Method and apparatus for assessing blade life of a guillotine paper cutter

Abstract
A method and system for assessing when to change or sharpen a cutting blade of a paper cutter is presented. The cutting blade is operated using an electric motor that causes motion of the cutting blade, and the motion of the cutting blade causes the paper to be cut. Data is recorded about usage of the electric motor at least while cutting the paper. Based upon the data, a determination is made as to whether the cutting blade should be changed or sharpened.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate presently various embodiments of the invention, and assist in explaining the principles of the invention.



FIG. 1
a is a block diagram showing the input stages of a typical inserter system.



FIG. 1
b is a block diagram showing the input stages of a typical inserter system including a right-angle turn.



FIG. 3 is a side view of a blade slider-crank mechanism, with key crank displacements noted for a typical 360-degree crank blade cycle.



FIG. 4 shows the geometry of the upper blade when the blade is located at crank top dead center.



FIG. 5 shows a plot of torque as a function of crank displacement, both with and without paper.



FIG. 6 shows a plot of torque as a function of crank displacement, after subtracting the torque without paper from the torque with paper.



FIG. 7 is a flow chart showing a method according to an embodiment of the present invention.



FIG. 8 is a block diagram of an apparatus according to an embodiment of the present invention.





DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION

An embodiment of the present invention will now be described. It is to be understood that this description is for purposes of illustration only, and is not meant to limit the scope of the claimed invention. For the purposes of assessing blade life, the following sequence is executed when a cutter is new, or when a new blade set is installed in a cutter.


First, the blade is commanded to execute a very slow constant velocity profile without paper. Preferably, this commanded profile takes roughly 2 seconds to traverse 360 crank degrees. The output of the digital filter that commands the output current of the amplifier driving the servo motor (which is coupled to the crank) is captured and stored. The plot of the digital filter output is commonly referred to as a DAC plot (digital to analog conversion). Since the input signal to the amplifier is proportional to the output current and the input current into the motor is proportional to the generated motor torque, a DAC plot provides an accurate representation of the instantaneous torque applied at the crankshaft.


The second step in this sequence is to insert paper between the upper and lower blades, and the upper blade is commanded to execute the identical motion profile as before, but while cutting paper. Again the DAC plot is captured and stored. Typical exemplary DAC plots with and without paper are shown in FIG. 5 as a function of crank displacement. As the plot shows, additional torque is required once the blade contacts the paper at roughly 40 degrees, and once the cut is completed at roughly 165 degrees the signals are nearly identical. The relative peak torque value on the Y-axis is 5, which corresponds to 5% of the peak torque that the amplifier/servo motor combination can deliver.


Third in this sequence is to subtract the “No Paper” DAC signature from the “With Paper” DAC signature, resulting in a DAC signature of the instantaneous torque required of the crank motor to cut paper only, negating the effect of friction for the crank-rocker mechanism. A slow profile is preferably chosen for this procedure, at least in order to minimize the effects of overcoming inertia which could possibly add noise to these signals, particularly if the servo gains for the motor/amplifier system are set high. FIG. 6 shows a plot after the subtraction operation (also eliminating brief spikes in the data), and the resulting plot becomes the signature of a new blade.


As the blade set wears, this same procedure is executed to generate updated blade signatures. In order to compare signatures, a figure of merit must be determined based on the DAC signatures. As the blade set wears, it will take additional force to cut paper, much like it takes more effort to cut material with dull scissors. This figure of merit value will increase as the blade set wears, and end of blade life will be declared once it reaches a predetermined threshold value. Any number of methods can be used to determine a figure of merit. One such method is to sum the squares of each of the DAC values within the plot during the crank displacements where cutting is taking place (roughly 40 to 165 degrees).


For example, by using the sum of squares method, a particular blade set measured at 1 million blade cycles and 8 million blade cycles results in a figure of merit that increases from 6926 to 7793, respectively. At 8 million, the blades still cut reliably.


