Method and apparatus for atm-based cross-selling of products and services

Abstract
A method of and apparatus for automatically displaying an advertisement or promotional material to a user of an automated teller machine or point of purchase terminal. The method includes accessing debit data and credit bureau data for the applicant, accessing account information for the applicant, generating a score for the applicant based on the data and the account information and determining what advertisements or promotional offers to display on the ATM or POP terminal. The apparatus is a system, including both hardware and software components for effecting the method.
Description


BACKGROUND OF THE INVENTION

[0002] The invention relates to a system for evaluating applicants for financial accounts and particularly, to a method and apparatus for automatically analyzing the applicants' credit bureau data, financial account information and demographic data to evaluate the financial account applicants.


[0003] Known methods of evaluating financial account applicants do not take advantage of technological tools. In particular, when a financial institution receives from a potential customer an application for opening a financial account, a financial institution employee must first verify the applicant's identity, then call or contact electronically a credit reporting bureau to get credit rating information for the applicant, and then call or contact electronically an account verification system to get information relating to present and past financial institution accounts held in the name of the applicant. Based on this information, the employee must then make an independent decision whether the financial institution will open the account for the applicant and what kind of products or services to offer the applicant.


[0004] The lack of a centralized method and apparatus for conducting credit bureau and account information investigations as well as determining whether to offer the applicant the product or service in question creates a great deal of inconsistency within the financial institution in this decision making process. For example, different employees of the financial institution may evaluate the credit bureau data and account information differently. This could result in the financial institution accepting more risk than it actually deems desirable, or alternatively, turning away customers needlessly. Moreover, even if the applicant is accepted, the financial institution employee may not be aware of other products or services that the financial institution would like to offer to the customer, or may simply neglect to offer such products or services.



SUMMARY OF THE INVENTION

[0005] Accordingly, the invention provides a method and apparatus for automatically evaluating a financial account applicant. The apparatus that implements the method is a network or system of computers and software programs resident on the computers. The method includes verifying the identity of the applicant, accessing credit bureau data for the applicant, accessing account information for the applicant, generating a score for the applicant based on the credit bureau data and the account information, and determining whether to open the financial account based on the score. The score can be either a single composite score, or can amount to a number of scores, for example, one for the credit bureau data and another for the account information. In one embodiment of the invention, the method includes using the score or scores to determine which products and services of the financial institution should be offered to the applicant. For example, some applicants may only qualify for a basic checking and savings account, while other applicants may qualify for debit or credit cards for other products or services of the financial institution. These products or services are offered automatically by the system embodying the invention based on the score for the applicant. In another embodiment, the method includes the automatic retrieval and evaluation of demographic data relevant to the applicant.


[0006] By providing an automated method and apparatus for evaluating financial account applications, a financial institution-can improve the consistency with which applications are evaluated, take advantage of cross-selling opportunities for different products and services of the financial institution on a more consistent basis, reduce the amount of employee time required to evaluate the applications, and be assured of having a consistent risk assessment for new account applications.


[0007] Other features and advantages of the invention are set forth in the following drawings, detailed description and claims.







BRIEF DESCRIPTION OF THE DRAWINGS

[0008]
FIG. 1 is a schematic block diagram of a network embodying the invention.


[0009]
FIG. 2 is a flow chart illustrating the decisioning process of the network shown in FIG. 1.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0010] Before one embodiment of the invention is explained in full detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


[0011] Shown in FIG. 1 of the drawings is a network 10 for automatically evaluating a financial account applicant embodying the invention. One commercially operational example of a network embodying the invention is the Qualifile™ brand network and service operated and offered by eFunds Corporation of Milwaukee, Wis. In general terms, the network includes a gateway server 14 through which the financial institutions using the network are connected to the network. All connections shown in the figure denote two-way communication between the connected entities. A preliminary financial account search database 18 (such as the ChexSystems™ brand database offered by eFunds Corporation) is also connected to the gateway server 14.


[0012] The network also includes an application server 22 connected to the gateway server 14 and a plurality of application modules 26, 30, 34, 38, 42 and 44, connected to the application server 22. While many different application modules can be useful in the context of a network for automatically evaluating financial account applicants, the application modules shown in the figure include a customer set up module 26, a consumer search module 30, a financial account information data store module 34, a demographics database module 38, a credit bureau access module 42, and a scoring model module 44.


[0013] All of the elements of the network 10 are computer systems, including both hardware and software components, that are networked to effect the end result of automatically analyzing financial account information, credit bureau information and demographic information for the applicant, provide a score or scores to the financial institution that are relevant to the applicant, evaluate whether to accept the application and determine whether there are cross-selling opportunities for the financial institution to offer additional products and services to the applicant. While the network 10 is shown as including the gateway server 14, application server 22, preliminary search database 18 and application modules 26, 30, 34, 38, 42 and 44 as separate linked platforms, the entire network could be integrated into a single hardware/software platform which theoretically would reduce processing time, simplify the network architecture, and reduce cost associated with operating the system.


[0014] As shown in FIG. 1, the gateway server 14 provides an avenue for the financial institution 48 to communicate with the network 10, and for the network 10 to communicate with the financial institution 48. While only the single financial institution 48 is shown in the drawing, the system is intended to be accessed by many client financial institutions. In the preferred embodiment, the gateway server 14 is the Online Network Exchange (“ONE”)™ brand networking system offered and operated by eFunds Corporation of Milwaukee, Wis. However, other computer hardware and software based networks can be substituted for the ONE brand computer network. Moreover, other portals can be created that allow direct connection of the financial institution 48 with the application server 22. For example, an Internet server (not shown) could be connected to the application server 22 so that any financial institution with access to the Internet could access the Internet server thereby opening a portal to the application server 22 over the Internet.


[0015] The preliminary financial account information database 18 is connected to the gateway server 14. The preliminary financial account database 18 allows a quick retrieval of financial account information based upon an applicant's last name, first name, social security number, and residence for the past five years. The database 18 is capable of retrieving information such as the frequency of new financial account applications made by the applicant within a given time period, and information relating to accounts that have been closed “for cause,” such as for checks returned for non-sufficient funds (“NSF”).


[0016] The customer setup data module 26 includes at least one workstation (not shown) for entering information that is specific to each participating financial institution 48. Specifically, each financial institution has a set of policy rules defined by the respective financial institution, that determine when the evaluation process would be terminated, e.g., if the results of the preliminary database search determine that the applicant had a previous financial account closed “for cause.” Additionally, the customer setup data module workstation is used to input and store the criteria that the financial institution 48 uses to evaluate whether to accept the applicant, and also to establish what cross-selling products and services the financial institution 48 has and would be willing to offer to each applicant. Of course, workstations can be added as necessary to accommodate increased activity from the financial institution. When the financial institution account is established, each financial institution is provided with a security code that will grant the financial institution access to the network. The customer setup data module 26 also includes tax rate and billing data for each financial institution 48.


[0017] The consumer search module 30 is a database of links that “tie” together a collection of data bearing some relevance to the applicant, e.g., social security numbers that were issued at a given time or in a given place, etc. The applicant information, i.e., last name, first name, social security number, and place of residence for the last five years is entered into the consumer search module to find the link for the applicant, if one exists. While various databases are available that perform this function, the database of the preferred embodiment is offered by Acxiom Corporation of Conway, Ark. under the name Abilitec (at least a portion of which is described in U.S. Pat. No. 6,073,140, which is incorporated herein by reference). In another preferred embodiment of the invention (not shown), the network includes consumer search software providing database links that are internal to the application server, as well as an external consumer search module such as is provided by Acxiom Corporation and other companies to provide redundant linking capabilities.


[0018] The operational data store module 34 is a database that includes financial account and retail purchase history information such as previous account application inquiries for the applicant, financial account closures, information regarding retail items purchased and paid for, and check printing order histories. In other embodiments, the operational data store module can be expanded to comprehensively include the financial account information, retail purchase history, demographic information and credit bureau information. This would reduce the number of modules that the application server 22 must access in effecting the evaluation.


[0019] The interactive demographics database module 38 is a database of demographic information such as household income, home ownership status, education level, shopping practices, such as whether the applicant shops over the Internet, commonly purchased reading material, place of residence, marital status, etc. While there are many different and suitable demographic databases that can be used with the network, an appropriate demographics database is offered by Acxiom Corporation of Conway, Ark.


