Method and apparatus for automated launch, retrieval, and servicing of a hovering aircraft

Information

  • Patent Grant
  • 9004402
  • Patent Number
    9,004,402
  • Date Filed
    Monday, September 23, 2013
    10 years ago
  • Date Issued
    Tuesday, April 14, 2015
    9 years ago
Abstract
An aircraft capable of thrust-borne flight can be automatically retrieved, serviced, and launched. In one embodiment, for retrieval, the aircraft drops a tether and pulls the tether at low relative speed into contact with a horizontal guide. The tether is pulled across the guide until the guide is captured b an end effector. The tether length is adjusted as necessary, and the aircraft swings on the guide to hang in an inverted position. Translation of the tether along the guide then brings the aircraft to a docking carriage, in which the aircraft parks for servicing. For launch, the carriage is swung upright, the end effector is released from the guide, and the aircraft thrusts into free flight. A full ground-handling cycle can thus be accomplished automatically with a simple, economical apparatus. It can be used with low risk of damage and requires moderate accuracy in manual or automatic flight control.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application relates to the following commonly-owned pending patent applications: U.S. patent application Ser. No. 13/743,069, filed on Jan. 15, 2013, U.S. patent application Ser. No. 13/899,172, filed on May 21, 2013, U.S. patent application Ser. No. 13/901,283, filed on May 23, 2013, U.S. patent application Ser. No. 13/901,295, filed on May 23, 2013, U.S. patent application Ser. No. 13/717,147, filed on Dec. 17, 2012, U.S. patent application Ser. No. 13/900,191, filed on May 22, 2013, and U.S. patent application Ser. No. 13/527,177, filed on Jun. 19, 2012.


BACKGROUND

1. Field of Invention


The present invention addresses launch, retrieval, and servicing of a hovering aircraft, especially in turbulent winds or onto an irregularly-moving platform, such as a ship in a rough sea. The invention is especially suited to unmanned aircraft of small size. It allows for a fully automated operations cycle, whereby the aircraft can be repeatedly launched, retrieved, serviced, and re-launched, without manual intervention at any point, and while requiring only modest accuracy in piloting.


2. Description of Prior Art


Hovering aircraft, be they helicopters, thrust-vectoring jets, “tail-sitters”, or other types, usually land by gently descending in free thrust-borne flight onto a landing surface, coming to rest on an undercarriage of wheels, skids, or legs. This elementary technique can be problematic in certain situations, as for example when targeting a small, windswept landing pad on a ship moving in a rough sea. The well-known Beartrap or RAST (Stewart & Baekken 1968) as well as the harpoon-and-grid system (Wolters & Reimering 1994) are used to permit retrieval with acceptable safety in such conditions. These systems require an expensive and substantial plant in the landing area, as well as manual operations coordinated between helicopter and shipboard crew. Furthermore the helicopter must carry a complete undercarriage in addition to the components necessary for capturing the retrieval apparatus.


Desirable improvements relative to such existing systems include (a) simplification of apparatus, and (b) automated rather than manual operation. Ideally automation would encompass not only retrieval but also subsequent refueling and launch. This would be particularly desirable for an unmanned aircraft, whose operations cycle could then be made fully autonomous. Some experimental work toward this objective has been done for a hovering aircraft by Mullens, et al. (2004), but with limited success even with light wind and a stationary base. The present invention by contrast provides for fully automated operation in calm or rough conditions, using apparatus which is simple, portable, and suitable for a small vessel or similarly confined base.


SUMMARY

In one embodiment of the present invention, an aircraft would proceed automatically from free thrust-borne flight through retrieval, servicing, and subsequent launch through the following sequence of actions.

