Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device

Information

  • Patent Grant
  • 8317829
  • Patent Number
    8,317,829
  • Date Filed
    Friday, February 24, 2012
    12 years ago
  • Date Issued
    Tuesday, November 27, 2012
    12 years ago
Abstract
An innovative bone anchor and methods for securing soft tissue, such as tendons, to bone are described herein. Such devices and methods permit a suture attachment that lies beneath the cortical bone surface and does not require tying of knots in the suture.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to methods and apparatus for attaching soft tissue to bone, and more particularly to anchors and methods for securing connective tissue, such as ligaments or tendons, to bone. The invention has particular application to arthroscopic surgical techniques for reattaching soft tissue in a minimally invasive procedure.


Less invasive arthroscopic techniques are beginning to be developed in an effort to address the shortcomings of open surgical repair. Working through small trocar portals allow surgeons to cause less trauma than an open procedure. However, less invasive techniques present unique challenges as the surgeon has less space to manipulate tools and implants.


Unfortunately, the skill level required to facilitate entirely arthroscopic repair tissue is inordinately high. Intracorporeal suturing is clumsy and time consuming, and only the simplest stitch patterns can be utilized. Extracorporeal knot tying is somewhat less difficult, but the tightness of the knots is difficult to judge, and the tension cannot later be adjusted. Also, because of the use of bone anchors to provide a suture fixation point in the bone, the knots that secure the soft tissues to the anchor by necessity leave the knot bundle on top of the soft tissues. In the case of certain procedures the knot bundle left in the tissue can be felt by the patient postoperatively when the patient exercises the joint. Often the knots tied arthroscopically are difficult to achieve, impossible to adjust, and are located in less than optimal areas of the shoulder. Suture tension is also impossible to measure and adjust once the knot has been fixed.


Another significant difficulty with current arthroscopic repair techniques is shortcomings related to currently available suture anchors. Suture eyelets in bone anchors available today, which like the eye of a needle are threaded with the thread or suture, are small in radius, and can cause the suture to fail at the eyelet when the anchor is placed under high tensile loads.


There are various bone anchor designs available for use by an orthopedic surgeon for attachment of soft tissues to bone. The basic commonality between the designs is that they create an attachment point in the bone for a suture that may then be passed through the soft tissues and tied, thereby immobilizing the soft tissue. This attachment point may be accomplished by different means. Screws are known for creating such attachments, but suffer from a number of disadvantages, including their tendency to loosen over time, requiring a second procedure to later remove them, and their requirement for a relatively flat attachment geometry.


Another approach is to utilize the difference in density in the cortical bone (the tough, dense outer layer of bone) and the cancellous bone (the less dense, and somewhat vascular interior of the bone). The cortical bone presents a kind of hard shell over the less dense cancellous bone. The aspect ratio of the anchor is such that it typically has a longer axis and a shorter axis and usually is pre-threaded with a suture. These designs use a hole in the cortical bone through which an anchor is inserted. The hole is drilled such that the shorter axis of the anchor will fit through the diameter of the hole, with the longer axis of the anchor being parallel to the axis of the drilled hole. After deployment in to the cancellous bone, the anchor is rotated 90 degrees so that the long axis is aligned perpendicularly to the axis of the hole. The suture is pulled, and the anchor is seated up against the inside surface of the cortical layer of bone. Due to the mismatch in the dimensions of the long axis of the anchor and the hole diameter, the anchor cannot be retracted proximally from the hole, thus providing resistance to pull-out. These anchors still suffer from the aforementioned problem of eyelet design that stresses the sutures.


Still other prior art approaches have attempted to use a “pop rivet” approach. This type of design requires a hole in the cortical bone into which a split shaft is inserted. The split shaft is hollow, and has a tapered plug leading into its inner lumen. The tapered plug is extended out through the top of the shaft, and when the plug is retracted into the inner lumen, the tapered portion causes the split shaft to be flared outwardly, ostensibly locking the device into the bone.


Other methods of securing soft tissue to bone are known in the prior art, but are not presently considered to be feasible for shoulder repair procedures, because of physicians' reluctance to leave anything but a suture in the capsule area of the shoulder. The reason for this is that staples, tacks, and the like could possibly fall out and cause injury during movement. As a result of this constraint, the attachment point often must be located at a less than ideal position. Also, the tacks or staples require a substantial hole in the soft tissue, and make it difficult for the surgeon to precisely locate the soft tissue relative to the bone.


As previously discussed, any of the anchor points for sutures mentioned above require that a length of suture be passed through an eyelet fashioned in the anchor and then looped through the soft tissues and tied down to complete the securement. Much skill is required, however, to both place the sutures in the soft tissues, and to tie knots while working through a trocar under endoscopic visualization.


There have been attempts to solve some of the problems that exist in current anchor designs. One such approach is disclosed in U.S. Pat. No. 5,324,308 to Pierce. In this patent, there is disclosed a suture anchor that incorporates a proximal and distal wedge component having inclined mating faces. The distal wedge component has two suture thread holes at its base through which a length of suture may be threaded. The assembly may be placed in a drilled hole in the bone, and when tension is placed on the suture, the distal wedge block is caused to ride up against the proximal wedge block, expanding the projected area within the drilled hole, and locking the anchor into the bone. This approach is a useful method for creating an anchor point for the suture, but does not in any way address the problem of tying knots in the suture to fix the soft tissue to the bone.


The problem of placing sutures in soft tissues and tying knots in an endoscopic environment is well known, and there have been attempts to address the problem and to simplify the process of suture fixation. One such approach is disclosed in U.S. Pat. No. 5,383,905 to Golds et al. The patent describes a device for securing a suture loop about bodily tissue that includes a bead member having a longitudinal bore and an anchor member adapted to be slidably inserted within the bore of the bead member. The anchor member includes at least two axial compressible sections which define a passageway to receive two end portions of a suture loop. The axial sections collapse radially inwardly upon insertion of the anchor member within the bore of the bead member to securely wedge the suture end portions received within the passageway.