[0020] The network credit bureau access module 42 is simply a software based communication pathway to any one of the three major credit bureaus: Experian, Trans Union or Equifax. These credit bureaus provide a credit report which is acquired by the credit bureau access module 42 from the credit bureaus. The module 42 “packages” the report for the application server 22 and returns the repackaged report to the application server 22.


[0021] The scoring model module 44 includes software that takes either some all of the data acquired by the application server 22 and the modules 26, 30, 34, 38 and 42 connected thereto and provides a score or scores for each applicant based on an algorithm that defines a risk model. Preferably, the algorithm is a logistic regression algorithm that generates a score for each applicant which score predicts the likelihood that the applicant will be an account abuser. While various risk models or algorithms might be appropriate for use with the network 10, the algorithm of the preferred embodiment generates a score ranging between 900 (indicating that there is little risk to the financial institution) and 100 (indicating that there is a high risk to the financial institution). The risk model focuses on past and present account abuse. Specifically, those applicants whose scores are in approximately the lowest twenty (20) percent of the score range (i.e., approximately between 100 and 260) tend to have more unpaid NSF items on file with major retailers, have multiple financial account applications requested, have had at least one account closed for cause, have a less established or non-existent credit history, have one or more repossessed or charged-off trade lines, have one or more open trade lines that are thirty (30) to eighty (80) days delinquent, and/or have had more derogatory items than average over the past three years. The score or scores are returned to the application server for processing and comparison with the financial institutions' policy rules and guidelines.


[0022] In operation, the financial institution 14 contacts the administrator (not shown) of the network 10. The administrator sets up a participation account for each separate financial institution 48 using the workstation of the customer set up module 26. Upon creating the participant account, the financial institution 48 is issued a security code and provides to the network administrator a list of policy rules and a list of financial account application evaluation guidelines. The rules and guidelines may be selected from the list below and may be chosen in any combination.


[0023] DRIVER LICENSE INVALID FORMAT FOR STATE


[0024] DRIVER LICENSE NOT ON STATE FILE


[0025] DRIVER LICENSE DOB DOESN'T MATCH INQUIRY DOB


[0026] WARM ADDRESS FOUND


[0027] PHONE VALIDATION: INVALID PHONE #


[0028] PHONE VALIDATION: MOBILE PHONE #


[0029] PHONE VALIDATION: PAGER PHONE #


[0030] PHONE VALIDATION: SPECIAL PHONE #


[0031] PHONE VALIDATION: CELLULAR PHONE #


[0032] PHONE VALIDATION: TEST PHONE#


[0033] PHONE VALIDATION: CELLULAR, PAGER OR MOBILE PH#


[0034] PHONE VALIDATION: PERSONAL COMMUNICATION SERVICE


[0035] SSN/DOB: SSN AVAILABLE AT AGE VS. CURRENT AGE


[0036] SSN/DOB: SSN AVAILABLE BEFORE DATE OF BIRTH


[0037] SSN/DOB: SSN ISSUED WITHIN LAST 5 YEARS


[0038] PHONE/ZIP: PHONE NUMBER NOT IN ZIP CODE


[0039] NUMBER OF INQUIRIES IN THE LAST 30 DAYS


[0040] NUMBER OF INQUIRIES IN THE LAST 60 DAYS


[0041] NUMBER OF INQUIRIES IN THE LAST 90 DAYS


[0042] NUMBER OF INQUIRIES IN THE LAST 180 DAYS


[0043] NUMBER OF INQUIRIES IN THE LAST 1 YEAR


[0044] NUMBER OF DAYS SINCE MOST RECENT INQUIRY


[0045] NUMBER OF DAYS SINCE FIRST INQUIRY


[0046] AVERAGE NUMBER OF DAYS BETWEEN INQUIRIES IN THE PAST 1 YEAR


[0047] NUMBER OF INQUIRIES IN THE LAST 90 DAYS


[0048] NUMBER OF DIFFERENT MASTER BANKS POSTING INQUIRIES IN THE PAST 180 DAYS


[0049] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 30 DAYS


[0050] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 60 DAYS


[0051] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 90 DAYS


[0052] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 180 DAYS


[0053] NUMBER OF CHECK PRINTING ORDERS IN THE LAST YEAR


[0054] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 2 YEARS


[0055] NUMBER OF CHECK PRINTING ORDERS IN THE LAST 3 YEARS


[0056] NUMBER OF DIFFERENT CHECK PRINTING ACCOUNTS


[0057] NUMBER OF DIFFERENT BANKS ORDERING CHECKS IN THE PAST 1 YEAR


[0058] NUMBER OF DAYS SINCE MOST RECENT CHECK PRINTING ORDER


[0059] NUMBER OF DAYS SINCE FIRST CHECK PRINTING ORDER


[0060] MINIMUM NUMBER OF DAYS BETWEEN ORDERING CHECKS IN THE PAST YEAR


[0061] NUMBER OF CHECKS ORDERED IN THE LAST 30 DAYS


[0062] NUMBER OF CHECKS ORDERED IN THE LAST 60 DAYS


[0063] NUMBER OF CHECKS ORDERED IN THE LAST 90 DAYS


[0064] NUMBER OF CHECKS ORDERED IN THE LAST 180 DAYS


[0065] NUMBER OF CHECKS ORDERED IN THE LAST 1 YEAR


[0066] NUMBER OF CHECKS ORDERED IN THE LAST 2 YEARS


[0067] NUMBER OF CHECKS ORDERED IN THE LAST 3 YEARS


[0068] MINIMUM NUMBER OF CHECKS ORDERED


[0069] MAXIMUM NUMBER OF CHECKS ORDERED


[0070] AVERAGE NUMBER OF CHECKS ORDERED


[0071] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 30 DAYS


[0072] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 60 DAYS


[0073] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 90 DAYS


[0074] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 180 DAYS


[0075] NUMBER OF OPEN RETAIL ITEMS IN THE LAST YEAR


[0076] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 2 YEARS


[0077] NUMBER OF OPEN RETAIL ITEMS IN THE LAST 3 YEARS


[0078] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS, IN THE LAST 30 DAYS


[0079] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS IN THE LAST 60 DAYS


[0080] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS IN THE LAST 90 DAYS


[0081] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS, IN THE LAST 180 DAYS


[0082] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS, IN THE LAST YEAR


[0083] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS, IN THE LAST 2 YEARS