  • a. While approaching base at low relative speed in substantially thrust-borne flight, the aircraft drops a tension element such as a tether or cable, which is typically attached to the aircraft at a point below the aircraft's mass centre.
  • b. The aircraft then brings the tether into contact with a guide element such as a crossbar or cable, whose principal dimension extends horizontally or substantially horizontally across the approach path of the aircraft and tether.
  • c. The tether is then drawn across the guide until the tether becomes attached to the guide or a fixture thereon, for example by a hook on the end of the tether. The aircraft may then adjust the tether length, or the position of the tether along the guide, while remaining attached to the guide.
  • d. The aircraft then swings around the guide into an inverted position, such that its mass centre is below the guide.
  • e. The aircraft then shortens the tether, and translates along the guide into a docking carriage. Precise positioning in the docking carriage may be aided by aligning surfaces or by adjustments in tether length.
  • f. As a consequence of insertion into the docking carriage, or as a subsequent step, the aircraft may connect to refueling or other services in the base station. The aircraft's powerplant may also be shut down.
  • g. At some point the docking carriage is swung upright, so that the thrust line of the aircraft is pointed upward or approximately upward.
  • h. The aircraft is refueled and otherwise serviced as necessary through one or more servicing connectors.
  • i. The tether is disconnected from the guide.
  • j. The aircraft powerplant may be restarted, and launch preparations completed. The aircraft may then use its own thrust to pull itself out of the docking carriage into thrust-borne free flight, or it may be forcibly ejected.


Since loads can be low during retrieval from hover, the apparatus can be light and portable. Furthermore, easy targeting makes the technique well-suited for both manual control and economical automation.


Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A, 1B, 1C, 1D, 1E, 1F, and 1G are a series of perspective views of an embodiment of the present invention for a hovering “tail-sitter” aircraft, showing the aircraft sequentially:

    • a. contacting a horizontal guide with a tether, the guide in this case taking the form of a cylindrical beam;
    • b. capturing the guide;
    • c. swinging around the guide into an inverted position;
    • d. entering a docking carriage;
    • e. swinging in the docking carriage back to an upright position;
    • f. starting its engine, and releasing its hook from the guide; and
    • g. launching into free flight.



FIG. 2 is a perspective view of one embodiment of a hook used to attach the tether to a horizontal guide beam or cable.



FIG. 3 is a perspective view of another embodiment of a hook which incorporates rolling elements to enable translation with low friction along a horizontal guide.



FIGS. 4A, 4B, and 4C are a series of perspective views of a representative docking carriage, showing:

    • a. the carriage by itself;
    • b. an aircraft entering the carriage; and
    • c. the carriage and aircraft swinging around the horizontal guide.



FIGS. 5A and 5B are a pair of perspective views of a representative fueling connection, showing the connection when (a) open; and (b) mated.



FIGS. 6A, 6B, and 6C are a series of perspective views showing one mechanism for releasing the hook of FIG. 2 from a cylindrical horizontal guide.



FIG. 7 is a perspective view of an embodiment of the base station, in which the horizontal guide is a cable.



FIG. 8 is a perspective view of one mechanism for releasing the hook of FIG. 3 from a cable guide as in FIG. 7.



FIG. 9 is a diagrammatic perspective of an embodiment of the base station, in which the horizontal guide takes the form of a chain which runs on a bar, and in which the chain is captured by the aircraft using a ball on the end of the tether.



FIG. 10 is a diagrammatic perspective view showing one mechanism for releasing the ball of FIG. 9 from the chain.





DETAILED DESCRIPTION


FIG. 1 shows an illustrative embodiment of the present invention, as used with a “tailsitter” or “tilt-body” aircraft which adopts a nose-vertical orientation for thrust-borne flight. For thrust, in this example, aircraft 1 uses a main rotor 2, and for attitude control it applies a combination of variable blade pitch on the main rotor with variable power on wing-tip thrusters 3.


In preparation for retrieval, the aircraft uses an onboard winch to extend a tension element such as a lightweight tether 4 having an effector or end fitting 5, which in this embodiment takes the form of a hook as shown in FIG. 2. The aircraft approaches a horizontal guide comprising a crossbar 6 along an approximately horizontal path at low relative speed. This brings the tether into contact with the crossbar as shown in FIG. 1(a). In one embodiment a screen 7 or other suitable fixture may be suspended below the crossbar to damp pendulous oscillations of the tether, which would otherwise cause contact with the crossbar to be intermittent. After contact is made, the aircraft can draw the hook 5 against the crossbar by some combination of (1) continued translation along the approach path; (2) climb; or (3) retraction of the tether. The crossbar is thereby pulled through the gate 8 of the hook as shown in FIG. 2, and the crossbar is then captured by the aircraft as shown in FIG. 1(b).


