The present invention relates to font subsetting and, in particular, a method and apparatus for font subsetting based on analysis of a document in which font subsets are based on the characters present in the document, their positional variants and contextual substitutions.
The appearance and layout of a typical text document, e.g. a word processing document, or a media presentation document, is determined by the selection of fonts used to display the characters which comprise the text document. Although a document can be rendered using native fonts, i.e. fonts stored on an end user's computer, in order to ensure faithful rendering on any computer system, such as a computer system where the fonts used in a document may not be available, the fonts have to be embedded in the document itself. For example, font sets can be stored either on a computer system as part of the computer's operating system, such as Microsoft Windows® or Macintosh®, and/or font sets can be embedded within a text document and/or transmitted with the multimedia content for playback on a remote computer or mobile device. Although embedding a text document with a font set used in the document would allow the document to be faithfully rendered on any computer system regardless of what fonts are stored on the computer system, the font embedding increases the size of the document which, consequently, leads to a document which requires more memory to store and more bandwidth to be transmitted electronically.
One previous method to reduce the size of an electronic document with embedded fonts is to subset a font in the document. Prior subsetting methods selectively store glyphs that represent the characters or character sets (e.g., all Latin characters) used in a document. Each character represents a unit of text content, while a glyph is a unit of text display that determines the appearance of a character—a specific symbol representing a semantic or phonic unit of definitive value in the writing system. In a font, a glyph refers to any symbol representing a character, whether it be a letter, number or punctuation mark. In digital fonts there may be multiple versions of different glyphs representing the same characters.
For many languages, there is a simple one-to-one character to glyph mapping and the process of font subsetting is straightforward and easy to implement. However, for many complex language scripts, such as Arabic and Indic where the appearance of a character depends on its position in a word and/or adjacent characters, font subsetting is complex. For example, fonts that support complex language scripts may contain multiple different glyphs mapped to the same character code, i.e. the Unicode or hexadecimal code which corresponds to the character in the font set. These glyphs usually represent different forms of a character, such as when the character is isolated or by itself, as the initial character of a word, in a medial position of the word, or in a final position of the word.
In addition, some language scripts have glyphs that represent different ligatures. For example, the combination of characters may create ligatures, which are defined as two or more letter forms written or printed as a unit, such as “fi” becomes “fi” and “fl” becomes “fl.” As a result, a single character or ligature may represent a combination of characters present in the document. In some scripts (such as Latin), the use of ligatures is optional, while in other language scripts, ligature support is mandatory.
The prior subsetting methods accommodate all possible glyph forms of a character by storing all of the glyph forms for a particular character, regardless of whether the glyph forms are actually used in the document. Consequently, the prior processes are inefficient and require storing a significant number of glyph variants that are never used in the document.
One disadvantage with prior font subsetting methods is that such methods are not well suited for font sets and/or complex language scripts which have multiple glyphs which represent a single character, or single glyphs which represent ligatures—the combinations of characters present in a document. In an effort to ensure that all combinations of glyphs corresponding to each character are available, the prior subsetting methods typically include glyphs which are not used in the document and, therefore, result in a document with embedded fonts that is unnecessarily larger in size. The larger document size requires more memory to store the document and precious bandwidth to transmit the document.
There is a need in the art for an improved font subsetting method which more effectively and efficiently embeds fonts used in a document.
The present invention concerns a method and an apparatus for font subsetting having a language script processor which preprocesses a document's text and analyzes all character combinations for generating a font subset which includes only glyph variants for font characters used in that document. As a result, the present method and apparatus allows for the reduction in size of font subsets and a reduction in storage size of electronic documents and data transmission bandwidth for media presentations of documents with the embedded font subset(s). For example, the present method and apparatus may be used with documents written in languages which have complex language scripts, such as Arabic and Indic, where the appearance of a character depends on its position in a word and/or adjacent characters.
The present invention, in one form thereof, relates to a method for font subsetting which comprises analyzing a document comprising characters and a font set which characters have different forms depending on the location of the character in a word or whether ligatures represent a combination of characters. A subset of the font set is created which corresponds to only the character forms present in the document, determined after analyzing the document. The subset of the font set is associated with the document. In one further form, associating the subset of font set comprises storing or embedding the subset within the document.
The present invention in another form thereof, concerns a method for font subsetting, comprising analyzing a document comprising characters which have glyph forms corresponding to: 1) the location in which a character is located within a word, and/or 2) a combination of characters. A font character subset is created in which the subset comprises only the glyph forms present in the document as determined from analyzing the document. The font character subset is then embedded in the document, or associated with the electronic document or multimedia presentation.
The present invention in another form thereof concerns a computer-readable medium containing program instruction for font subsetting. The instructions comprise analyzing a document containing characters set using a particular font set, including characters having different forms depending on the location of the character in a word or comprising one or more ligatures represent a combination of characters; creating a font subset corresponding to only character and glyph forms present in the document determined in the analyzing of the document; and associating the font subset with the document.
The present invention in another form thereof, concerns a computer system for font subsetting. The system comprises memory for storing a document containing characters having glyph forms corresponding to a) the location in which a character is located within a word and/or b) a combination of characters. The system further comprises a processor for analyzing the document to determine which glyphs are utilized therein; creating a subset of the font set corresponding to only the character and glyph forms present in the document determined in the analyzing of the document; and associating the subset of the font set with the document.