[0084] TOTAL DOLLAR AMOUNT OF OPEN RETAIL ITEMS, IN THE LAST 3 YEARS


[0085] NUMBER OF PAID RETAIL ITEMS IN THE LAST 30 DAYS


[0086] NUMBER OF PAID RETAIL ITEMS IN THE LAST 60 DAYS


[0087] NUMBER OF PAID RETAIL ITEMS IN THE LAST 90 DAYS


[0088] NUMBER OF PAID RETAIL ITEMS IN THE LAST 180 DAYS


[0089] NUMBER OF PAID RETAIL ITEMS IN THE LAST YEAR


[0090] NUMBER OF PAID RETAIL ITEMS IN THE LAST 2 YEARS


[0091] NUMBER OF PAID RETAIL ITEMS IN THE LAST 3 YEARS


[0092] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 30 DAYS


[0093] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 60 DAYS


[0094] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 90 DAYS


[0095] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 180 DAYS


[0096] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST YEAR


[0097] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 2 YEARS


[0098] TOTAL DOLLAR AMOUNT OF PAID RETAIL ITEMS, IN THE LAST 3 YEARS


[0099] TOTAL (OPEN+PAID) NUMBER OF SCAN ITEMS IN THE PAST 1 YEAR


[0100] TOTAL (OPEN+PAID) NUMBER OF SCAN ITEMS IN THE PAST 3 YEARS


[0101] DAYS SINCE MOST RECENT OPEN RETAIL ITEM


[0102] DAYS SINCE MOST RECENT PAID RETAIL ITEM


[0103] MAXIMUM DOLLAR AMOUNT OF OPEN RTAIL ITEMS


[0104] MAXIMUM DOLLAR AMOUNT OF PAID RETAIL ITEMS


[0105] MINIMUM CHECK NUMBER ON OPEN RETAIL ITEMS


[0106] MINIMUM CHECK NUMBER ON PAID RETAIL ITEMS


[0107] MINIMUM DAYS TO PAY AN OPEN RETAIL ITEM


[0108] MAXIMUM DAYS TO PAY AN OPEN RETAIL ITEM


[0109] EPISODE SPAN OF ALL OPEN AND AID RETAIL ITEMS


[0110] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 30 DAYS


[0111] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 60 DAYS


[0112] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 180 DAYS


[0113] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST YEAR


[0114] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 2 YEARS


[0115] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 3 YEARS


[0116] CLOSURE FLAG: ZERO OR ONE CLOSURE IN THE LAST 5 YEARS


[0117] FRAUD CLOSURE FLAG


[0118] DAYS SINCE MOST RECENT CLOSURE


[0119] DAYS SINCE FIRST CLOSURE


[0120] AVERAGE NUMBER OF DAYS BETWEEN CLOSURES


[0121] PRESENCE OF ONE OR MORE OPEN RETAIL ITEMS OVER THE PAST 3 YEARS


[0122] TOTAL NUMBER OF INQUIRIES IN THE PAST 12 MONTHS


[0123] PRESENCE OF ONE OR TWO CHECK ORDERS FROM DIFFERENT FINANCIAL INSTITUTIONS IN THE LAST YEAR


[0124] PRESENCE OF ONE RETAIL ITEM IN THE PAST 3 YEARS


[0125] PRESENCE OF TWO OR THREE RETAIL ITEMS IN THE PAST 3 YEARS


[0126] PRESENCE OF FOUR OR MORE RETAIL ITEMS IN THE PAST 3 YEARS


[0127] PRESENCE OF ONE CLOSURE IN THE PAST 6 MONTHS


[0128] PRESENCE OF ONE CLOSURE, 6 MONTHS TO 5 YEARS AGO


[0129] TOTAL NUMBER OF INQUIRIES FROM DIFFERENT FINANCIAL INSTITUTIONS IN THE LAST 6 MONTHS


[0130] AVERAGE NUMBER OF DAYS BETWEEN INQUIRIES IS 0-90 DAYS


[0131] AVERAGE NUMBER OF DAYS BETWEEN INQUIRIES IS GREATER THAN 90 DAYS


[0132] TOTAL NUMBER OF CHECK ORDERS IN THE LAST 90 DAYS,


[0133] MINIMUM NUMBER OF DAYS BETWEEN CHECK ORDERS IS 180 DAYS OR MORE


[0134] PRESENCE OF A RETAIL ITEM WITHIN THE LAST YEAR


[0135] PRESENCE OF ONE CLOSURES IN THE PAST 5 YEARS


[0136] NO RETAIL ITEMS IN THE PAST 3 YEARS


[0137] The financial institution also provides a list of credit policy exclusions and credit review guidelines. The exclusions and guidelines may be chosen by the financial institution from the list below in any number and in any combination.


[0138] TOTAL NUMBER OF TRADES


[0139] TOTAL NUMBER OF TRADES PRESENTLY CURRENT REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0140] TOTAL NUMBER OF TRADES EVER 30 OR MORE DAYS DELINQUENT OR DEROGATORY


[0141] TOTAL NUMBER OF TRADES EVER 60 OR MORE DAYS DELINQUENT OR DEROGATORY


[0142] WORST STATUS EVER ON TRADES OPENED WITHIN 36 MONTHS OF PROFILE DATE


[0143] WORST PRESENT STATUS ON OPEN TRADES OPENED WITHIN 24 MONTHS OF PROFILE DATE


[0144] AVERAGE AGE, IN MONTHS, OF ALL TRADES


[0145] MONTHS SINCE MOST RECENT SATISFACTORY STATUS ON ANY TRADE OPENED MORE THAN 6 MONTHS


[0146] MONTHS SINCE MOST RECENT 90 OR MORE DAYS DELINQUENCY OR DEROGATORY ITEM ON ANY TRADE


[0147] TOTAL NUMBER OF INQUIRIES FOR CREDIT PURPOSES MADE WITHIN 12 MONTHS OF PROFILE DATE


[0148] PERCENT OF PROFILE CONSISTING OF TRADES 30 OR MORE DAYS DELINQUENT OR DEROGATORY


[0149] PERCENT OF PROFILE CONSISTING OF TRADES 60 OR MORE DAYS DELINQUENT OR DEROGATORY


[0150] TOTAL NUMBER OF OPEN, PAID, OR CLOSED BANKCARD TRADES


[0151] TOTAL NUMBER OF OPEN, PAID, CLOSED, OR INACTIVE BANKCARD TRADES


[0152] TOTAL NUMBER OF BANKCARD TRADES NEVER REPORTED DELINQUENT OR DEROGATORY


[0153] AVERAGE AGE, IN MONTHS, OF ALL BANKCARD TRADES


[0154] PERCENT OF PROFILE CONSISTING OF BANKCARD TRADES NEVER REPORTED DELINQUENT OR DEROGATORY


[0155] TOTAL NUMBER OF FINANCE INSTALLMENT TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0156] TOTAL NUMBER OF INSTALLMENT TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0157] TOTAL NUMBER OF INSTALLMENT TRADES PRESENTLY 30 OR MORE DAYS DELINQUENT OR DEROGATORY


[0158] TOTAL NUMBER OF OPEN, PAID, CLOSED, OR INACTIVE REVOLVING TRADES


[0159] TOTAL NUMBER OF OPEN REVOLVING TRADES


[0160] WORST STATUS EVER ON REVOLVING TRADES OPENED WITHIN 36 MONTHS OF PROFILE DATE


[0161] WORST PRESENT STATUS ON OPEN REVOLVING TRADE


[0162] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN RETAIL REVOLVING TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0163] APPLICANT AGE CALCULATED AT BUREAU


[0164] TOTAL NUMBER OF OPEN/CLOSED TRADES WITH DELINQUENT BALANCES OR AMOUNTS PAST DUE REPORTED WITHIN 12 MONTHS OF PROFILE DATE


[0165] TOTAL NUMBER OF BANKRUPTCY TRADELINES EVER


[0166] TOTAL NUMBER OF DEROGATORY PUBLIC RECORDS WHERE AMOUNT IS GREATER THAN $250


[0167] TOTAL NUMBER OF BANKRUPTCY PUBLIC RECORDS


[0168] TOTAL OUTSTANDING BALANCE ON ALL OPEN TRADES


[0169] TOTAL OF CREDIT LIMIT ON ALL OPEN TRADES


[0170] OVERALL BALANCE/LIMIT RATION ON ALL OPEN TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0171] AGE, IN MONTHS, OF OLDEST TRADE


[0172] TOTAL OUTSTANDING BALANCE ON ALL OPEN AUTO TRADES


[0173] WORST STATUS EVER ON AN AUTO TRADE


[0174] TOTAL NUMBER OF OPEN BANKCARD TRADES


[0175] TOTAL OUTSTANDING BALANCE ON ALL OPEN BANKCARD TRADES


[0176] TOTAL CREDIT LIMIT ON ALL OPEN BANKCARD TRADES


[0177] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN BANKCARD TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0178] TOTAL OUTSTANDING BALANCE ON ALL OPEN REVOLVING TRADES


[0179] TOTAL CREDIT LIMIT ON ALL OPEN REVOLVING TRADES


[0180] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN REVOLVING TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0181] CREATE YOUR OWN CREDIT ATTRIBUTES USING BUREAU DATA


[0182] ANY SCORE AVAILABLE AT YOUR BUREAU OF CHOICE, FOR EXAMPLE, FICO SCORE, MDS BANKRUPTCY SCORE, BEACON SCORE, ETC.