Note, however, that if the hook fails to capture the crossbar then the aircraft will continue unimpeded in thrust-borne free flight, and can return for another approach.


In most practical cases the tether will be attached to the aircraft below the aircraft mass centre. Hence, once attached to the horizontal guide, the aircraft can be maintained upright only by appropriate application of active control to counter inverted-pendulum instability. Control authority, however, may be insufficient to reject disturbances caused by wind gusts or base motion (as on a rocking ship). Sensitivity to such disturbances increases as tether length decreases. A tether attachment on the aircraft, as illustrated in FIG. 1, is therefore problematic if the aircraft is required to remain upright after capture. However this problem is turned into a virtue by having the aircraft swing inverted as shown in FIG. 1(c). In the inverted position, hanging from the guide, the aircraft can handle relatively large disturbances. The swing can be done immediately after capture, or later. For example, the aircraft may rotate after the tether is shortened while the aircraft remains upright. Inverting with a short tether has the advantage of minimizing the crossbar height necessary to clear underlying obstacles. Once inverted, the aircraft can reduce thrust while maintaining attitude-control authority.


The next step is to translate along the guide toward a docking carriage 12. If the guide has sufficiently low sliding friction, or if the hook has rollers or effective rolling elements, as illustrated in FIG. 3, then the aircraft can pull the tether along-guide by tilting its thrust axis. Alternatively, the guide can incorporate a mechanism for translating the tether. For example, the crossbar of FIG. 1 and FIG. 2 is wound with a screw thread 9 whose crests engage the hook. Spinning the crossbar, for example with a motor 10, thus draws the aircraft along the crossbar toward a docking carriage 12. The docking carriage is shown in detail in FIG. 4(a).


As the aircraft approaches the docking carriage, the aircraft can be guided into alignment by various constraining surfaces, including for example arms 11, longerons 13, and wing trailing-edge supports 14, as shown in FIG. 1(d) and FIG. 4(b). When the tether reaches an appropriate position along the crossbar, the aircraft can winch itself firmly and precisely into the docking carriage. The aircraft's powerplant may then be switched off.


In the embodiment of FIG. 1, the docking carriage includes a linkage 16, as shown in more detail in FIG. 5, whereby winching the aircraft into the carriage causes a fueling probe 17 to be inserted into a receptacle 18 on the aircraft. Connections for oil or electricity could be made similarly, or by a suitable mechanism actuated independently after docking is complete. The aircraft can be serviced through such connections at any time while in the docking carriage. For example, fuel may be pumped from a tank 19 on the base station through a supply line 42 into the aircraft. The aircraft or docking station could include appropriate sensors for measuring flow and quantity so that a specified amount of fuel could be automatically on- or off-loaded.


In preparation for launch of the aircraft, the docking carriage must be swung upright. In the embodiment of FIG. 1(e) and FIG. 4(c), this is done by a telescoping actuator 20 and linkage 21. As the carriage swings, the guide arms 11 rotate under gravity around hinges 22, thus clearing a path for the aircraft to launch without fouling the empennage 23. The aircraft meanwhile remains constrained by the longerons 13 and wing supports 14.


When convenient, the aircraft powerplant could be started by an onboard motor, or by an external motor coupled to the engine by a suitable linkage. Pre-launch checks could then be executed automatically.


For launch, the hook 5 must be released from the guide 6. One method for hook release is shown in FIG. 6. First, the tether is extended so that a patch of Velcro or like material 26 on the hook's gate 8 comes into contact with a mating pad 27 wrapped around the crossbar 6, as shown in FIG. 6(a). Then the motor 10 slowly spins the crossbar 6. Meanwhile, the material 26 on the hook's gate 8 and the mating pad 27 remain in contact, and so in effect “unwrap” the gate from the crossbar, as shown in FIG. 6(b). Hence the hook drops away from the crossbar, and can be retracted into the aircraft as illustrated in FIG. 6(c).


