrical object.
The foregoing aspects and other features and advantages of the invention will be apparent from the following drawings, wherein like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements.
Embodiments of the invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent parts can be employed and other methods developed without departing from the spirit and scope of the invention. All references cited herein are incorporated by reference as if each had been individually incorporated.
This application relates to methods and apparatuses for making multi-segmented cylindrical products. According to embodiments, this application relates to methods and apparatuses for making tobacco products, such as smoking articles (e.g., cigarettes, cigars, or the like), having multiple components or segments. For example, according to an embodiment to be described in more detail herein, a multi-segmented cigarette can include a solid heat source and a predetermined volume of flavor pellets in addition to loose tobacco and a filter. To facilitate insertion of the pellets (which can be difficult to handle), all or a portion of the cigarette can be oriented substantially vertically during one or more phases of the manufacturing process. For example, the cigarette can be held in the substantially vertical position during insertion of the pellets from above. The cigarette, or portion thereof, can be transferred from a non-vertical position (e.g., horizontal) prior to, and/or after, the substantially vertical processes to accommodate horizontal processing in upstream and/or downstream equipment. One of ordinary skill in the art will appreciate that the present invention is not limited to tobacco products, but can be implemented in other manufacturing processes involving hollow tubular objects, such as, for example, pill capsules.
When referring to a “vertical” or “substantially vertical” orientation herein, it is generally meant that components having a length that is longer than its width or diameter are oriented with the length in a vertical or substantially vertical orientation. For example, and without limitation, in the context of a cylinder, the cylinder is considered to be in a vertical orientation when its axis is oriented vertically. In certain embodiments, the term “substantially vertical” may encompass deviations from exactly vertical, for example, where the axis is closer to a vertical orientation than to a horizontal orientation, e.g., inclined by greater than 45 degrees.
For ease of discussion, and without limitation, the methods and apparatuses will be described herein with respect to making “cigarettes.” However, as mentioned above, the present application is not exclusive to cigarette manufacturing, but could be used with any type of tobacco product or smoking article, or moreover, to other non-tobacco related products such as pill capsules.
Referring to
The cylindrical object supply unit 102 can transport the heat sources from the hopper 104 to a transfer drum 106, such as a 45° transfer drum, which moves the heat sources from a substantially horizontal orientation to a substantially vertical orientation. The transfer drum 106 can then deposit the heat sources on a chain of primary transfer drums 108A, 108B, 108C and secondary transfer drums 110A, 110B, which transport the heat sources downstream in a substantially vertical orientation for later processing. According to an embodiment, the supply unit 102 can subdivide (e.g., cut) bulk heat sources contained in the hopper 104 into smaller heat sources to be used in downstream processing. For example, the unit 102 can subdivide a cylindrical rod of the heat source material into multiple, shorter cylindrical units, however, other embodiments are possible. According to an embodiment, the unit 102 can comprise a hopper and cutting head on the filter feed module of a MAX filter attachment apparatus, available from Hauni Maschinenbau AG of Hamburg, Germany.
Referring to
The pliable material inserter 114 can receive the pliable material from a bobbin and glue pot machine 116, which cuts the pliable material into segments B of the desired size, and applies adhesive to all or a portion of the pliable material B. The adhesive can be applied, for example, to portions of the pliable material that contact the heat sources A, and/or to portions of the pliable material that overlap with one another. According to an embodiment, the pliable material inserter 114 and the bobbin and glue pot machine 116 can comprise the plug wrap guide system from the MAX filter attachment apparatus, as well as a BOB MAX bobbin holder and bobbin changer, all available from Hauni Maschinenbau AG of Hamburg, Germany.
The pliable material inserter 114 can insert segments B of the pliable material to the fill tube maker 112, e.g., at an insertion point where the fill tube maker 112 receives the segments B. According to embodiments, the pliable material inserter 114 can feed the segments B to the fill tube maker 112 in a substantially vertical orientation, however, other embodiments are possible. Likewise, in embodiments, the fill tube maker 112 can make the fill tubes C in a substantially vertical orientation, however other variations are possible.
A transfer drum 118 can take the fill tubes C from the fill tube maker 112 and transfer them, e.g., while in a substantially vertical orientation, to a granular object filling drum 120. A volumetric metering device 300, shown schematically, can fill the hollow tubular portion D of the fill tubes C with a predetermined volume of a granular material E, such as, for example, tobacco pellets or flavor capsules. Any number of known metering devices can be used, as would be appreciated by one of ordinary skill in the art based on this description. For example, according to an embodiment, the metering device can utilize the principles and structures disclosed in European Patent EP 1 228 709 B1, owned by the assignee of this application, the entire content of which is incorporated herein by reference.
According to an embodiment, the metering device 300 can dispense the granular material E into the hollow tubular portion D of the fill tube C from above, e.g., while the fill tube C is in a substantially vertical orientation. This can occur while the fill tube C is located on the object filling drum 120.
While the term granular material is used in embodiments to describe tobacco pellets, flavor capsules, or flavor impregnated granulates, the term is not limited to the described embodiments. Rather, the term granular material refers generally to any material that is made up of small grains, particles, beads, or the like, such as pellets, powders, and capsules, whether regular or irregular in size and/or shape.