[0183] TOTAL NUMBER OF TRADES


[0184] TOTAL NUMBER OF TRADES PRESENTLY CURRENT REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0185] TOTAL NUMBER OF TRADES EVER 30 OR MORE DAYS DELINQUENT OR DEROGATORY


[0186] TOTAL NUMBER OF TRADES EVER 60 OR MORE DAYS DELINQUENT OR DEROGATORY


[0187] WORST STATUS EVER ON TRADES OPENED WITHIN 36 MONTHS OF PROFILE DATE


[0188] WORST PRESENT STATUS ON OPEN TRADES OPENED WITHIN 24 MONTHS OF PROFILE DATE


[0189] AVERAGE AGE, IN MONTHS, OF ALL TRADES


[0190] MONTHS SINCE MOST RECENT SATISFACTORY STATUS ON ANY TRADE OPENED MORE THAN 6 MONTHS


[0191] MONTHS SINCE MOST RECENT 90 OR MORE DAYS DELINQUENCY OR DEROGATORY ITEM ON ANY TRADE


[0192] TOTAL NUMBER OF INQUIRIES FOR CREDIT PURPOSES MADE WITHIN 12 MONTHS OF PROFILE DATE


[0193] PERCENT OF PROFILE CONSISTING OF TRADES 30 OR MORE DAYS DELINQUENT OR DEROGATORY


[0194] PERCENT OF PROFILE CONSISTING OF TRADES 60 OR MORE DAYS DELINQUENT OR DEROGATORY


[0195] TOTAL NUMBER OF OPEN, PAID, OR CLOSED BANKCARD TRADES


[0196] TOTAL NUMBER OF OPEN, PAID, CLOSED, OR INACTIVE BANKCARD TRADES


[0197] TOTAL NUMBER OF BANKCARD TRADES NEVER REPORTED DELINQUENT OR DEROGATORY


[0198] AVERAGE AGE, IN MONTHS, OF ALL BANKCARD TRADES


[0199] PERCENT OF PROFILE CONSISTING OF BANKCARD TRADES NEVER REPORTED DELINQUENT OR DEROGATORY


[0200] TOTAL NUMBER OF FINANCE INSTALLMENT TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0201] TOTAL NUMBER OF INSTALLMENT TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0202] TOTAL NUMBER OF INSTALLMENT TRADES PRESENTLY 30 OR MORE DAY DELINQUENT OR DEROGATORY


[0203] TOTAL NUMBER OF OPEN, PAID, CLOSED, OR INACTIVE REVOLVING TRADES


[0204] TOTAL NUMBER OF OPEN REVOLVING TRADES


[0205] WORST STATUS EVER ON REVOLVING TRAES OPENED WITHIN 36 MONTHS OF PROFILE DATE


[0206] WORST PRESENT STATUS ON OPEN REVOLVING TRADE


[0207] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN RETAIL REVOLVING TRADES OPENED WITHIN 12 MONTHS OF PROFILE DATE


[0208] APPLICANT AGE CALCULATED AT BUREAU


[0209] TOTAL NUMBER OF OPEN/CLOSED TRADES WITH DELINQUENT BALANCES OR AMOUNTS PAST DUE REPORTED WITHIN 12 MONTHS OF PROFILE DATE


[0210] TOTAL NUMBER OF BANKRUPTCY TRADELINES EVER


[0211] TOTAL NUMBER OF DEROGATORY PUBLIC RECORDS WHERE AMOUNT IS GREATER THAN $250


[0212] TOTAL NUMBER OF BANKRUPTCY PUBLIC RECORDS


[0213] TOTAL OUTSTANDING BALANCE ON ALL OPEN TRADES


[0214] TOTAL OF CREDIT LIMIT ON ALL OPEN TRADES


[0215] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0216] AGE, IN MONTHS, OF OLDEST TRADE


[0217] TOTAL OUTSTANDING BALANCE ON ALL OPEN AUTO TRADES


[0218] WORST STATUS EVER ON AN AUTO TRADE


[0219] TOTAL NUMBER OF OPEN BANKCARD TRADES


[0220] TOTAL OUTSTANDING BALANCE ON ALL OPEN BANKCARD TRADES


[0221] TOTAL CREDIT LIMIT ON ALL OPEN BANKCARD TRADES


[0222] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN BANKCARD TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0223] TOTAL OUTSTANDING BALANCE ON ALL OPEN REVOLVING TRADES


[0224] TOTAL CREDIT LIMIT ON ALL OPEN REVOLVING TRADES


[0225] OVERALL BALANCE/LIMIT RATIO ON ALL OPEN REVOLVING TRADES REPORTED WITHIN 6 MONTHS OF PROFILE DATE


[0226] CREATE YOUR OWN CREDIT ATTRIBUTES USING BUREAU DATA


[0227] ANY SCORE AVAILABLE AT YOUR BUREAU OF CHOICE, FOR EXAMPLE, FICO SCORE, MDS BANKRUPTCY SCORE, BEACON SCORE, ETC.


[0228] Additionally, if the financial institution 48 is interested in cross-selling products and services to a financial account applicant, the financial institution 48 also provides a list of such products and services, as well as a list of guidelines for evaluating which applicants are provided the opportunity to participate in those products and services. The security code, policy rules, evaluation guidelines, credit policy exclusions, credit review guidelines, and cross-selling products and services are all stored in the customer set up module 26.


[0229] When the financial institution 48 has an applicant that it wishes the network 10 to evaluate, the financial institution 48 logs on to the network 10 and enters its security code, along with the applicant's last name, first name, social security number, and place of residence for the last five years. The gateway server 14 immediately contacts the preliminary search database 18 which searches for information relating to financial accounts that have been closed “for cause” or for information indicating that a large number of applications have been submitted by applicant over a given period of time. The preliminary database search is used to quickly,eliminate high-risk applicants. If the preliminary database search returns a “hit” relevant to the applicant, then the evaluation process is immediately terminated. If there are no “hits,” the gateway server 14 passes the applicant information to the application server 22 which begins to electronically poll the modules in an attempt to amass the financial account information, demographic information, and credit bureau information that is necessary to perform the automatic evaluation of the applicant.


[0230] The application server 22 receives the applicant information from the gateway server 14, conducts a consumer search to search for links to data collections for the applicant, searches the operational data store module, searches for demographic data, and credit bureau data and transmits all of the data to the scoring model module 44 where the score or series of scores are generated. All of the data searches may be conducted using either exact matching logic or fuzzy logic, or both.


[0231] The risk model consists of three “scorecards.” The scorecards are based on the availability of information. Scorecard 1 is for those inquiries in which only credit information is available. Similarly, scorecard 2 is for inquiries in which only debit bureau information is available. Scorecard 3 is for inquiries in which both credit and debit bureau information is present. The following table outlines the data (along with corresponding variable names) required to create the segmentation logic necessary for developing the “scorecards.”
1FIELD NAMELABELIV1IV: # OF INQS LAST 0-1IV365IV: # OF INQS LAST 2-365CPCOR365CP: # OF CHECK ORDERS LAST 365 DAYSCPDOR365CP: # OF DEPOSIT ORDERS LAST 365 DAYSCPOOR365CP: # OF OTHER ORDERS LAST 365 DAYSSCAN999# ALL LAST 3 YEARSCVD0001SCV: # OF HISTORIC CLOSURES PREVIOUS DAYCVD0007SCV: # OF HISTORIC CLOSURES 2-7 DAYSCVD0014SCV: # OF HISTORIC CLOSURES 8-14 DAYSCVD0030SCV: # OF HISTORIC CLOSURES 15-30 DAYSCVD0060SCV: # OF HISTORIC CLOSURES 31-60 DAYSCVD0090SCV: # OF HISTORIC CLOSURES 61-90 DAYSCVD0180SCV: # OF HISTORIC CLOSURES 91-180 DAYSCVD0365SCV: # OF HISTORIC CLOSURES 181-365 DAYSCVD0730SCV: # OF HISTORIC CLOSURES 366-730 DAYSCVD1095SCV: # OF HISTORIC CLOSURES 731-1095 DAYSCVD1460SCV: # OF HISTORIC CLOSURES 1096-1460 DAYSCVD1825SCV: # OF HISTORIC CLOSURES 1461-1825 DAYSGBL007CREDIT: DECEASED FLAGALL001CREDIT: TOTAL NUMBER OF OPEN, PAID, ORCLOSED TRADES


[0232] In order to implement the segmentation logic, the following intermediate variables are created.
2VARIABLE:SUMCLSDESCRIPTION:Presence of closure in the last 1825 daysLOGIC:IF (CVD0001S > 0 OR CVD0007S > 0 ORCVD0014S > 0 OR CVD0030S > 0 OR CVD0060S >0 OR CVD0090S > 0 OR CVD0180S > 0 ORCVD0365S > 0 OR CVD0730S > 0 OR CVD1095S >0 OR CVD1460S > 0 OR CVD1825S > 0)THEN SUMCLS = 1ELSE SUMCLS = 0VARIABLE:SUMSCANDESCRIPTION:Presence of scan activity in the last 3 yearsLOGIC:IF SCAN999 > 0 THEN SUMSCAN = 1ELSE SUMSCAN = 0VARIABLE:DEBIT001DESCRIPTION:Presence of Debit Bureau informationLOGIC:IF (SUMCLS > 0 OR SUMSCAN > 0 OR IV1 > 0OR IV365 > 0 OR CPCOR365 > 0 OR CPDOR365 >0 OR CPOOR365 > 0)THEN DEBIT001 = 1ELSE DEBIT001 = 0VARIABLE:GBL007DESCRIPTION:Deceased indicatorSOURCE:Credit reporting bureau databaseVARIABLE:ALL001DESCRIPTION:Total number of open, paid, or closed trades