The aircraft is then restrained only by gravity and the remaining carriage constraints. These could be configured to have some appropriate break-out force, so that the aircraft could exit into free flight only if it had some selected excess of thrust over weight. This would ensure that, upon pulling free of the docking carriage, the aircraft would accelerate briskly away from the base station and any nearby obstacles. The carriage 12 would then be swung to the inverted position in preparation for the next retrieval.


For automated operation, the aircraft and base station could each be equipped with satellite navigation or comparable equipment for measurement of relative position and velocity in three dimensions, using antennas on the aircraft 28 and on a reference point 29 near the docking carriage. Each could also have magnetic or inertial sensors for measurement of orientation, as well as appropriate mechanisms for computation, power supply, and communication.


Other illustrative embodiments are shown in FIG. 7 through FIG. 10. The embodiment of FIG. 7 uses a tensioned cable 30 as the horizontal guide. This has the advantage of being light and easily packed for transport. The cable could be strung from the docking carriage to a support pole 31, or to a support-of-opportunity, such as a tree. The apparatus would be used as previously described, with the aircraft using thrust-tilt to pull a rolling-element hook, such as the one shown in FIG. 3, along the guide. For hook release the end of the cable could be fitted with a concentric cylindrical section 32, as shown in detail by FIG. 8. The hook would be pulled over the cylindrical section as the aircraft entered the docking carriage. The aircraft could then be released by the same sequence of steps as described with respect to FIG. 6, with the cylindrical section being spun by the motor 10.



FIG. 9 shows a further alternative embodiment in which the horizontal guide is formed by a chain 33 on a bar 34. One advantage of this embodiment is that the end-effector on the tether can be a simple bob 37 rather than the hook as in FIG. 2 or FIG. 3. For retrieval, the aircraft 1 deploys its tether 4 and draws it at low relative speed across the bar. The tether enters one of the apertures formed by teeth 35 attached to the links of the chain, and thence is channeled into the slot 36 between the teeth. The tether is then pulled through the slot until the bob meets the teeth. To complete capture, the aircraft must then swing inverted on the side of the bar opposite the ball. Note that this constraint does not apply with the embodiments of FIG. 1 and FIG. 7, in which capture is completed before inversion, and which allow the aircraft to invert on either side of the bar.


