The present invention relates to driver distraction monitoring in motor vehicles, and more particularly to a method and apparatus for assessing the head pose of a driver.
Each year numerous automobile accidents are caused by driver distractions, and many of the distractions are visual in nature. For this reason, there has been interest in developing a driver monitoring system for determining if the driver is paying attention to the forward field-of-view. This information can be used to issue an alert if the driver's attention is directed away from the road too long or too often, and possibly to belay other warnings (such as collision-avoidance warnings) if the driver is paying attention to the forward field-of-view. An example of such a monitoring system is Delphi Corporation's Driver State Monitor, which processes a video image of the driver's face to detect and track the driver's eyes for assessing eye gaze. However, detection of facial features such as eyes can be hampered by various kinds of obstructions (including sunglasses) disposed between the video imager and the driver's face. Moreover the distance between the video imager and the driver's face can vary considerably from driver to driver, and it can be difficult to provide adequate controlled illumination of the driver's face. While these drawbacks can be satisfactorily addressed to a large extent by sophisticated processing of the video data, the system cost is frequently too high for most production vehicles due to the combined cost of the imager, optics and signal processor. Accordingly, what is needed is a more cost-effective and yet reliable way of assessing driver head pose.
The present invention is directed to an improved method and apparatus for assessing the head pose of a vehicle driver with respect to a vehicle frame of reference based on a relative motion sensor positioned rearward of the driver's head, such as in or on the headrest of the driver's seat. The relative motion sensor detects changes in the position of the driver's head, and the detected changes are used to track the driver's head pose and to determine whether the head pose is forward-looking (i.e., with the driver paying attention to the forward field-of-view) or non-forward-looking. The determined head pose is assumed to be initially forward-looking, and is thereafter biased toward forward-looking whenever driver behaviors characteristic of a forward-looking head pose are recognized.
The present invention is disclosed herein in the context of a driver distraction system that determines if the driver's attention is forward or non-forward relative to the forward direction of vehicle motion. However, the invention can additionally or alternatively be used to assess whether the driver is looking at an outside or rear view mirror, or a display or control panel for an accessory device such as an audio system or a navigation system, as mentioned below.
Fundamentally, the invention is directed to a system and method for assessing driver head pose with an optical sensor positioned rearward of the driver's head, such as in or on the headrest of the driver's seat. This diagrammatically depicted in
Referring to
As explained below, the optical sensor of the apparatus 14 is a relative motion sensor similar to the sensor used in an optical mouse for a personal computer. Sensors of this type are produced and sold by Agilent Technologies, Inc., for example, and include an imager chip and a digital signal processor programmed to recognize movement of imaged patterns and output Cartesian position coordinates based on the detected movement. The required data acquisition rate of the sensor depends on the application, and we have found that a standard data acquisition rate such as 30 frames/second is sufficient to detect driver head movement. Moreover, the sensor does not require high resolution or complicated signal processing for detecting and tracking specific facial features such as the driver's eyes, and is therefore considerably less expensive than optical sensors and processors ordinarily used for eye gaze detection. However, the sensor only provides the relative position or pose of the driver's head, as opposed to the absolute position or pose. In other words, the initial position of the driver's head is unknown.
As applied to the apparatus 14, the relative motion optical sensor detects changes in the position of the driver's head with respect to the headrest 12, and outputs Cartesian coordinates corresponding to the current head pose, in relative terms.
The movements depicted in
The present invention recognizes that the head pose of a driver during vehicle operation can be inferred based on sensed head pose characteristics that are common to virtually all drivers during vehicle operation. For example, the head pose of a driver that is operating a vehicle is predominantly forward-looking, and it can be inferred that the head pose is substantially forward-looking when there is a prolonged absence of driver head movement. Furthermore, empirical data reveals that when a driver glances away from the forward direction, the duration of the glance is usually less than two seconds, and almost never more than four seconds.
The flow diagram of
Referring to
Following initialization, the block 52 reads the lateral head pose coordinate for sensor frame i (that is, Xi) and determines the change in value from the previous frame (that is, Xi−Xi−1, or ΔXi). The term ΔXi thus represents the lateral head movement between the current and previous frames of optical sensor 34. Block 54 sums the head movements over a series of (n+1) frames and compares the absolute value of the sum to a calibrated threshold K1 such as 10. If the absolute value of the sum is less than or equal to K1, the driver head pose is considered to be steady, and the timer variable STEADY_TIME is incremented by block 56. If the absolute value of the sum exceeds K1, there is significant driver head movement, and block 58 resets STEADY_TIME to zero.