[0233] Once the intermediate variables have been computed, the segmentation logic is created as follows:


[0234] IF GBL007=1 THEN SEGMENT=−1


[0235] ELSE IF ALL001=0 AND DEBIT001=0 THEN SEGMENT=0


[0236] ELSE IF ALL001>0 AND DEBIT001=0 THEN SEGMENT=1


[0237] ELSE IF ALL001=0 AND DEBIT001>0 THEN SEGMENT=2


[0238] ELSE IF ALL001>0 AND DEBIT001>0 THEN SEGMENT=3


[0239] Segment values have the following meanings:


[0240] −1=Deceased


[0241] 0=No debit or credit information


[0242] 1=Credit Bureau information only


[0243] 2=Debit Bureau information only


[0244] 3=Credit and Debit Bureau information


[0245] For scorecard 1 (credit bureau data only), the attributes required in the scorecard are as follows:
3NameLabelDescriptionALL001TTL TRADETotal number of open, paid, orclosed tradesALL078TTL DEL-GE60Total number of trades ever 60or more days delinquent orderogatoryALL504WORST-EVER-OPEN36Worst status ever on tradesopened within 36 months of theprofile dateALL602WORST-NOW OPENWorst present status on openOPEN24trades opened within 24 monthsof the profile dateALL710AGE-RECENT-SATMonths since most recentOPEN > 6satisfactory status on any tradeopened more than 6 monthsALL740AGE-RECENT-GE90Months since most recent 90 ormore days delinquency orderogatory item on any tradeALL804TTL INQ12Total number of inquiries forcredit purposes made within 12months of the profile dateALL904PERCENT 60+ (OPC)Percent of profile consisting oftrades 60 or more daysdelinquent or derogatoryBAC001TTL TRADE BNKCARDTotal number of open, paid, orclosed bankcard tradesBAC002TTL TRADE-OPCITotal number of open, paid,BNKCARDclosed, or inactive bankcardtradesBAC071TTL SAT BNKCARDTotal number of bankcard tradesnever reported delinquent orderogatoryBAC703AVG-AGE BNKCARDAverage age, in months, of allbankcard tradesBAC901PERCENT NEVER DEL-Percent of profile consisting ofOR-DEROG BNKCARDbankcard trades never reporteddelinquent or derogatoryFIL022TTL OPEN12 FINANCETotal number of financeINSTALLinstallment trades opened within12 months of the profile dateILN064TTL PRESENT-GE30Total number of installmentINSTALLtrades presently 30 or more daysdelinquent or derogatoryREV002TTL TRADE-OPCI REVTotal number of open, paid,closed, or inactive revolvingtradesREV003TTL TRADE OPEN REVTotal number of open revolvingtradesREV504WORST-EVER-OPEN36Worst status ever on revolvingREVtrades opened within 36 monthsof the profile dateREV601WORST-NOW OPEN REVWorst present status on an openrevolving tradeRTR404BTL OPEN BAL OPEN12Overall balance/limit ratio on allRETAIL REVopen retail revolving tradesopened within 12 months of theprofile date


[0246] To derive the “credit data only scorecard,” the algorithm establishes attribute caps as follows:


[0247] BAC703=MIN(BAC703, 240);


[0248] ILN064=MIN(ILN064, 20);


[0249] RTR404=MIN(RTR404, 110);


[0250] ALL804=MIN(ALL804, 20);


[0251] FIL022=MIN(FIL022, 5).


[0252] The logical function “MIN” indicates that the lesser of the two operators is transferred into the variable. The attributes and attribute caps are converted using the following mathematical functions:


[0253] SRBAC703=SQRT(BAC703);


[0254] ALL504B=(ALL504>1);


[0255] ALL710A=(ALL710<=12);


[0256] LNILN064=LOG(ILN064+1);


[0257] REV601A=REV601=1;


[0258] REV504F=REV504>120;


[0259] SRALL804=SQRT(ALL804);


[0260] ALL602B=ALL602>1;


[0261] ALL740B=(ALL740<=12);


[0262] LNFIL022=LOG(FIL022+1).


[0263] “SQRT” indicates the mathematical square root transformation, while “LOG” indicates the natural logarithm transformation. Additionally, the algorithm establishes or identifies false zero relationships using the following logical statement:


[0264] IF REV504F=0 AND REV002=0 THEN REV504F=1.


[0265] The scoring algorithm then calculates the score.
4SCOR =+2.20169−(0.00946328 * ALL904)+(0.07616756 * SRBAC703)−(0.39115484 * ALL504B)+(0.24159381 * ALL710A)−(0.20654182 * LNILN064)+(0.19162188 * REV601A)−(0.00599192 * RTR404)−(0.04240944 * REV504F)+(0.0055761  * BAC901)−(0.19366108 * SRALL804)−(0.17019613 * ALL602B)−(0.16300223 * ALL740B)−(0.28859933 * LNFIL022).


[0266] The above algorithm outputs the variable SCOR, which is taken into the following scaling equation.


[0267] Final Score=100+799/(1+exp(−SCOR))**4, rounded to the nearest integer value. The table below represents the scoring algorithm for the credit data only scorecard.
5SCORINGVARIABLECOEFFICIENTCONSTANTCONSTANT IS TO BE  2.20169  ADDED AUTOMATICALLY TOEACH APPLICANT'S SCOREALL904Multiply by the coefficient−0.00946328SRBAC703Multiply by the coefficient  0.07616756ALL504BMultiply by the coefficient−0.39115484ALL710AMultiply by the coefficient  0.24159381LNILN064Multiply by the coefficient−0.20654182REV601AMultiply by the coefficient  0.19162188RTR404Multiply by the coefficient−0.00599192REV504FMultiply by the coefficient−0.04240944BAC901Multiply by the coefficient  0.0055761 SRALL804Multiply by the coefficient−0.19366108ALL602BMultiply by the coefficient−0.17019613ALL740BMultiply by the coefficient−0.16300223LNFIL022Multiply by the coefficient−0.28859933


[0268] For scorecard 2 (debit bureau data only), the attributes required in the scorecard are as follows.
6NameLabelDescriptionSCON999SC: # OPEN LAST 3 YEARSTotal number of openscan items over the pastthree yearsCPUNABA# DIFFERENT BANKSTotal number of checkorders from differentfinancial institutionsIV365IV: # OF INQS LAST 2-365Total number of inquiries2 to 365 days agoSCAN999SC: # ALL LAST 3 YEARSTotal number of scanitems over the past threeyearsCVT0180SCV: # OF CLOSURES ATTotal number of closures2-180 DAYS2 to 180 days agoCVD0365SCV: # OF HISTORICTotal number of closuresCLOSURES 181-365 DAYS181 to 365 days agoCVD0730SCV: # OF HISTORICTotal number of closuresCLOSURES 366-730 DAYS366 to 730 days agoCVD1095SCV: # OF HISTORICTotal number of closuresCLOSURES 731-1095 DAYS731 to 1095 days agoCVD1460SCV: # OF HISTORICTotal number of closuresCLOSURES 1096-14601096 to 1460 days agoDAYSCVD1825SCV: # OF HISTORICTotal number of closuresCLOSURES 1461-18251461 to 1825 days agoDAYSIVFI180IV: # OF INQS DIFF FITotal number of inquiriesLAST 2-180from different financialinstitutions 2 to 180 daysagoIVDBTWNIV: AVG. DAYS BETWEENAverage number of daysINQUIRIESbetween inquiriesCPCORD90CP: # OF CHECK ORDERSTotal number of checkLAST 90 DAYSorders in the last 90 daysCPMNBETWCP: MIN DAYS BETWEENMinimum number ofCHECK ORDERSdays between checkordersSCALASTSC: DAYS SINCE LASTNumber of days sinceALL ITEMSlast scan item