Although the Golds et al. patent approach utilizes a wedge-shaped member to lock the sutures in place, the suture legs are passing through the bore of the bead only one time, in a proximal to distal direction, and are locked by the collapsing of the wedge, which creates an interference on the longitudinal bore of the anchor member. Also, no provision is made in this design for attachment of sutures to bone. The design is primarily suited for locking a suture loop, such as is used for ligation or approximation of soft tissues.


An approach that includes bone attachment is described in U.S. Pat. No. 5,584,835 to Greenfield. In this patent, a two part device for attaching soft tissue to bone is shown. A bone anchor portion is screwed into a hole in the bone, and is disposed to accept a plug that has been adapted to receive sutures. In one embodiment, the suture plug is configured so that when it is forced into its receptacle in the bone anchor portion, sutures that have been passed through an eyelet in the plug are trapped by friction between the wall of the anchor portion and the body of the plug portion.


Although there is some merit to this approach for eliminating the need for knots in the attachment of sutures to bone, a problem with being able to properly set the tension in the sutures exists. The user is required to pull on the sutures until appropriate tension is achieved, and then to set the plug portion into the bone anchor portion. This action increases the tension in the sutures, and may garrote the soft tissues or increase the tension in the sutures beyond the tensile strength of the material, breaking the sutures. In addition, the minimal surface area provided by this anchor design for pinching or locking the sutures in place will abrade or damage the suture such that the suture's ability to resist load will be greatly compromised.


A disclosure that incorporates bone attachment and eliminates knot tying is set forth in U.S. Pat. No. 5,702,397 to Goble et al. One embodiment, in particular, is shown in FIG. 23 of that patent and includes a bone anchor that has a threaded body with an inner cavity. The cavity is open to one end of the threaded body, and joins two lumens that run out to the other end of the threaded body. Within the cavity is disposed a gear, journaled on an axle. A length of suture is threaded through one lumen, around the gear, and out through the other lumen. A ball is disposed within the cavity to ride against a tapered race and ostensibly lock the suture in place. What is not clear from the patent disclosure is how the force D shown as the tension in the suture would lock the ball into the race. Although this embodiment purports to be a self-locking anchor adapted for use in blind holes for fixing sutures into bone, the construct shown is complicated, and does not appear to be adequate to reliably fixate the suture.


PCT Publication WO 01/10312 to McDevitt et al. also describes a self-locking suture anchor for attaching soft tissue to bone. In this device a tissue anchor holds a filament within the anchor so that an applied force greater than a threshold force causes the filament to move longitudinally, while an applied force that is less than the threshold force does not move the filament.


In view of the above, what is needed, is a new approach for repairing or fixing other soft tissues to bone, wherein suture tension can be adjusted and possibly measured, the suture anchor resides below the cortical bone surface, there is no requirement for the surgeon to tie a knot to attach the suture to the bone anchor, and wherein the procedure associated with the new approach is better for the patient, saves time, is uncomplicated to use, and easily taught to practitioners having skill in the art.


SUMMARY OF THE INVENTION

The present invention solves the problems outlined above by providing innovative bone anchor and connective techniques which permit a suture attachment that lies beneath the cortical bone surface. The present invention discloses devices and methods for securing sutures to a bone anchor without the requirement of knot tying.


One variation of the system includes a knotless suture anchoring system for anchoring a length of suture with respect to a body cavity, comprising, an anchor body having at least one anchoring structure allowing for securing the anchor body within the body cavity, the anchor body having a proximal end, a distal end, and a lumen extending therebetween, a locking plug slidably coupled to the distal end of the anchor body and having a distal stop and a shaft portion, the distal stop being sized to prevent entry into the anchor body lumen, where the shaft portion is sized relative to the anchor body lumen to allow movement therein when no suture is located within the anchor body lumen and a friction fit when the suture is located in the anchor body lumen, a suture carrying portion in the distal stop allowing the suture to pass from a first side of the locking plug to an opposite side of the locking plug; and a snare extending through anchor body lumen and the suture carrying portion such that when the distal portion of the snare is affixed to the suture, withdrawal of the snare pulls the suture through the suture carrying portion and the anchor body lumen.


Another variation of the system includes a knotless suture anchoring system, comprising a suture having a tissue engaging portion, an anchoring portion and a mid portion therebetween, an anchor body having at least one rigid anchoring structure allowing for securing the anchor body within the body cavity, the anchor body having a proximal end, a distal end, and a lumen extending therebetween, a locking plug having a distal stop and a shaft portion at least partially located within the anchor body lumen, the distal stop being sized to prevent entry into the anchor body lumen, where the shaft portion is under sized relative to the anchor body lumen, a suture carrying portion in the distal stop allowing the suture to pass from a first side of the locking plug to an opposite side of the locking plug, and where the tissue engaging portion extends externally to the anchor body, the anchoring portion extends within the anchor body lumen, and where the mid portion extends in the suture carrying portion.


The present invention also includes methods of securing soft tissue with respect to a body cavity without knots. In one variation such a method comprises passing a length of suture through soft tissue so that a portion of the suture is secured in the soft tissue resulting in at least one free end, providing an anchor comprising an anchor body having a lumen extending therethrough, and a locking plug having a shaft portion extending at least partially in the anchor body lumen, passing the free end of the suture into the anchor such that a first section of the suture is in a portion of the locking plug and extends through the anchor body lumen, applying tension to the suture between the tissue and the anchor, and inserting the anchor into the body cavity, such that a second section of the suture is between the anchor body and a wall of the body cavity.


Another variation of a method includes providing an anchor having an anchor body and a locking plug, where the locking plug is moveable through a lumen of the anchor body until a stop of the locking plug contacts the anchor body, securing a suture to the soft tissue, advancing a first section of the suture through the stop and through the body lumen, tensioning a portion of the suture, and securing the anchor into a cavity formed in the hard tissue, such that the first section of the suture is compressed between the anchor body and the locking plug and a second section of the suture is compressed between a wall of the cavity and an exterior of the anchor body.


As discussed herein, the anchors and deployment system may be used in any part of the body but has particular applications in attaching the glenoid labrum to the glenoid.