Once an end life figure of merit is determined empirically from field data, the cutter control system can, upon command or automatically as per an established schedule, execute this procedure and compute a new updated figure of merit. This figure of merit can be used to ultimately output a value that indicates what percentage of blade life is remaining, much like that of an ink jet cartridge.


More sophisticated methods may be utilized to determine a figure of merit with higher confidence levels. For example, statistical methods like Analysis Of Variances (ANOVA), may be used once sufficient data on blade signatures is captured across many cutters and blade usages. Regardless of the methods chosen, statistical methods will help reduce the effects of noise, in order to arrive at a more accurate assessment of blade life.


Turning now to FIG. 7, a method 700 according to an embodiment of the present invention is shown by a flow chart. First, a new blade is operated 705 using an electric motor at slow speed, and thereby paper is cut 710 while torque data from the motor is recorded. Then the blade is operated 715 with a substantially identical motion, except that no paper is in the path of the blade, and a torque is again recorded. The recorded torques are then used to calculate 730 a torque difference between the paper being cut, as compared to no paper being cut. The sequence just described is repeated 735 periodically, in order to find the most recent torque difference. All of these results can then be compared 740 with each other, in order to determine 745 whether the blade needs to be changed or sharpened, and if not then a remaining percentage of blade life can be estimated (as well as estimating when the next torque measurement should be made).



FIG. 8 is a block diagram illustrating a paper cutting apparatus 800 according to an embodiment of the present invention. The cutting blade 830 is operated by an electric motor 840 which exerts a torque causing the blade to move in a cyclical fashion. For purposes of testing the condition of the blade, that cyclical motion should be slower than the usual motion of the blade. A data collection device 820 collects data about the torques from the electric motor 840, and that data is stored in a memory 810. The memory also stores information about the cutting blade motion, so that the motion can be substantially duplicated. A processor 880 obtains the data from several separate operations of the electric motor 840 (e.g. operations with paper and without paper), and the processor then enables a display 895 to display the estimated remaining percentage of blade life before the blade must be changed or sharpened. The display can also show when a next test of blade sharpness is due. The timer 870 can trigger further display information when a test of blade sharpness is due, or when the blade should be removed.


Algorithms for implementing this system for testing blade sharpness can be realized using a general purpose or specific-use computer system, with standard operating system software conforming to the method described above. The software product is designed to drive the operation of the particular hardware of the system. A computer system for implementing this embodiment includes a CPU processor 880 or controller, comprising a single processing unit, multiple processing units capable of parallel operation, or the CPU can be distributed across one or more processing units in one or more locations, e.g., on a client and server. The CPU may interact with a memory unit 810 having any known type of data storage and/or transmission media, including magnetic media, optical media, random access memory (RAM), read-only memory (ROM), a data cache, a data object, etc. Moreover, similar to the CPU, the memory may reside at a single physical location, comprising one or more types of data storage, or be distributed across a plurality of physical systems in various forms.


It is to be understood that all of the present figures, and the accompanying narrative discussions of preferred embodiments, do not purport to be completely rigorous treatments of the methods and systems under consideration. A person skilled in the art will understand that the steps of the present application represent general cause-and-effect relationships that do not exclude intermediate interactions of various types, and will further understand that the various structures and mechanisms described in this application can be implemented by a variety of different combinations of hardware and software, and in various configurations which need not be further elaborated herein.