[0269] Again, to implement the segmentation logic, the following variables are created.
7VARIABLE:SCON999BDESCRIPTION:SCP: # ALL LAST 3 YEARS ≧ 1LOGIC:IF (SCON999 ≧ 1) THEN SCON999B = 1ELSE SCON999B = 0VARIABLE:CPUNABABDESCRIPTION:CP: # OF DIFFERENT BANKS 1-2LOGIC:IF (CPUNABA ≧ 1 AND CPUNABA ≦ 2) THENCPUNABAB = 1ELSE CPUNABAB = 0VARIABLE:SCAN999B, SCAN999C, SCAN999DDESCRIPTION:SCA: # ALL LAST 3 YEARS: 1SCA: # ALL LAST 3 YEARS: 2-3SCA: # ALL LAST 3 YEARS: 4+LOGIC:SCAN999B = 0SCAN999C = 0SCAN999D = 0IF SCAN999 = 1 THEN SCAN999B = 1ELSE IF (SCAN999 ≧ 2 AND SCAN999 ≦ 3) THENSCAN999C = 1ELSE IF (SCAN999 ≧ 4) THEN SCAN999D = 1VARIABLE:CVD0365ADESCRIPTION:CLOSURE: 181-1825 DAYSLOGIC:IF (CVD0365S = 1 OR CVD0730S = 1 ORCVD1095S = 1 OR CVD1460S = 1 ORCVD1825S = 1) THEN CVD0365A = 1ELSE CVD0365A = 0VARIABLE:IVDBTWNA, IVDBTWNBDESCRIPTION:IV: AVG. DAYS BETWEEN INQUIRIES: 0-90IV: AVG. DAYS BETWEEN INQUIRIES: 90+LOGIC:IVDBTWNA = 0IVDBTWNB = 0IF (IVDBTWN ≧ 0 AND IVDBTWN ≦ 90) THENIVDBTWNA = 1ELSE IF (IVDBTWN ≧ 91) THEN IVDBTWNB = 1VARIABLE:CPMNBETDDESCRIPTION:CP: MIN DAYS BETWEEN CHECK ORDERS: 180+LOGIC:IF (CPMNBETW ≧ 180) THEN CPMNBETD = 1ELSE CPMNBETD = 0VARIABLE:SCALASTBDESCRIPTION:SCA: DAYS SINCE LAST ALL ITEM: 0-356 DAYSLOGIC:IF (SCALAST ≧ 0 AND SCALAST ≦ 365) THENSCALASTB = 1ELSE SCALASTB = 0VARIABLE:QCPCOR90DESCRIPTION:CP: # CHECK ORDERS LAST 90 DAYS-SQRTLOGIC:SQRT(CPCORD90)


[0270] The table below represents the scoring algorithm for the debit data only scorecard.
8SCORINGVARIABLEPOINTSCONSTANTCONSTANT IS TO1.5919BE ADDED AUTOMATICALLYTO EACH APPLICANT'S SCORE00SCON999B1 OR MORE−.6233IV365Multiply by the coefficient−.153700CPUNABAB1 TO 2.65263 OR MORE000SCAN999B1−.5349SCAN999C2 TO 3−.6632SCAN999D4 OR MORE−.7182CVT0180SMultiply by the coefficient−.6266CVD0365APREVIOUS DAY TO 1800181 OR MORE−.4825IVFI180Multiply by the coefficient−.1498.0IVDBTWNA0 TO 90−.2234IVDBTWNB91 OR MORE−.1215QCPCOR90Multiply by the coefficient−.3047CPMNBETD.00 T0 1790180 OR MORE.5656.000SCALASTB1 TO 365−.2051366 OR MORE0


[0271] A period (‘.’) denotes a missing value for a particular attribute. The algorithm outputs the variable SCOR, which is taken into the following scaling equation. Final Score=100+799/(1+exp(−SCOR))**4, rounded to the nearest integer value. For scorecard 3 (credit and debit bureau), the attributes required in the scorecard are as follows:
9NameLabelDescriptionALL001TTL TRADETotal number of open, paid,or closed tradesALL062TTL PRESENT-SATTotal number of tradesRPTED6presently current reportedwithin 6 months of the profiledateALL075TTL DEL-GE30Total number of trades ever30 or more days delinquent orderogatoryALL504WORST-EVER-OPEN36Worst status ever on tradesopened within 36 months ofthe profile dateALL602WORST-NOW OPENWorst present status on openOPEN24trades opened within 24months of the profile dateALL703AVG-AGEAverage age, in months, of alltradesALL710AGE-RECENT-SATMonths since most recentOPEN > 6satisfactory status on anytrade opened more than 6monthsALL903PERCENT 30+ (OPC)Percent of profile consistingof trades 30 or more daysdelinquent or derogatoryILN022TTL OPEN12 INSTALLTotal number of installmenttrades opened within 12months of the profile dateILN064TTL PRESENT-GE30Total number of installmentINSTALLtrades presently 30 or moredays delinquent or derogatoryREV002TTL TRADE-OPCI REVTotal number of open, paid,closed, or inactive revolvingtradesREV504WORST-EVER-OPEN36Worst status ever on revolvingREVtrades opened within 36months of the profile dateCVT1825SCV: # OF HISTORICTotal number of closures 2 toCLOSURES 2-1825 DAYS1825 days agoIV365IV: # OF INQS LASTTotal number of inquiries 2 to2-365365 days agoSCAN999# ALL LAST 3 YEARSTotal number of scan itemsover the past three yearsSCON999# OPEN LAST 3 YEARSTotal number of open scanitems over the past threeyears


[0272] To derive the credit and debit combined scorecard, the algorithm establishes the attributes as follows:


[0273] ALL703=MIN(ALL703,240);


[0274] ILN064=MIN(ILN064,25);


[0275] IV365=MIN(IV365,10);


[0276] ALL062=MIN(ALL062, 25);


[0277] ILN022=MIN(ILN022, 10).


[0278] The attributes and attribute caps are converted using the following mathematical functions:


[0279] LNALL703=LOG(ALL703+1);


[0280] SCAN999A=SCAN999=0;


[0281] SRALL903=SQRT(ALL903);


[0282] LNILN064=LOG(ILN064+1);


[0283] SRIV365=SQRT(IV365);


[0284] ALL504D=ALL504>60;


[0285] ALL710B=(ALL710<=24);


[0286] SCON999A=(SCON999=0);


[0287] REV504F=REV504>120;


[0288] ALL602B=ALL602>1.


[0289] Additionally, the algorithm establishes or identifies false zero relationships using the following algorithm:


[0290] IF REV504F=0 AND REV002=0 THEN REV504F=1.


[0291] The scoring algorithm then calculates the score.
10SCOR =+0.83475+(0.38888396 * LNALL703)+(0.52751826 * SCAN999A)−(0.15296523 * SRALL903)−(0.21593754 * LNILN064)−(0.28475832 * SRIV365)−(0.12155948 * ALL504D)+(0.10062759 * ALL710B)+(0.18870077 * SCON999A)−(0.25754947 * CVT1825S)+(0.04657684 * ALL062)−(0.06580746 * ILN022)−(0.12498866 * REV504F)−(0.27472889 * ALL602B).


[0292] The above algorithm outputs the variable SCOR, which is taken into the following scaling equation.


[0293] Final Score=100+799/(1+exp(−SCOR))**4, rounded to the nearest integer value. The table below represents the scoring algorithm for the blended scorecard.
11SCORINGVARIABLECOEFFICIENTCONSTANTCONSTANT IS TO BE  0.83475  ADDED AUTOMATICALLY TOEACH APPLICANT'S SCORELNALL703Multiply by the coefficient  0.38888396SCAN999AMultiply by the coefficient  0.52751826SRALL903Multiply by the coefficient−0.15296523LNILN064Multiply by the coefficient−0.21593754SRIV365Multiply by the coefficient−0.28475832ALL504DMultiply by the coefficient−0.12155948ALL710BMultiply by the coefficient  0.10062759SCON999AMultiply by the coefficient  0.18870077CVT1825SMultiply by the coefficient−0.25754947ALL062Multiply by the coefficient  0.04657684ILN022Multiply by the coefficient−0.06580746REV504FMultiply by the coefficient−0.12498866ALL602BMultiply by the coefficient−0.27472889


[0294] The score or scores are sent back to the application server 22 where they are compared with the policy rules and guidelines of the financial institution to either accept or deny the financial account application.