Now, it is to be understood that the above described invention is particularly suited to locking sutures that have been passed through soft tissues and are to be anchored to bone. The creation of an anchor point within the bone is discussed in U.S. patent application Ser. No. 09/616,802, entitled Method and Apparatus for Attaching Connective Tissues to Bone Using a Suture Anchoring Device, filed on Jul. 14, 2000, now U.S. Pat. No. 6,582,453. The referenced application is commonly assigned with the present application, and is incorporated by reference in its entirety herein. Other prior art anchors, such as screws, moly bolts, and pop rivets may be adapted for use with the present invention as well.


The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a partial view of the shoulder anatomy in which the humerus is adjacent to the rotator cuff and labrum as it nests within against the glenoid and anchors placed in the labrum in accordance with the invention;



FIG. 1B is another view of a suture within the labrum and adjacent to a cavity created in the bone but where the suture is yet to be coupled to an anchor;



FIG. 2A shows a view of the anchor and suture in a deployed configuration;



FIG. 2B shows a cross sectional view of the anchor as it compresses a section of the suture within the anchor;



FIGS. 2C and 2D show a variation of anchor components;



FIG. 3A illustrates a perspective view of a variation of an anchoring system as described herein;



FIGS. 3B and 3C show a distal end of the anchoring system with a snare and suture respectively;



FIGS. 4A-4B show a perspective view and cross sectional view respectively prior to compressing a suture within the anchor;



FIGS. 4C-4D show a perspective view and cross sectional view respectively after the components of the anchor are joined to retain a suture therein; and



FIG. 4E shows a partial sectional view of an anchor placed within a cavity and attached to soft tissue.





DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides improved methods and devices for knotless suturing of tissue. Although the variation discussed herein discusses use of a suture, the term “suture” may include any piece of material that is used to close a wound or connect tissue (e.g., catgut, thread, wire, etc.) so long as the material can be used with the other portions of the anchor as described herein. Accordingly, sutures as described herein may include polymeric, metallic, or other types of sutures.


For illustrative purposes, the examples discussed herein show the use of the anchoring system to suture soft tissue to a bone structure, specifically the soft labrum to the glenoid. In one variation of the system, the medical practitioner affixes a length of suture through soft tissue to approximate and fix the soft tissue with respect to the body cavity (e.g., a bored hole in the bone structure). It should be understood, however, that the suture anchor apparatus may be utilized to secure a length of suture to body cavities other than in a bone structure, and may even be used to anchor the suture outside of a body cavity, merely to a predetermined location within the body.


In the suturing system described herein, the medical practitioner affixes the suture to an anchor body that is placed in the body cavity. The design of the system eliminates the needs for knotting of the suture. However, the present system also allows tying of an end of the suture into a knot if the practitioner so desires.


The invention permits minimally invasive surgeries on injuries and greatly facilitates rapid and secure fixation of the target tissues. It should be understood that the same principles described herein apply to the repair of other injuries in which soft tissue is to be re-attached to a bone structure.



FIG. 1A illustrates a partial view of the shoulder anatomy 10 in which the humerus 14 is adjacent to the rotator cuff 12 and labrum 18 as it nests within against the glenoid 20. The scapula 16 is partially shown. For clarity, various bones and other soft tissue are not illustrated in FIG. 1A.



FIG. 1A also illustrates exemplary placement of anchors 100 according to the system described herein. As shown, the anchor 100 secures soft tissue (e.g., the labrum) to hard tissue (e.g., the glenoid) via a suture 102. Any number of anchors 100 may be employed. Moreover, the location of the anchors and sutures may vary as required. As shown, the anchor body 104 is located within a cavity in the bone. This cavity is created prior to affixing the anchor within the bone.



FIG. 1B shows a view of a single suture 102 adjacent to a cavity 22 created in the bone. At this point, the free ends 108 of the suture 102 do not enter the cavity but are directed towards the anchoring system (not shown) as described in further detail below. FIG. 1B illustrates placement of the suture 102 within the labrum 18. In this example, a looping 106 section secures the suture 102 to the labrum 18. The looping section 106 may extend through the tissue so that both free ends 108 of the suture 102 can be loaded into the anchor (not illustrated in FIG. 1B).


Typically, the soft tissue is grasped or stabilized using a device while needles place a stitch in the tissue. An example of a device capable of placing the suture is the SPEEDSTITCH® Suturing device provided by ArthroCare, Austin, Tex. However, the methods and devices described herein are not limited to such a technique. For example, a single end of the suture may be affixed to soft tissue such that the other free end of the suture is eventually affixed to the bone via the anchor.


The hole or cavity 22 sites are planned by applying traction to the suture. This action allows the practitioner to estimate the proximity of the holes to the labrum. Typically, the holes 22 are created 2 mm from the glenoid rim onto the articular surface of the glenoid. However, in certain cases, the holes 22 may be created on the glenoid rim.



FIG. 2A illustrates an example of a deployed anchor 100 having a suture 102. As shown, the anchor 100 includes an anchor body 104 that seats a locking plug 110. FIG. 2B shows a cross-sectional view of the anchor 100 of FIG. 2A. As discussed herein, a first section 124 of the suture 102 becomes secured within the anchor 100 while a second section 126 wedges between the cavity wall (not shown) and an exterior of the anchor body 104. In this variation, the suture 102 loops from a first side of the anchor to a second side via a suture opening 120 located in a stop portion 112 of the locking plug 110.



FIG. 2C illustrates an example of a locking plug 110. The locking plug 110 includes a shaft 114 intended to nest within the anchor body. The locking plug 110 also includes a stop portion 112 that limits movement of the plug 110 within the anchor body. Although the shaft portion 114 is illustrated as being smooth and cylindrical, the devices described herein include various additional combinations of shapes and textures or surfaces on the shaft. In particular, the surface of the shaft 114 may be configured to increase the frictional force applied by the anchor against the suture portion held therein. In addition, the suture opening 120 is illustrated as an opening within the stop portion 112. However, other shapes and locations of the suture holder 120 may be incorporated into the anchor. For example, the suture opening 120 may not be fully surrounded by the stop portion 112 (e.g., a groove in the face of the stop portion). Alternatively or in combination, the suture opening 120 may be located in the shaft portion 114 of the locking plug 110.