Block 60 tests for a condition where there is little or no head movement and POSE_STATUS has been non-forward (NON-FWD) for a prolonged interval. Specifically, block 60 determines if: (1) STEADY_TIME exceeds a calibrated number K2 of sensor frames corresponding to two seconds, for example; and (2) NON-FWD_TIME exceeds a calibrated number K3 of frames corresponding to three seconds, for example. In other words, the condition is detected when the apparent head pose direction has been non-forward for an unreasonably long interval (based on the data discussed above in reference to
If the condition tested by block 60 is not present, the block 66 tests for a condition where there is little or no current head movement and the apparent head pose direction is generally forward-looking. Specifically, block 66 determines if: (1) STEADY_TIME exceeds a calibrated number K2 of frames corresponding to one-third second, for example; (2) ABS[HEAD_POSE] is less than or equal to a calibrated displacement K5 from forward (corresponding to a head pose angle of ±20°, for example); and (3) ABS[ΔXi] is less than a calibrated small head movement K6. When this condition is detected, the routine concludes that the driver's head pose is generally forward-looking, and blocks 68 and 64 are executed to decay the apparent head pose direction HEAD_POSE toward zero, to set POSE_STATUS to FWD, and to reset NON-FWD_TIME to zero. The term HEAD_POSE can be decayed, for example, by decrementing positive values of HEAD_POSE and incrementing negative values of HEAD_POSE.
If neither of the conditions tested by blocks 60 and 66 are present, the blocks 70 and 72 are executed to update the apparent head pose direction HEAD_POSE based on the value of ΔXi determined at block 52, and to compare the updated HEAD_POSE to the calibrated reference value K5. As mentioned above, the reference value K5 can represent a specified head angle rotation from forward (±20°, for example). If HEAD_POSE is less than or equal to K5, the apparent head pose direction is generally forward-looking, and block 64 is executed to set POSE_STATUS to FWD and to reset NON-FWD_TIME to zero. On the other hand, if HEAD_POSE is greater than K5, the apparent head pose direction is considered to be non-forward-looking, and block 74 is executed to set POSE_STATUS to NON-FWD and to increment the timer variable NON-FWD_TIME.
Each time blocks 64 or 74 are executed to update POSE_STATUS, the routine waits for the coordinate data corresponding to the next frame of optical sensor 34 as indicated at block 76, and then repeats the execution of blocks 52-74 as indicated by flow diagram line 78. Block 76 also updates the frame index variable i for the next frame.
In the manner described above, the routine of
In summary, the relative motion optical sensor 34 acquires sufficient information for reliable assessment of a driver's head pose during vehicle operation when mounted on the driver's seat rearward of the driver's head. The inability of sensor 34 to detect an initial or absolute pose of the driver's head is overcome by a signal processing method that determines the apparent head pose by integrating the sensed changes in head movement, and drives the apparent head pose toward the forward direction whenever driver behavior characteristic of a forward-looking head pose is recognized.
While the present invention has been described with respect to the illustrated embodiment, it is recognized that numerous modifications and variations in addition to those mentioned herein will occur to those skilled in the art. For example, the sensing apparatus 14 may be mounted in a location other than shown, a non-optical relative motion sensor may be used in place of the optical sensor 34, the processing routine of
Number | Name | Date | Kind |
---|---|---|---|
3903514 | Mazzola | Sep 1975 | A |
4625329 | Ishikawa et al. | Nov 1986 | A |
5322245 | Bassick | Jun 1994 | A |
6154559 | Beardsley | Nov 2000 | A |
6184791 | Baugh | Feb 2001 | B1 |
6575902 | Burton | Jun 2003 | B1 |
6942248 | Breed et al. | Sep 2005 | B2 |
7098812 | Hirota | Aug 2006 | B2 |
7596242 | Breed et al. | Sep 2009 | B2 |
20030228036 | Paviot et al. | Dec 2003 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20060042851 | Herrmann et al. | Mar 2006 | A1 |
Number | Date | Country |
---|---|---|
9711862 | Apr 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080266552 A1 | Oct 2008 | US |