[0295] In a preferred embodiment, a range is set for the scores so that: if the score is below the financial institution's “deny limit,” a “deny applicant” code is returned to the financial institution; if the score is above the financial institution's “accept limit,” an “accept applicant” code is returned to the financial institution; and if the score is between the “deny limit” and the “accept limit,” then a “review” code is returned to the financial institution. If a “review” code is generated, the financial institution may wish to examine the application or applicant in greater detail. If the application is accepted, then the score or scores are compared to the financial institution's cross-selling guidelines to determine whether and what products and services of the financial institution should be offered to the applicant. An electronic report is sent to the financial institution advising the institution of the results of the evaluation.


[0296]
FIG. 2 is a flowchart illustrating the decisioning process 100 of the network 10 shown in FIG. 1. The information acquired by the application server 22 is compared 104 against the policy rules (or exclusions) 108 and financial account application evaluation guidelines (or reviews) 112. If the data indicates (by comparison at 116) that the applicant does not comply with one of the policy rules, then a fail code is issued 120 to the financial institution indicating that the applicant should be denied the account and the process is terminated 122. If the rules are met then the application server 22 issues a pass code 124. At the same time that the policy rules are being evaluated against the data, the application server 22 is comparing 128 the data with the financial account application evaluation guidelines. If the data does not meet the guidelines, then a code is issued 132 to the financial institution indicating that the application should be reviewed in greater detail. If the data meets the guidelines, then a pass code is issued 136, and (provided the pass code is issued for the policy rules evaluation) the application server 22 proceeds 138 to evaluate the credit bureau data against the credit policy exclusions 140 and credit review guidelines 144 provided by the financial institution. If the applicant's data from the credit bureau indicates (by comparison at 148) a violation of the financial institution credit policy exclusions, then the application server 22 issues a code 152 to the financial institution indicating that the application should be declined and the process is terminated. Alternatively, if the credit policy exclusions are not violated by the credit bureau data, then the application server 22 continues 156 with the data evaluation process. At the same time that the credit policy exclusions are being compared with the credit bureau data, the application server 22 is comparing 160 the credit review guidelines with the credit bureau data. If both the credit policy exclusions and credit review guidelines are satisfied by the credit bureau data, then the application server 22 proceeds 164 with the evaluation process. If the data does not meet the credit review guidelines, then a code is issued 168 to the financial institution indicating that the application should be reviewed in greater detail. However, even if the credit review guidelines are not satisfied, the financial institution may opt to continue 172 with the evaluation process. Alternatively, the process is terminated 122. If both the credit policy exclusions and credit review guidelines are satisfied, the application server 22 executes the scoring model (or risk model algorithm) 176 to generate the score or scores for the applicant. The score or scores is/are compared 180 against financial institution past/fail criteria. If the applicant fails, then the application server 22 issues 184 a decline code to the financial institution again indicating that the applicant should be declined and the process is terminated 122. Alternatively, if the applicant's score passes the financial institution criteria, the score is reviewed 188 to determine whether the applicant failed any policy reviews. If so, then the application server 22 issues 192 to the financial institution a code indicating that the application should be reviewed in greater detail and the process is terminated 122. If the consumer did not fail to satisfy any credit review guideline, then the application server 22 generates a code 196 indicating that the financial institution should accept the application and offer the product applied for (such as a demand deposit account (DDA)) to the applicant. Additionally, the application server 22 determines 200 whether the financial institution is offering cross-selling products and, if so, which products 204. If not, the process terminates 122. However, if the financial institution is offering cross-selling products, the applicant data and score or scores are compared 208 with the financial institution pass/fail criteria for such products. If the data and score or scores do not meet the criteria, then the application server 22 issues a fail code 212 to the financial institution indicating that no cross-selling products are to be offered to the applicant and the process terminates 122. Alternatively, if the applicant passes the criteria, the application server 22 issues a code 216 to the financial institution indicating that the product should be offered to the applicant and that the financial institution should invite the applicant to apply for that product. The process then terminates 122.


[0297]
FIG. 3 shows another embodiment of the invention. FIG. 3 shows a network 310 for cross-selling and presenting offers of products and services via an automated teller machine (“ATM”) or a point-of-purchase (“POP”) machine 350. While only one ATM 350 is shown in the drawing, the system is intended to be accessed by many ATMs 350. The network 314 includes a gateway server 314 through which the ATMs 350 are connected to the network. The ATMs 350 may also be connected to the gateway server 314 through a financial institution 348.


[0298] An ATM 350 is provided for users to obtain money, financial information, and other information. The information, which may be in the form of an advertisement or promotional offer, provided to the user of the ATM 350 can be personalized to the needs and interests of the user, and may include, but is not limited to account information, financial and non-financial products, and financial and non-financial services.


[0299] ATMs 350 generally have a display screen, a key pad, a card reader, a receipt printer, a cash dispenser, and a deposit slot. The card reader may be a conventional magnetic card swipe device, a fingerprint reader, eye scanner, or similar device. The ATM 350 may also include a voice synthesis device. Each user maintains an access device, e.g., bank card, credit card, ATM card, or similar identification device and a personal identification number (“PIN”) or personal access number (“PAN”) for access to the ATM 350.


[0300] The network 310 also includes an application server 322 connected to the gateway server 314 and a plurality of application modules 354, 358, 362, 366, and 370, connected to the application server 322. The application modules include an identification module 354, a consumer information database 358, a marketing module 362, a presentation module 366, and a tracking module 370. All connections shown in the figure denote two-way communication between the connected entities.


[0301] The identification module 354 operates to identify the person using the ATM 350 based upon information entered into the ATM 350. The consumer information database 358 contains general biographical, personal and historical information about users, their interests and past spending history. Typical information includes, but is not limited to demographic data, such as age, income, marital status, and number of children; promotional history data, such as previous promotions presented to the client; and behavioral data, such as account balances, number of products and services purchased in the past, and length of time as a client.


[0302] The marketing module 362 determines which promotional offers, messages, and/or advertisements to display to the user on the ATM 350. Each user is assigned a particular number, rule, group, segment, score, category, or class (collectively referred to as a “score”) which identifies particular messages, advertisements, and promotional offers that would be appropriate to the user's needs and interests based on the information in the consumer information database 358. This process is referred to as “target marketing,” by customizing information presented to the ATM user, and provides an effective and efficient technique to sell products and services and increase customer satisfaction. The score can be pre-assigned and stored in memory, for example, when the account owner applies to open the account. Alternatively, the score can be dynamically calculated (using the network 310 or other suitable means) each time the user accesses the ATM 350. More specifically, each time the user accesses the ATM 350, the gateway server 314 prompts the application server 322 to electronically poll the modules to access the information necessary to evaluate the applicant. The scores are developed for the ATM user, and the advertisement or promotional offer is then selected for that user based on the score. The advantage of calculating the score each time the user accesses the ATM 350 is that updated information is taken into account more frequently. Alternatively, the score can be recalculated only periodically, for example once every three months, or once every twenty times the user accesses the ATM 350. This would reduce processing required of the network 310.


[0303] The presentation module 366 receives information from the marketing module 362 of the particular promotional offers, messages, and/or advertisements that are to be displayed. This module 366 formats and personalizes these promotional offers, messages, and/or advertisements to the user of the ATM 350. Alternatively, non-personalized messages, advertisements, and promotional offers may be displayed. The presentation module 366 also sends the formatted messages, advertisements, and promotional offers to the ATM display for review by the user. These messages, advertisements, and promotional offers may appear on the display at any time during the transaction or after completion of the transaction.


[0304] The tracking module 370 tracks and stores responses to the promotional offers, messages, and advertisements. Occasionally, the promotional offers, messages, and advertisements may require a response from the user of the ATM 350. This module 370 captures the user's response, if any, and tracks all messages, advertisements, and promotional offers that are displayed, but do not require a response. Financial institutions 348 or other institutions may access the user response information and displayed data information for follow-up purposes, future marketing techniques, future display of messages, advertisements, and promotional offers, and for other analyses.


[0305] In operation, a user enters, scans, or swipes their card or identification device and PAN, if necessary, to begin a transaction at the ATM 350. The identification module verifies that the identification device and PAN are compatible before the user begins the transaction. The transaction may include obtaining money, obtaining account balances, depositing checks to the user's accounts, etc. Simultaneous with the transaction, the marketing module 362, based on the user's identification looks up or calculates the score of the user. Once the score is known, the marketing module 362 identifies which promotional offers, messages, and advertisements to display to the user. This information is transmitted to the presentation module 366 to personalize the promotional offers, messages, and advertisements. The presentation module 366 transmits these promotional offers, messages, and advertisements to the display of the ATM 350 during the transaction or after the transaction is completed. The tracking module 370 stores which promotional offers, messages, and advertisements are displayed and also stores the user's responses, if necessary.