Turning back to FIG. 2B, the shaft 114 of the locking plug 110 may include a section allowing for a removable connection with the anchor system 150. In this variation, the removable connection comprises an internal threaded portion 118 within the shaft. As discussed herein, in one variation, upon application of sufficient stress between the mating threaded portions, one or both of the threaded portions strip to allow for a release of the anchor 100 from the system 150. In additional variations, other removable connections as commonly known by those skilled in the art are contemplated to be within the scope of the invention.



FIG. 2D illustrates an example of an anchor body 104. As shown, the anchor body includes a lumen 122 that is sufficiently sized to permit passage of the locking plug shaft 114. In addition, this variation of the anchor body 114 is non-deformable or rigid and includes a plurality of tapered ridges 116 or anchoring structures that deform the tissue upon placement of the anchor into the body cavity. As shown, the tapering shape of the ridges 116 allow for insertion of the anchor body into the cavity when inserted in a first direction and resist removal when the anchor body is urged in an opposite direction. The illustration of the ridges 116 is intended for example only. Variations are within the scope of the device and methods described herein. For example, variations include anchoring structures that do not fully encircle the anchor body. In additional versions of the device, the anchor body may be slightly deformable such that it at least partially conforms to the body cavity.



FIG. 3A illustrates a variation of the suture anchoring system 150 as described with an anchor located in the distal portion of the system 150. As shown, a snare 152 is placed within the anchor to allow the medical practitioner to load a suture for securing tissue. A removable snare body holder 156 can be used to prevent the snare 152 from becoming damaged or from disengaging the anchor during, for example, handling and shipment. The system 150 includes an extension member 170 extending from a handle portion 172. The distal end of the extension member 170 includes an anchor seat 166 while a rod (not shown) is located within the extension member 170. In use, the rod is moveable relative to the anchor seat 166 to assist in deploying or disengaging the anchor from the system 150.


In the embodiment shown in FIG. 3A, the handle portion 172 includes a wheel or spool member 174. The spool member may have one or more knobs 176 associated with it that allow for tensioning of the suture for tissue approximation. In this particular variation, a spool 178 allows for retraction of the snare 158. As the wheel is rotated, the snare and suture may be drawn through the system 150. The spool member 174 may also include a locking mechanism 180 (such as the locking ratchet configuration shown) to prevent undesired movement (e.g., back out) of the suture and/or snare. The handle portion 172 may also include a lever 182 that moves the inner rod relative to the extension member 170 and anchor seat 166. In this variation the lever 182 comprises a rotational lever or cam. As discussed below, using the lever to advance an anchor body against a stop portion on the locking plug ultimately disengages the anchor from the system 150.



FIG. 3B illustrates a distal end of the suture anchoring system 150 according to the present devices and methods. To load the suture 102 in the anchoring system 150, the medical practitioner passes the free end or ends 108 of the suture 102 into a snare 152. The snare 152 extends through the anchor 100 and anchoring system and can be coupled to the spool member (not shown). In the variation shown, the snare 152 comprises a wire terminating in a loop 154 as shown. Alternatively, the snare 152 may have any other means of permanently or temporarily securing the suture 102 so that it may be passed into the anchoring system (e.g., clamps, hooks, sleeves, etc.). Moreover, it is not necessary to capture the ends of the suture 102. Instead, the practitioner may extend the suture beyond the loop.


Next, the medical practitioner draws the suture 102 through the anchor 100 and into the anchoring system 150 (for example, via activation of the spool member). The result is shown in FIG. 3C, which shows the suture 102 extending through a portion 112 of a locking plug 110 to pass from a first side of the anchor 100 to an adjacent side through the suture carrying portion 120 of the locking plug 110. Ultimately, the suture 102 passes through the anchor body 104. This configuration allows loading of the suture 102 into the interior lumen of the anchor body 104. Although not illustrated, the suture 102 can be withdrawn into a handle portion of the device for tensioning prior to placement.



FIG. 4A illustrates the assembly after the medical practitioner removes the snare body holder 156 so that the assembly is ready for insertion into a body cavity 22. At this point, the medical practitioner can adjust the tension in the suture 102 by adjusting the suture 102 length between the section of the suture that is placed in tissue (not shown but designated by 106) and the locking plug 110. As described herein, the adjustment may be performed using the spool assembly or a similar tensioning system. As discussed herein, a first section 124 of the suture 102 is situated so that it remains inside the deployed anchor 100.



FIG. 4B illustrates a cross sectional view of the device of FIG. 4A. In this view the suture is omitted for clarity. As illustrated, the shaft 114 of the locking plug 110 includes a threaded portion 118 that receives a threaded rod portion 168. As noted herein, the devices and methods include various configurations for removably connecting the shaft 114 to the rod 160 other than threading. For example, a frictional press-fit or barbed coupling may be employed.



FIG. 4C illustrates the anchor 100 upon deployment but before it is disengaged from the system 150 and anchor seat 166. As shown, the anchor body 104 slides over the shaft 114 of the locking plug 110 to trap the first section (not shown) of the suture 102 within the anchor body 104. In some variations, the first section 124 of the suture 102 may be withdrawn into the system 170 as the anchor body 104 advances onto the shaft 114 of the plug 110. Ultimately, the stop portion 112 of the locking plug 110 contacts the anchor body 104.


In this variation of the invention, the body is urged over the shaft of the plug by first, rotating ninety (90) degrees a flag 282 and button 284. The button 284 and flag 282 are used to lockout (prevent relative movement between the anchor and plug) during the initial placement of the anchor into the bone passage. Next, the surgeon pushes or taps on the button 284 which drives body 104 onto plug 110. While the anchor body is being urged onto the plug, internal ratchet teeth ensure that the members 140/166/170 can not back out between taps. When the button 284 is flush with the back of member 182, body 104 is pushed all the way onto the shaft 114 and the suture is locked.


In one embodiment of the invention, the operator may further tension the suture (approximate tissue) by urging or pounding the anchor into the hole by continuing to tap on the button. This action will serve to urge the anchor, with suture attached, deeper into the hole thus dragging the tissue.