Referring now to the figures and, in particular,
Next, the characters in the documents are analyzed to determine which characters and character combinations are present and to determine which, if any, glyph variants of the font set are used within the document, and/or whether one or more combination of characters is represented by a single ligature in the font character set used to render the text in the document (step 30). For example, the document may use a font character set in which characters are represented by different glyphs, where a different glyph is used depending on whether the character is the initial, middle or final character in a word, as in Arabic and Indic character sets. Further, the font character set may include ligatures, which represent a combination of characters, such as “fi” which is represented by ligature “fi” and “fl” which is represented by ligature “fl.” Therefore, if the document includes one or more ligatures, it will be determined that such a ligature is to be included in a font subset to be associated with the document (step 30).
A font subset is created which contains all of the character forms present in the document based on the analysis of the document, which includes all glyphs and ligatures present in the document (step 40). The font subset does not contain extraneous or unused glyphs or ligatures which may be present in a complete font set but are not used within the document analyzed. For example, should the font set include a character having a glyph form corresponding to when the character is present at the initial position of a word, and the document does not contain a word in which the character is in the initial position of a word, then the font subset created will not include that glyph form.
At step 50, the font subset is associated with the document as an embedded font set.
Referring now to
It will now be apparent to one of ordinary skill in the art that the present method provides features and advantages not found in prior font embedding methods. For example, the embedded fonts associated with text documents only include those characters present in the text of the document and not all characters which are present in the font set used in the document text. As a result, the embedded font subset will have a reduced size as compared with prior embedded fonts created using the prior art method of font subsetting, as the prior embedded font subsets include all character forms or glyphs for all characters of a document, regardless of whether a particular glyph form is actually used in the text of the document. Consequently, a document with embedded fonts, in accordance with the present invention, will have a reduced size, requiring less storage space for the electronic document and requiring a reduced data transmission bandwidth when being sent as an electronic document.
Although the invention has been described above in relation to preferred embodiments thereof, it will be understood by those skilled in the art that variations and modifications can be effected in these preferred embodiments without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4244657 | Wasylyk | Jan 1981 | A |
5347266 | Bauman et al. | Sep 1994 | A |
5412771 | Fenwick | May 1995 | A |
5416898 | Opstad et al. | May 1995 | A |
5526477 | McConnell et al. | Jun 1996 | A |
5528742 | Moore et al. | Jun 1996 | A |
5586242 | McQueen et al. | Dec 1996 | A |
5737599 | Rowe et al. | Apr 1998 | A |
5781714 | Collins et al. | Jul 1998 | A |
5877776 | Beaman et al. | Mar 1999 | A |
5940581 | Lipton | Aug 1999 | A |
6031549 | Hayes-Roth | Feb 2000 | A |
6065008 | Simon et al. | May 2000 | A |
6141002 | Kanungo et al. | Oct 2000 | A |
6249908 | Stamm | Jun 2001 | B1 |
6252671 | Peng et al. | Jun 2001 | B1 |
6313920 | Dresevic et al. | Nov 2001 | B1 |
6490051 | Nguyen et al. | Dec 2002 | B1 |
6522330 | Kobayashi | Feb 2003 | B2 |
6583789 | Carlson et al. | Jun 2003 | B1 |
6675358 | Kido | Jan 2004 | B1 |
6678688 | Unruh | Jan 2004 | B1 |
6704116 | Abulhab | Mar 2004 | B1 |
6718519 | Taieb | Apr 2004 | B1 |
6754875 | Paradies | Jun 2004 | B1 |
6760029 | Phinney et al. | Jul 2004 | B1 |
6771267 | Muller | Aug 2004 | B1 |
6810504 | Cooper et al. | Oct 2004 | B2 |
6813747 | Taieb | Nov 2004 | B1 |
6856317 | Konsella et al. | Feb 2005 | B2 |
6901427 | Teshima | May 2005 | B2 |
6952210 | Renner et al. | Oct 2005 | B1 |
7064757 | Opstad et al. | Jun 2006 | B1 |
7155672 | Adler et al. | Dec 2006 | B1 |
7184046 | Hawkins | Feb 2007 | B1 |
7188313 | Hughes et al. | Mar 2007 | B2 |
7228501 | Brown et al. | Jun 2007 | B2 |
7492365 | Corbin et al. | Feb 2009 | B2 |
7505040 | Stamm et al. | Mar 2009 | B2 |
7636885 | Merz et al. | Dec 2009 | B2 |
7882432 | Nishikawa et al. | Feb 2011 | B2 |
20020087702 | Mori | Jul 2002 | A1 |
20020093506 | Hobson | Jul 2002 | A1 |
20040025118 | Renner | Feb 2004 | A1 |
20040088657 | Brown et al. | May 2004 | A1 |
20040119714 | Everett et al. | Jun 2004 | A1 |
20040207627 | Konsella et al. | Oct 2004 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060017731 | Matskewich et al. | Jan 2006 | A1 |
20060072137 | Nishikawa et al. | Apr 2006 | A1 |
20060285138 | Merz et al. | Dec 2006 | A1 |
20070139413 | Stamm et al. | Jun 2007 | A1 |
20070159646 | Adelberg et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 9423379 | Oct 1994 | WO |
WO 0191088 | Nov 2001 | WO |
WO 2004012099 | Feb 2004 | WO |
WO 2005001675 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080028304 A1 | Jan 2008 | US |