Claims
  • 1. A method for assessing when to change or sharpen a cutting blade of a paper cutter, comprising: operating the cutting blade using an electric motor that causes motion of the cutting blade;cutting paper due to the motion of the cutting blade;recording data about usage of the electric motor at least while cutting the paper; andmaking a determination from the data as to whether the cutting blade should be changed or sharpened.
  • 2. The method of claim 1, wherein the data is indicative of a physical parameter related to the usage of the electric motor for cutting the paper.
  • 3. The method of claim 2, wherein the cutting blade is determined to be ready for changing if the physical parameter is a torque, and the torque is greater than a threshold.
  • 4. The method of claim 1, wherein the cutting blade is operated by the electric motor, for assessing when to change the cutting blade, at speeds that are less than speeds normally used for cutting.
  • 5. The method of claim 1, also comprising: operating the cutting blade, without cutting any paper, but substantially performing the motion identical to that which is performed while cutting the paper;recording additional data about usage of the electric motor, while performing the substantially identical motion; andusing the additional data to help make said determination.
  • 6. The method of claim 5, wherein making the determination comprises subtracting at least part of the additional data from the data collected while cutting the paper, to yield a difference.
  • 7. The method of claim 6, wherein making the determination includes comparing the difference recently to the difference when the cutting blade was substantially less old.
  • 8. The method of claim 1, wherein the data comprises output from a digital filter that is operably connected to an amplifier which in turn is operatively connected to the motor.
  • 9. The method of claim 1, further comprising determining from the data a percentage of blade life remaining before the blade should be changed.
  • 10. The method of claim 7, wherein the determination comprises forming a first digital to analog conversion plot for recently operating the cutting blade to cut paper, and forming a second digital to analog conversion plot for recently operating the cutting blade without cutting paper, and forming a third digital to analog conversion plot for previously operating the cutting blade to cut paper, and forming a fourth digital to analog conversion plot for previously operating the cutting blade without cutting paper.
  • 11. A software product for assessing when to change or sharpen a cutting blade of a paper cutter, the software product comprising a computer readable medium having codes stored therein for execution by a processor, so that when executed the codes provide for: operating the cutting blade using an electric motor that causes motion of the cutting blade;cutting paper due to the motion of the cutting blade;recording data about usage of the electric motor at least while cutting the paper; andmaking a determination from the data as to whether the cutting blade should be changed or sharpened.
  • 12. The software product of claim 11, wherein the data is indicative of a physical parameter related to the usage of the electric motor for cutting the paper.
  • 13. The software product of claim 12, wherein the cutting blade is determined to be ready for changing if the physical parameter is a torque, and the torque is greater than a threshold.
  • 14. An apparatus for assessing when to change or sharpen a cutting blade of a paper cutter, comprising: an electric motor configured to operate the cutting blade by causing motion of the cutting blade;a memory configured to record data about usage of the electric motor at least while cutting paper; anda processor configured to make a determination from the data as to whether the cutting blade should be changed or sharpened.
  • 15. The apparatus of claim 14, wherein the data is indicative of a physical parameter related to the usage of the electric motor for cutting the paper.
  • 16. The apparatus of claim 15, wherein the processor is further configured to determine that the cutting blade is ready for changing, if the physical parameter is a torque and the torque is greater than a threshold.
  • 17. The apparatus of claim 14, wherein the electric motor is configured to operate the cutting blade, for assessing when to change the cutting blade, at speeds that are less than normal speeds used for cutting.
  • 18. The apparatus of claim 14, wherein the memory is further configured to record the data including additional information about usage of the electric motor to substantially perform the motion identical to that which is performed while cutting the paper, but without cutting any paper, andwherein the processor is further configured to use the additional data to help make said determination.
  • 19. The apparatus of claim 18, wherein the processor is further configured to make the determination by subtracting at least part of the additional information from the data collected while cutting the paper, in order to yield a difference.
  • 20. The apparatus of claim 19, wherein the processor is further configured to make the determination by comparing the difference from recent measurements to the difference from measurements taken when the blade was substantially less old.
  • 21. The apparatus of claim 14, wherein the data comprises output from a digital filter that is operably connected to an amplifier which in turn is operatively connected to the motor.
  • 22. The apparatus of claim 14, wherein the processor is further configured to determine a percentage of blade life remaining before the blade should be changed.
  • 23. The apparatus of claim 20, wherein the processor is further configured to make the determination by forming a first digital to analog conversion plot for recently operating the cutting blade to cut paper, and by forming a second digital to analog conversion plot for recently operating the cutting blade without cutting paper, and by forming a third digital to analog conversion plot for previously operating the cutting blade to cut paper, and by forming a fourth digital to analog conversion plot for previously operating the cutting blade without cutting paper.