Referring again to FIGS. 3A and 4D to separate the anchor from anchor seat 166, the rotating lever knob 182 is twisted to push seat 166 further into plug 110 which ultimately strips the rod 168 out of member 118. A driver block (not shown) simultaneously releases the suture ratchet reel 174 so the suture can pay out as the inserter is being removed. This is accomplished by the driver block actuating a stop 286 proximal to spool 174.



FIG. 4E shows a deployed anchor 100 situated within the body cavity 22 after release from the anchoring system 150. As shown, the anchor body 104 compresses a second section 124 of the suture 102 against a wall of the cavity 22. The first section of the suture 102 remains within the anchor between the locking plug 110 and interior of the anchor body 104.


Although the variation depicts the portion of the anchor as being adjacent to the surface of the hard tissue, variations of the method and device include anchors that are deployed partially above or fully below the surface of the tissue. As shown, the anchor body 104 impinges a second section 124 of the suture against a wall of the cavity 22. Accordingly, the act of inserting the anchor body 104 into the cavity 22 actually increases the tension on the soft tissue since the anchor body 104 further drives the second suture section 124 into the cavity 22 during placement.


Another variation of a method for deploying the anchor includes advancing the anchor body 104 over the shaft 114 when the assembly is located within the cavity. For example, the locking plug 110 may be inserted into the cavity prior to advancement of the anchor body 104 onto the shaft 114 (as shown by the configuration of FIG. 4A). Next, the medical practitioner can adjust the tension on the suture 102 until a desired length of suture extends from the cavity to the soft tissue. Finally, the medical practitioner advances the anchor body 104 into the cavity. At the same time, the anchor advances over the locking plug shaft 114. This action produces the configuration shown in FIG. 4C. Again, the action of the anchor body 104 serves to further secure the soft tissue as the anchor body 104 drives the second section 124 of the suture 102 further into the cavity and ultimately deploys the anchor as shown in FIG. 4E.


The amount of force required to separate the anchor from the deployment system is sufficiently high to minimize inadvertent deployment but also to ensure that the surgeon can deploy the anchor as desired.


One advantage provided by the present invention is the ability to tighten a suture loop embedded within soft tissue to a predetermined tension, and lock the suture within a suture anchor without losing that tension.


Accordingly, although an exemplary embodiment of the invention has been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention. In particular, it is noted that the procedures, while oriented toward the arthroscopic repair of the rotator cuff, are applicable to the repair of any body location wherein it is desired to attach or reattach soft tissue to bone, particularly using an arthroscopic procedure.

Claims
  • 1. A method of securing soft tissue with respect to a body cavity without knots, comprising: passing a length of suture through soft tissue so that a portion of the suture is secured in the soft tissue resulting in at least one free end;providing an anchor comprising an anchor body having a lumen extending therethrough, and a locking plug having a shaft portion extending at least partially in the anchor body lumen; the anchor body is non-deformable and where inserting the anchor body into the cavity comprises partially deforming the wall of the body cavity; the anchor body is generally tubular and has a plurality of tapered ridges circumferentially located about the anchor body and permit insertion of the anchor body into the body cavity when advanced in a first direction and resist removal of the anchor body when withdrawn in an opposite direction;passing the free end of the suture into the anchor such that a first section of the suture is in a portion of the locking plug and extends through the anchor body lumen;applying tension to the suture between the tissue and the anchor; andinserting the anchor into the body cavity, such that a second section of the suture is between the anchor body and a wall of the body cavity.
  • 2. The method of claim 1, further comprising actuating the anchor within the body cavity so that the locking plug shaft portion seats in the anchor body lumen such that the first section of the suture is compress between the locking plug shaft portion and the interior of the anchor body lumen.
  • 3. The method of claim 2, where actuating the anchor comprises withdrawing the locking plug shaft into the anchor body lumen.
  • 4. The method of claim 2, where actuating the anchor comprises advancing the anchor body over the locking plug shaft.
  • 5. The method of claim 2, where the anchor is coupled a rod.
  • 6. The method of claim 5, where the rod is removably attached to a proximal end of the anchor shaft and projects through the anchor body lumen, the rod having an anchor seat adjacent to the anchor body and configured to allow movement of the anchor body relative to the shaft, such that relative movement between the anchor seat and the rod portion causes the anchor body to seat over the shaft.
  • 7. The method of claim 5, where the rod is removably coupled to an activation assembly having a handle portion.
  • 8. The method of claim 7, where the actuation assembly further comprises a spool member coupled to the suture, and where applying tension to the suture comprises activating the spool member to apply tension to the suture.
  • 9. The method of claim 5, further comprising applying a tensile force between the rod portion and shaft such that an attachment location therebetween fractures permitting the rod to be detached from the shaft.
  • 10. The method of claim 9, where the attachment location comprises an internal threaded portion within the shaft and an external threaded portion on the rod, such that the tensile force comprises sufficient force to strip either the external threaded portion on the rod or the internal threaded portion on the shaft to detach the rod from the shaft.
  • 11. The method of claim 2, further including the step of trimming the suture after the step of actuating the anchor.
  • 12. The method of claim 1, where the body cavity is formed in bone and the plurality of ridges interfere with a cortical layer of the bone.
  • 13. The method of claim 1, where passing the free end of the suture comprises affixing the free end of the suture to a snare and withdrawing the snare through the anchor body lumen and through the portion of the locking plug.
  • 14. The method of claim 1, wherein the soft tissue is a cartilage and a body cavity is formed in a bone.
  • 15. The method of claim 14, wherein the cartilage is a glenoid labrum, and wherein the bone is the glenoid.
  • 16. The method of claim 1, wherein the portion of the suture secured in the soft tissue comprises a loop, and where the remaining free ends of the suture pass into the anchor.
  • 17. A method for knotless securing of soft tissue to hard tissue, the method comprising: providing an anchor having an anchor body and a locking plug, where the locking plug is moveable through a lumen of the anchor body until a stop of the locking plug contacts the anchor body; the anchor body is non-deformable and where inserting the anchor body into the cavity comprises partially deforming the wall of the body cavity; the anchor body is generally tubular and has a plurality of tapered ridges circumferentially located about the anchor body and permit insertion of the anchor body into the body cavity when advanced in a first direction and resist removal of the anchor body when withdrawn in an opposite direction;securing a suture to the soft tissue;advancing a first section of the suture through the stop and through the body lumen;tensioning a portion of the suture; andsecuring the anchor into a cavity formed in the hard tissue, such that the first section of the suture is compressed between the anchor body and the locking plug and a second section of the suture is compressed between a wall of the cavity and an exterior of the anchor body.
  • 18. The method of claim 17, where securing the anchor comprises moving the locking plug relative to the anchor body until a stop on the locking plug prevents further movement.
  • 19. The method of claim 18, where moving the locking plug relative to the anchor body occurs within the cavity.
  • 20. The method of claim 19, where the locking plug is withdrawn into the anchor body.
  • 21. The method of claim 19, where the anchor body is advanced over the locking plug.
  • 22. The method of claim 17, wherein the soft tissue is a cartilage, and the hard tissue is bone.
  • 23. The method of claim 22, wherein the cartilage is the glenoid labrum, and wherein the bone is the glenoid.
  • 24. The method of claim 17, wherein the portion of the suture secured in the soft tissue comprises a loop, and where the remaining free ends of the suture pass into the anchor.
  • 25. The method of claim 17, wherein said tensioning is performed semi-automatically.
  • 26. The method of claim 17, wherein said tension is performed by rotating a knob.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Ser. No. 11/499,084 filed Aug. 3, 2006, now U.S. Pat. No. 8,133,258, and is hereby incorporated herein by reference.