A tobacco rod supply unit 124 can provide a supply of tobacco rods F (e.g., loose tobacco wrapped in paper having a substantially cylindrical shape). The tobacco rod supply unit 124 can include a hopper 126 that holds a plurality of the tobacco rods F. The tobacco rods F can be supplied to the hopper 126 by manual or automatic operations, or by a combination of the two.
The tobacco rod supply unit 124 can transport the tobacco rods F from the hopper 126 to a transfer drum 128, such as a 45° transfer drum, which moves the tobacco rods F from a substantially horizontal orientation to a substantially vertical orientation. The transfer drum 128 can then deposit the tobacco rods F on a chain of primary transfer drums 130A, 130B, 130C and secondary transfer drums 132A, 132B, which can transport the tobacco rods F to a combiner drum 134, e.g., in a substantially vertical orientation. According to an embodiment, the supply unit 124 can subdivide bulk tobacco rods contained in the hopper 126 into smaller tobacco rods to be used in downstream processing. For example, the unit 124 can subdivide (e.g., cut) a long tobacco rod into multiple, shorter tobacco rods, however, other embodiments are possible. According to an embodiment, the tobacco rod supply unit 124 can comprise the hopper on the filter feed module of a MAX filter attachment apparatus, available from Hauni Maschinenbau AG of Hamburg, Germany.
As shown in
A wrapping drum 136 can receive the fill tube C and tobacco rods F combined in end-to-end fashion from the combiner drum 134, and wrap them in an outer wrap G, such as cigarette paper. This can form a filterless cigarette rod H. As shown in
According to an embodiment, the inserter 138 feeds the outer wraps G to the combined fill tubes C/tobacco rods F on the wrapping drum 136, where the wrapping drum 136 rolls the outer wraps H around all or a portion of each combined fill tube C/tobacco rod F. According to an embodiment, the outer wraps G are applied to the combined fill tubes C/tobacco rods F while they are in a substantially vertical orientation.
Referring to
Referring to
The first and second mandrels 206, 208 can translate with respect to one another along the axis A2. In the embodiment of
As shown in
The first and second mandrels 206, 208 can be supported by bearing blocks 214, 216, respectively, which are coupled to a fixture base 218. The bearing blocks 214, 216 can support the mandrels 206, 208 for rotation and/or translation. The fixture base 218 can, in turn, be mounted to the drum 202, e.g., using fasteners or other techniques known in the art.
Still referring to
According to an embodiment, the mandrels 206, 208 and support rollers 220, 222 can each be individually driven for rotation by their own power source, for example, by an electric motor (not shown) coupled thereto using conventional techniques. Alternatively, the mandrels 206, 208 and rollers 220, 222 can be driven for rotation by a transmission system (not shown) such as gears, belts, etc., that translates rotation of the drum into rotation of the mandrels 206, 208 and support rollers 220, 222. Alternatively, various combinations of the foregoing techniques can be used to rotate the mandrels 206, 208 and support rollers 220, 222.
According to an embodiment, translation of the first and/or second mandrels 206, 208, e.g., along axis A2, can be driven by a linear drive, hydraulic actuator, screw mechanism, or the like that is coupled to each pair of mandrels 206, 208, or to a group of mandrel pairs. Alternatively, a cam mechanism (not shown) can be associated with the drum 202, and can act on a portion of each first mandrel 206 and/or second mandrel 208, such as the proximal ends, to impart motion thereto along axis A2. Alternatively, a combination of the foregoing techniques can be used to translate the mandrels 206, 208. According to embodiments, a programmable logic controller (PLC) can be used to coordinate rotation of the drum 202, movement of the first and second mandrels 206, 208, rotation of the support rollers 220, 222, and application of vacuum or pressure at the vacuum holes. Moreover, according to embodiments, the PLC can be used to control and coordinate the operation of all or some of the components of system 100.
Referring to
At or slightly before the time the fixture 200 moves into registry with the insertion point of the pliable material inserter 114, the inserter 114 ejects a segment of the pliable material B, which can be attracted to the first mandrel 206 by the vacuum drawn through holes 210. The vertical alignment of the heat source A and the pliable material inserter 114 can cause the pliable material segment B to attach around all or a portion of the heat source A, as well as a portion of the first mandrel 206. Rotation of the mandrels 206, 208 can wrap the pliable material around the first mandrel 206 and heat source A, e.g., between the support rollers 220, 222 and the first mandrel 206/heat source A, until pliable material B is completely wrapped around the heat source A, as shown in
Still referring to
Referring to
As shown in
Referring to
The preform drum 400 can serve as the drum that transfers the segments B to the fill tube maker 112. In other words, after contouring the segments B, drum 400 can directly transfer the segments B to the fill tube maker 112. Alternatively, an intervening drum or other device can receive the contoured segments B from the preform drum 400 and in turn transfer them to the fill tube maker 112.
The embodiments illustrated and discussed in this specification are intended only to teach those skilled in the art the best way known to the inventors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be modified or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
This application claims priority to U.S. Provisional Application No. 61/962,287, filed on Mar. 15, 2013, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61962287 | Mar 2013 | US |