After inversion, the chain is retracted by a motor 10 into a stowage area 38 until the ball reaches the vicinity of the docking carriage 12. The aircraft can then park as described above. The carriage is then swung upright, which must be done in the direction that reverses the aircraft inversion (again this condition does not apply with the embodiments of FIG. 1 and FIG. 7). The ball can then be released. This could be done as shown in FIG. 10, whereby further retraction of the chain 33 pulls the tether along a ramp 39, which ejects the ball 37 from the teeth 35. The aircraft can then retract the tether, and launch as described earlier.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. An apparatus comprising: (a) a suspension support;(b) a docking carriage supported by the suspension support and configured to receive a flying object:(c) a flying object capturer suspended by the suspension support, the flying object capturer including at least two teeth configured to capture a portion of the fling object therebetween; and(d) a motor operatively coupled to the flying object capturer and configured to move the flying object capturer relative to the suspension support.
  • 2. The apparatus of claim 1, wherein the at least two teeth of the flying object capturer include a first set of two teeth and a second different set of two teeth, wherein the teeth of the first set are configured to capture the portion of the flying, object therebetween and the teeth of the second set are configured to capture the portion of the flying object therebetween.
  • 3. The apparatus of claim 1, which includes a guide supported by the suspension support, the guide supporting the flying object capturer.
  • 4. The apparatus of claim 3, wherein the motor is configured to move the flying object capturer relative to the guide.
  • 5. The apparatus of claim 1, wherein the suspension support suspends the flying object capturer in a substantially horizontal orientation.
  • 6. The apparatus of claim 1, wherein the portion of the flying object includes a flexible member.
  • 7. The apparatus of claim 1, wherein the motor is configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
  • 8. The apparatus of claim 1, Wherein the docking carriage includes at least one constraining surface configured to guide the flying object into the docking carriage.
  • 9. The apparatus of claim 8, wherein the at least one constraining surface includes at least one of: an arm a longeron, and a wing trailing-edge support.
  • 10. The apparatus of claim 1, wherein the docking carriage is configured to service the flying object after receiving the flying object.
  • 11. The apparatus of claim 10, wherein said servicing is performed automatically.
  • 12. The apparatus of claim 10, wherein the docking carriage is configured to service the flying object via a fueling probe insertable into a receptacle of the flying object.
  • 13. The apparatus of claim 12, wherein the fueling probe is configured to add fuel to the flying object and remove fuel from the flying object.
  • 14. The apparatus of claim 10, wherein the docking carriage is configured to service the flying object via an oil connector insertable into a receptacle of the flying object.
  • 15. The apparatus of claim 14, Wherein the oil connector is configured to add oil to the flying object and remove oil from the flying object.
  • 16. The apparatus of claim 1, wherein the docking carriage is configured to service the flying object via an electricity connector insertable into a receptacle of the flying object.
  • 17. The apparatus of claim 16, wherein the electricity connector is configured to charge a power source of the flying, object.
  • 18. The apparatus of claim 1, which includes one or more sensors configured to measure at least one of: (a) a position of the flying object relative to the apparatus, (b) a velocity of the flying object relative to the apparatus, and (c) an orientation of the flying object.
  • 19. apparatus of claim 1, wherein the flying object capturer includes a chain.
  • 20. An apparatus comprising: (a) a suspension support;(b) a docking carriage supported b the suspension support and configured to receive a flying object;(c) a flying object capturer suspended by the suspension support, the flying object capturer including at least two teeth configured to capture a portion of the flying object therebetween; and(d) a motor operatively coupled to the flying object capturer and configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
  • 21. An apparatus comprising: (a) a suspension support;(b) a docking carriage supported by the suspension support and configured to receive a flying object;(c) a flying object capturer suspended by the suspension support in a substantially horizontal orientation, the flying object capturer including a first set of two teeth and a second different set of two teeth, wherein the teeth of the first set are configured to capture a portion of the flying object therebetween and the teeth of the second set are configured to capture the portion of the flying, object therebetween; and(d) a motor operatively coupled to the flying object capturer and configured to, after the portion of the flying object is captured, move the flying object capturer toward the suspension support until the docking carriage receives the flying object.
PRIORITY CLAIM