US Referenced Citations (382)
Number Name Date Kind
918570 Mather Apr 1909 A
919138 Drake et al. Apr 1909 A
1153053 Forster Sep 1915 A
1565041 Arneu Dec 1925 A
2269963 Wrapler Jan 1942 A
2286578 Sauter Jun 1942 A
2485531 Dzus et al. Oct 1949 A
2600395 Domoj et al. Jun 1952 A
3143916 Rice Aug 1964 A
3942407 Mortensen Mar 1976 A
3946740 Bassett Mar 1976 A
3994521 Van Gompel Nov 1976 A
4047533 Perciaccante et al. Sep 1977 A
4109658 Hughes Aug 1978 A
4164225 Johnson et al. Aug 1979 A
4186921 Fox Feb 1980 A
4210148 Stivala Jul 1980 A
4274324 Giannuzzi Jun 1981 A
4301551 Dore et al. Nov 1981 A
4319428 Fox Mar 1982 A
4345601 Fukuda Aug 1982 A
4373530 Kilejian Feb 1983 A
4384389 Sato May 1983 A
4409974 Freedland Oct 1983 A
4456270 Zettl et al. Jun 1984 A
4467478 Jurgutis Aug 1984 A
4483023 Hoffman, Jr. et al. Nov 1984 A
4493323 Albright et al. Jan 1985 A
4580936 Francis et al. Apr 1986 A
4590928 Hunt et al. May 1986 A
4597776 Ullman et al. Jul 1986 A
4605414 Czajka Aug 1986 A
4621640 Mulhollan et al. Nov 1986 A
4635637 Schreiber Jan 1987 A
4657461 Smith Apr 1987 A
4672957 Hourahane Jun 1987 A
4680835 Horng Jul 1987 A
4712542 Daniel et al. Dec 1987 A
4721103 Freedland Jan 1988 A
4731084 Dunn et al. Mar 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4750492 Jacobs Jun 1988 A
4772286 Goble et al. Sep 1988 A
4779616 Johnson et al. Oct 1988 A
4781182 Purnell et al. Nov 1988 A
4792336 Hlavacek et al. Dec 1988 A
4809408 Abrahamson Mar 1989 A
4823780 Odensten et al. Apr 1989 A
4828439 Giannuzzi May 1989 A
4834755 Silvestrini et al. May 1989 A
4836205 Barrett Jun 1989 A
4851005 Hunt et al. Jul 1989 A
4870957 Goble et al. Oct 1989 A
4917700 Aikins Apr 1990 A
4923461 Caspari May 1990 A
4926860 Stice et al. May 1990 A
4935027 Yoon Jun 1990 A
4946377 Kovach Aug 1990 A
4946467 Ohi et al. Aug 1990 A
4946468 Li Aug 1990 A
4957498 Caspari Sep 1990 A
4962929 Melton, Jr. Oct 1990 A
4968315 Gatturna Nov 1990 A
4981149 Yoon et al. Jan 1991 A
4987665 Dumican Jan 1991 A
5002550 Li Mar 1991 A
5019093 Kaplan et al. May 1991 A
5037422 Hayhurst Aug 1991 A
5046513 Gatturna Sep 1991 A
5059201 Asnis Oct 1991 A
5062344 Gerker Nov 1991 A
5085661 Moss Feb 1992 A
5147166 Harker Sep 1992 A
5195542 Gazielly et al. Mar 1993 A
5203787 Noblitt et al. Apr 1993 A
RE34293 Goble et al. Jun 1993 E
5217495 Kaplan et al. Jun 1993 A
5219359 McQuilkin et al. Jun 1993 A
5222977 Esser Jun 1993 A
5224946 Hayhurst Jul 1993 A
5258016 DiPoto et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5263984 Li Nov 1993 A
5275176 Chandler Jan 1994 A
5304184 Hathaway et al. Apr 1994 A
5306290 Martins et al. Apr 1994 A
5312422 Trott May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5324308 Pierce Jun 1994 A
5326205 Anspach, III et al. Jul 1994 A
5330442 Green Jul 1994 A
5330468 Burkhart Jul 1994 A
5330488 Goldrath Jul 1994 A
5336240 Metzler Aug 1994 A
5354298 Lee et al. Oct 1994 A
5364407 Poll Nov 1994 A
5376118 Kaplan et al. Dec 1994 A
5383905 Golds et al. Jan 1995 A
5397325 Della Badia et al. Mar 1995 A
5405352 Weston Apr 1995 A
5405359 Pierce Apr 1995 A
5409494 Morgan Apr 1995 A
5413579 Tom Du May 1995 A
5417691 Hayhurst May 1995 A
5417699 Klein et al. May 1995 A
5417712 Whittaker et al. May 1995 A
5431666 Sauer et al. Jul 1995 A
5441508 Gazielly et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5470335 Du Toit Nov 1995 A
5472452 Trott Dec 1995 A
5474565 Trott Dec 1995 A
5480403 Lee et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5499991 Garman et al. Mar 1996 A
5501683 Trott Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5505735 Li Apr 1996 A
5514159 Matula et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522820 Caspari et al. Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527343 Bonutti Jun 1996 A
5531792 Huene Jul 1996 A
5534012 Bonutti Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5545180 Le et al. Aug 1996 A
5549617 Green et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5553360 Lucas et al. Sep 1996 A
5562689 Green et al. Oct 1996 A
5569305 Bonutti Oct 1996 A
5569306 Thal Oct 1996 A
5571104 Li Nov 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5573542 Stevens Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5575801 Habermeyer et al. Nov 1996 A