[0306] Various features and advantages of the invention are set forth in the following claims.


Claims
  • 1. A method of displaying an advertisement or promotional offer at an automated teller machine for a user of the automated teller machine, the method comprising the acts of: obtaining identification information provided by the user; accessing personal or historical information relating to the user; selecting the advertisement or promotional offer based on the information of the user; and displaying the advertisement or promotional offer on the automated teller machine.
  • 2. A method as set forth in claim 1, wherein the act of obtaining the identification information includes the act of reading a personal access number entered by the user.
  • 3. A method as set forth in claim 1, wherein the act of obtaining the identification information includes the act of reading account information on a card entered by the user.
  • 4. A method as set forth in claim 1, wherein the act of obtaining the identification information includes the act of scanning a body part of the user.
  • 5. A method as set forth in claim 1, wherein the personal or historical information is stored in a database.
  • 6. A method as set forth in claim 1, wherein the personal or historical information includes behavioral data, demographic data or promotional history data.
  • 7. A method as set forth in claim 1, wherein the information is segmentation data where the user is placed in a group of users with similar personal or historical information.
  • 8. A method as set forth in claim 1, wherein the act of displaying the advertisement or promotional offer is performed during or after a transaction on the automated teller machine.
  • 9. A method as set forth in claim 1, wherein the act of displaying the advertisement or promotional offer includes the act of displaying multiple advertisements or promotional offers at the same time.
  • 10. A method as set forth in claim 8, wherein the act of displaying the multiple advertisements or promotional offers includes the act of displaying multiple advertisements or promotional offers sequentially.
  • 11. A method as set forth in claim 1, wherein the act of displaying the advertisement or promotional offer requires a response from the user.
  • 12. A method as set forth in claim 1, and further comprising a module for storing responses to the advertisement or promotional offer.
  • 13. A method as set forth in claim 12, wherein the stored responses are available to a financial entity.
  • 14. A method as set forth in claim 1, wherein the information is a score used to compare the user against a standard.
  • 15. A method as set forth in claim 14, wherein the score is dynamically calculated using an algorithm.
  • 16. A method as set forth in claim 14, wherein the score is predetermined and retrieved from a database.
  • 17. A method as set forth in claim 1, wherein the information is a rule used to compare the user against a standard.
  • 18. A method of displaying an advertisement or promotional offer at a point-of-purchase machine, the method comprising the acts of: obtaining identification information provided by a user; accessing a database containing user information; and displaying the advertisement or promotional offer on the point-of-purchase machine based on the user information.
  • 19. A method as set forth in claim 18, wherein the act of obtaining identification information includes the act of reading a personal access number entered by the user.
  • 20. The method as set forth in claim 18, wherein the act of obtaining identification information includes the act of reading account information on a card entered by the user.
  • 21. A method as set forth in claim 18, wherein the information is stored in a database.
  • 22. A method as set forth in claim 18, wherein the information is segmentation data where the user is placed in a group of users with similar personal or historical information.
  • 23. A method as set forth in claim 18, wherein the act of displaying the personalized advertisement or promotional offer is performed during or after a transaction on the point-of-purchase machine.
  • 24. A method as set forth in claim 18, wherein the act of displaying the personalized advertisement or promotional offer includes the act of displaying multiple advertisements or promotional offers at the same time.
  • 25. A method as set forth in claim 24, wherein the act of displaying the multiple advertisements or promotional offers includes the act of displaying multiple advertisements or promotional offers sequentially.
  • 26. A method as set forth in claim 18, wherein the act of displaying the advertisement or promotional offer requires a response from the user.
  • 27. A method as set forth in claim 18, and further comprising a module for storing responses to the advertisement or promotional offer.
  • 28. A method as set forth in claim 27, wherein the stored responses are available to a financial entity.
  • 29. A method as set forth in claim 18, wherein the information is a score used to compare the user against a standard.
  • 30. A method as set forth in claim 29, wherein the score is dynamically calculated using an algorithm.
  • 31. A method as set forth in claim 29, wherein the score is predetermined and retrieved from a database.
  • 32. A method as set forth in claim 18, wherein the information is a rule used to compare the user against a standard.
  • 33. A system for displaying an advertisement or promotional offer, the system comprising: a user terminal; a database for storing personal and historical information of users; a marketing module for retrieving user information from the database based on the personal or historical information of the user, and for determining which advertisement or promotional offer to present based on the user information; and a presentation module for formatting the advertisement or promotional offer, the presentation module causing the user terminal to display the advertisement or promotional offer.
  • 34. A system as set forth in claim 33, wherein the user terminal is an automated teller machine.
  • 35. A system as set forth in claim 33, wherein the user terminal is a point-of-purchase machine.
  • 36. A system as set forth in claim 33, wherein the personal and historical information stored in the user database includes behavioral data, demographic data or promotional history data.
  • 37. A system as set forth in claim 33, wherein the information is segmentation data where the user is placed in a group, of users with similar personal or historical information.
  • 38. A system as set forth in claim 33, wherein the advertisement or promotional offer can be displayed during or after a transaction on the system.
  • 39. A system as set forth in claim 33, wherein the multiple advertisements or promotional offers are displayed at the same time.
  • 40. A system as set forth in claim 39, wherein the multiple advertisements or promotional offers are displayed sequentially.
  • 41. A system as set forth in claim 33, wherein the advertisement or promotional offer requires a response from the user.
  • 42. A system as set forth in claim 33, and further comprising a storage module for storing responses to the advertisement or promotional offer.
  • 43. A system as set forth in claim 42, wherein the stored responses are available to a financial entity.
  • 44. A system as set forth in claim 33, wherein the information is a score used to compare the user against a standard.
  • 45. A system as set forth in claim 44, wherein the score is dynamically calculated using an algorithm.
  • 46. A system as set forth in claim 44, wherein the score is predetermined and retrieved from a database.
  • 47. A system as set forth in claim 33, wherein the information is a rule used to compare the user against a standard.
  • 48. A financial network, accessible by a user terminal having a display capable of presenting offers and information for products and services, the financial network comprising: a gateway server in communication with the user terminal; and an application server in communication with the gateway server, the application server including, an identification module capable of identifying the user, a database containing category information and offers and information for products and services presently available, a search engine for identifying the offers and information for products and services that correspond to the user's category information, and a presentation module for displaying at least one of the offers and information for products and services that correspond to the user's category information.
  • 49. A marketing network, accessible by a marketing terminal having a display capable of presenting personalized options to a user on the display, the marketing network comprising: a gateway server in communication with the marketing terminal; and an application server in communication with the gateway server, the application server including, an identification module capable of identifying the user, a database containing user category information and at least one option, a marketing module for matching the available options with the user's category information, and a presentation module for personalizing the matched options and presenting to the user at least one of the matched options on the display.
RELATED APPLICATIONS

[0001] This application is a continuation-in-part of, and claims priority to U.S. non-provisional patent application Ser. No. 09/653,595, entitled METHOD AND APPARATUS FOR EVALUATING A FINANCIAL ACCOUNT APPLICANT, filed on Aug. 31, 2000, which application claims the benefit under 35 U.S.C. § 119 of U.S. Provisional Application No. 60/168,272, entitled METHOD AND APPARATUS FOR USE IN ENTERING FINANCIAL DATA INTO AN ELECTRONIC DEVICE, filed on Dec. 1, 1999; U.S. Provisional Application No. 60/168,276, entitled METHOD AND APPARATUS FOR AN ELECTRONIC CHECK PAYMENT SYSTEM, filed on Dec. 1, 1999; U.S. Provisional Application No. 60/168,273, entitled METHOD AND APPARATUS FOR PROVIDING ONLINE FINANCIAL ACCOUNT SERVICES, filed on Dec. 1, 1999; and U.S. Provisional Application No. 60/213,367, entitled SOFTWARE PROGRAM, filed on Jun. 23, 2000, all of which are incorporated herein by reference.

Provisional Applications (4)
Number Date Country
60168272 Dec 1999 US
60168276 Dec 1999 US
60168273 Dec 1999 US
60213367 Jun 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09653595 Aug 2000 US
Child 10227326 Aug 2002 US