5584835 Greenfield Dec 1996 A
5584839 Gieringer Dec 1996 A
5584860 Goble et al. Dec 1996 A
5584862 Bonutti Dec 1996 A
5591207 Coleman Jan 1997 A
5593189 Little Jan 1997 A
5601558 Torrie et al. Feb 1997 A
5609597 Lehrer Mar 1997 A
5611801 Songer Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5618290 Toy et al. Apr 1997 A
5618314 Harwin et al. Apr 1997 A
5626614 Hart May 1997 A
5630824 Hart May 1997 A
5632748 Beck, Jr. et al. May 1997 A
5645552 Sherts Jul 1997 A
5645589 Li Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649940 Hart et al. Jul 1997 A
5658313 Thal Aug 1997 A
5665108 Galindo Sep 1997 A
5665110 Chervitz et al. Sep 1997 A
5665112 Thal Sep 1997 A
5667528 Colligan Sep 1997 A
D385352 Bales et al. Oct 1997 S
5681333 Burkhart et al. Oct 1997 A
5681351 Jamiolkowski Oct 1997 A
5683417 Cooper Nov 1997 A
5683418 Luscombe et al. Nov 1997 A
5683419 Thal Nov 1997 A
5690649 Li Nov 1997 A
5693060 Martin Dec 1997 A
5697950 Fucci et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5707362 Yoon Jan 1998 A
5707394 Miller et al. Jan 1998 A
5709708 Thal Jan 1998 A
5720765 Thal Feb 1998 A
5725529 Nicholson et al. Mar 1998 A
5725541 Anspach, III et al. Mar 1998 A
5728136 Thal Mar 1998 A
5733307 Dinsdale Mar 1998 A
5741281 Martin Apr 1998 A
5741282 Anspach, III et al. Apr 1998 A
5766250 Chervitz et al. Jun 1998 A
5776150 Nolan et al. Jul 1998 A
5779719 Klein et al. Jul 1998 A
5782863 Bartlett Jul 1998 A
5782864 Lizardi Jul 1998 A
5782865 Grotz Jul 1998 A
5791899 Sachdeva Aug 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797963 McDevitt Aug 1998 A
5810848 Hayhurst Sep 1998 A
5810854 Beach Sep 1998 A
5814052 Nakao et al. Sep 1998 A
5814056 Prosst et al. Sep 1998 A
5814071 McDevitt et al. Sep 1998 A
5814072 Bonutti Sep 1998 A
5843111 Vijfvinkel Dec 1998 A
5849004 Bramlet Dec 1998 A
5860978 McDevitt Jan 1999 A
5860991 Klein et al. Jan 1999 A
5860992 Daniel et al. Jan 1999 A
5868789 Huebner Feb 1999 A
5879372 Bartlett Mar 1999 A
5882340 Yoon Mar 1999 A
5885294 Pedlick et al. Mar 1999 A
5891168 Thal Apr 1999 A
5893850 Cachia Apr 1999 A
5902311 Andreas et al. May 1999 A
5904692 Steckel et al. May 1999 A
5911721 Nicholson et al. Jun 1999 A
5921994 Andreas et al. Jul 1999 A
5935107 Taylor et al. Aug 1999 A
5935129 McDevitt et al. Aug 1999 A
5941900 Bonutti Aug 1999 A
5941901 Egan Aug 1999 A
5944724 Lizardi Aug 1999 A
5944739 Zlock et al. Aug 1999 A
5947982 Duran Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5957968 Belden et al. Sep 1999 A
5961530 Moore et al. Oct 1999 A
5961538 Pedlick et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5980558 Wiley Nov 1999 A
5980559 Bonutti Nov 1999 A
5984933 Yoon Nov 1999 A
5993459 Larsen Nov 1999 A
6001104 Benderev et al. Dec 1999 A
6001109 Kontos Dec 1999 A
6007566 Wenstrom Dec 1999 A
6007567 Bonutti Dec 1999 A
6010525 Bonutti et al. Jan 2000 A
6013083 Bennett Jan 2000 A
6017346 Grotz Jan 2000 A
6022360 Reimels et al. Feb 2000 A
6022373 Li Feb 2000 A
6024758 Thal Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6045571 Hill et al. Apr 2000 A
6045572 Johnson et al. Apr 2000 A
6045573 Wenstrom et al. Apr 2000 A
6045574 Thal Apr 2000 A
6048351 Gordon et al. Apr 2000 A
6051006 Shluzas et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056773 Bonutti May 2000 A
6066146 Carroll et al. May 2000 A
6068648 Cole et al. May 2000 A
6083243 Pokropinski et al. Jul 2000 A
6086608 Ek et al. Jul 2000 A
6096051 Kortenbach et al. Aug 2000 A
6102934 Li Aug 2000 A
6117160 Bonutti Sep 2000 A
6117161 Li Sep 2000 A
6143004 Davis et al. Nov 2000 A
6146386 Blackman Nov 2000 A
6146406 Shluzas et al. Nov 2000 A
6149669 Li Nov 2000 A
6156039 Thal Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6159235 Kim Dec 2000 A
6162537 Martin et al. Dec 2000 A
6171317 Jackson et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6200329 Fung et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6206895 Levinson Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217592 Freda et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6241736 Sater Jun 2001 B1
6267766 Burkhart Jul 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6293961 Schwartz Sep 2001 B2
6315781 Reinhardt Nov 2001 B1
6319252 McDevitt et al. Nov 2001 B1
6319269 Li Nov 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6328758 Tornier et al. Dec 2001 B1
6355053 Li Mar 2002 B1
6409743 Fenton Jun 2002 B1
6432123 Schwartz Aug 2002 B2
6436109 Kontes Aug 2002 B1
6451030 Li et al. Sep 2002 B2
6464713 Bonutti Oct 2002 B2
6468293 Bonutti et al. Oct 2002 B2
6471715 Weiss Oct 2002 B1
6475230 Bonutti et al. Nov 2002 B1
6491714 Bennett Dec 2002 B1
6517542 Papay et al. Feb 2003 B1
6520980 Foerster Feb 2003 B1
6524317 Ritchart et al. Feb 2003 B1
6527794 McDevitt et al. Mar 2003 B1
6540770 Tornier et al. Apr 2003 B1
6547800 Foerster et al. Apr 2003 B2
6551330 Bain et al. Apr 2003 B1
6569187 Bonutti et al. May 2003 B1
6575987 Gellman et al. Jun 2003 B2
6582453 Tran et al. Jun 2003 B1
6585730 Foerster Jul 2003 B1
6635073 Bonutti Oct 2003 B2
6638279 Bonutti Oct 2003 B2
6645227 Fallin et al. Nov 2003 B2
6648903 Pierson, III Nov 2003 B1
6652561 Tran Nov 2003 B1
6656183 Colleran et al. Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6660023 McDevitt et al. Dec 2003 B2
6679896 Gellman et al. Jan 2004 B2
6682549 Bartlett Jan 2004 B2
6689154 Bartlett Feb 2004 B2
6692516 West et al. Feb 2004 B2
6712830 Esplin Mar 2004 B2
6716234 Grafton et al. Apr 2004 B2
6736829 Li et al. May 2004 B1
6770076 Foerster Aug 2004 B2
6780198 Gregoire et al. Aug 2004 B1
6855157 Foerster et al. Feb 2005 B2
6860887 Frankie Mar 2005 B1
6939379 Sklar Sep 2005 B2
6972027 Fallin et al. Dec 2005 B2
7029490 Grafton Apr 2006 B2
7083638 Foerster Aug 2006 B2
7087064 Hyde Aug 2006 B1
7090690 Foerster et al. Aug 2006 B2
7104999 Overaker Sep 2006 B2
7150750 Damarati Dec 2006 B2
7247164 Ritchart et al. Jul 2007 B1
7329272 Burkhart et al. Feb 2008 B2
7410489 Dakin et al. Aug 2008 B2
7527590 Suzuki et al. May 2009 B2
7556640 Foerster Jul 2009 B2
7588587 Barbieri et al. Sep 2009 B2
7615061 White et al. Nov 2009 B2
7637926 Foerster et al. Dec 2009 B2
7674274 Foerster et al. Mar 2010 B2
7682374 Foerster Mar 2010 B2
7695494 Foerster Apr 2010 B2
7806909 Fallin et al. Oct 2010 B2
7837710 Lombardo et al. Nov 2010 B2
7963972 Foerster et al. Jun 2011 B2
8105343 White et al. Jan 2012 B2
8109966 Ritchart et al. Feb 2012 B2
20030167062 Gambale Sep 2003 A1
20030195563 Foerster Oct 2003 A1
20030195564 Tran et al. Oct 2003 A1
20040093031 Burkhart et al. May 2004 A1
20040138706 Abrams et al. Jul 2004 A1
20040236336 Foerster et al. Nov 2004 A1
20050033364 Gregoire et al. Feb 2005 A1
20050080455 Schmieding et al. Apr 2005 A1
20050090827 Gedebou Apr 2005 A1
20050277986 Foerster Dec 2005 A1
20060004364 Green et al. Jan 2006 A1
20060074422 Story et al. Apr 2006 A1
20060079904 Thal Apr 2006 A1
20060161159 Dreyfuss et al. Jul 2006 A1
20060161183 Sauer Jul 2006 A1
20060271060 Gordon Nov 2006 A1
20060271105 Foerster Nov 2006 A1
20070142838 Jordan Jun 2007 A1
20080051836 Foerster et al. Feb 2008 A1
20080319478 Foerster et al. Dec 2008 A1
20090048613 Surti Feb 2009 A1
20090222040 Foerster et al. Sep 2009 A1
20090222041 Foerster et al. Sep 2009 A1
20100191283 Foerster et al. Jul 2010 A1
20110213417 Foerster et al. Sep 2011 A1
20120095507 White et al. Apr 2012 A1
Foreign Referenced Citations (34)
Number Date Country
025 32 242 Feb 1977 DE
042 35 602 Apr 1994 DE
196 28 909 Jan 1998 DE
0 535 906 Apr 1993 EP
0 571 686 Dec 1993 EP
0 611557 Aug 1994 EP
1 072 234 Jan 2001 EP
1 072 237 Jan 2001 EP
1987779 Nov 2008 EP
2777442 Oct 1999 FR
2777447 Oct 1999 FR
2452825 Mar 2009 GB
2286468 Nov 1990 JP
8-52154 Feb 1996 JP
08-206121 Aug 1996 JP
11-502437 Mar 1999 JP
2000-225118 Aug 2000 JP
9106247 May 1991 WO
9506439 Mar 1995 WO
9525469 Sep 1995 WO
9617544 Jun 1996 WO
9628118 Sep 1996 WO
9720522 Jun 1997 WO
9807374 Feb 1998 WO
9922648 May 1999 WO
9953843 Oct 1999 WO
9953844 Oct 1999 WO
0221997 Mar 2002 WO
03049620 Jun 2003 WO
03090627 Nov 2003 WO
2004082724 Sep 2004 WO
2008022250 Feb 2008 WO
2009032695 Mar 2009 WO
2009114811 Sep 2009 WO
Related Publications (1)
Number Date Country
20120158052 A1 Jun 2012 US
Divisions (1)
Number Date Country
Parent 11499084 Aug 2006 US
Child 13404756 US