This patent application is a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 13/037,436, filed on Mar. 1, 2011, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/317,803, filed on Mar. 26, 2010, now expired, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (98)
Number Name Date Kind
968339 Geraldson Aug 1910 A
1144505 Steffan Jun 1915 A
1306860 Smith Jun 1919 A
1383595 Black Jul 1921 A
1499472 Pratt Jul 1924 A
1582188 Mummert Apr 1926 A
1625020 Guillermo Apr 1927 A
1686298 Uhl Oct 1928 A
1716670 Sperry Jun 1929 A
1731091 Belleville Oct 1929 A
1748663 Tucker Feb 1930 A
1836010 Audrain Dec 1931 A
1848828 Griffin Mar 1932 A
1912723 Perkins Jun 1933 A
2415071 Brie Feb 1947 A
2435197 Brodie Feb 1948 A
2448209 Boyer et al. Aug 1948 A
2488050 Brodie Nov 1949 A
2488051 Brodie Nov 1949 A
2552115 Replogle May 1951 A
2807429 Hawkins, Jr. et al. Sep 1957 A
3351325 Cotton Nov 1967 A
3785316 Leming et al. Jan 1974 A
3980259 Greenhalgh et al. Sep 1976 A
4079901 Mayhew et al. Mar 1978 A
4116408 Soloy Sep 1978 A
4123020 Korsak Oct 1978 A
4147317 Mayhew et al. Apr 1979 A
4311290 Koper Jan 1982 A
4575026 Brittain et al. Mar 1986 A
4680962 Durbin Jul 1987 A
4753400 Reuter et al. Jun 1988 A
4790497 Yoffe Dec 1988 A
4842222 Baird Jun 1989 A
5039034 Burgess et al. Aug 1991 A
5042750 Winter Aug 1991 A
5054717 Taylor Oct 1991 A
5092540 Burgess et al. Mar 1992 A
5687930 Wagner et al. Nov 1997 A
5799900 McDonnell Sep 1998 A
5806795 Ortelli Sep 1998 A
6264140 McGeer et al. Jul 2001 B1
6824102 Haggard Nov 2004 B2
6874729 McDonnell Apr 2005 B1
6961018 Heppe et al. Nov 2005 B2
7066430 Dennis et al. Jun 2006 B2
7097137 McDonnell Aug 2006 B2
7104495 McGeer Sep 2006 B2
7121507 Dennis et al. Oct 2006 B2
7140575 McGeer et al. Nov 2006 B2
7143974 Roeseler et al. Dec 2006 B2
7143976 Snediker et al. Dec 2006 B2
7152827 McGeer Dec 2006 B2
7165745 McGeer et al. Jan 2007 B2
7175135 Dennis et al. Feb 2007 B2
7219856 Watts et al. May 2007 B2
7264204 Portmann Sep 2007 B1
7344108 Muylaert et al. Mar 2008 B2
7360741 McGeer et al. Apr 2008 B2
7410125 Steele Aug 2008 B2
7464650 Steinkerchner et al. Dec 2008 B2
7510145 Snediker Mar 2009 B2
7562843 Lipponen Jul 2009 B2
7712702 McGeer et al. May 2010 B2
7954758 McGeer et al. Jun 2011 B2
8245968 McGeer et al. Aug 2012 B2
8276844 Kariv Oct 2012 B2
8348193 McGeer et al. Jan 2013 B2
8453966 McGeer et al. Jun 2013 B2
8464981 Goldie et al. Jun 2013 B2
20020100838 McGeer et al. Aug 2002 A1
20030222173 McGeer et al. Dec 2003 A1
20040256519 Ellis et al. Dec 2004 A1
20050133665 Dennis et al. Jun 2005 A1
20050151014 McGeer Jul 2005 A1
20050178894 McGeer et al. Aug 2005 A1
20050178895 McGeer et al. Aug 2005 A1
20050189450 Roeseler et al. Sep 2005 A1
20050230536 Dennis et al. Oct 2005 A1
20060065780 Rednikov Mar 2006 A1
20060102783 Dennis et al. May 2006 A1
20060175463 McGeer Aug 2006 A1
20060175466 Snediker et al. Aug 2006 A1
20060249623 Steele Nov 2006 A1
20070051849 Watts et al. Mar 2007 A1
20070075185 McGeer et al. Apr 2007 A1
20070158498 Snediker Jul 2007 A1
20070252034 McGeer et al. Nov 2007 A1
20080156932 McGeer et al. Jul 2008 A1
20080203220 Hanzlick et al. Aug 2008 A1
20090224097 Kariv Sep 2009 A1
20110024559 McGeer et al. Feb 2011 A1
20110133024 McGeer et al. Jun 2011 A1
20110233329 McGeer et al. Sep 2011 A1
20120187243 Goldie et al. Jul 2012 A1
20120223182 Gilchrist et al. Sep 2012 A1
20120273612 McGeer et al. Nov 2012 A1
20130161447 McGeer et al. Jun 2013 A1
Foreign Referenced Citations (8)
Number Date Country
781808 Apr 1968 CA
839101 Apr 1970 CA
472613 Apr 1970 EP
2186728 May 2010 EP
2 071 031 Sep 1981 GB
WO 0107318 Feb 2001 WO
WO 2008015663 Feb 2008 WO
WO 2013171735 Nov 2013 WO
Non-Patent Literature Citations (20)
Entry
Mini-RPV Recovery System Conceptual Study, Prepared for Eustis Directorate U.S. Army Air Mobility Research and Development Laboratory, Aug. 1977 (322 pages).
Skyhook (Harrier handling system); Harpoon Head Quarters; available at http://www.harpoondatabases.com/encyclopedia/Entry2979.aspx; printed Jun. 21, 2013 (3 pages).
A miniature powerplant for very small, very long range autonomous aircraft, S.P. Hendrickson and T. McGeer, Final Report under U.S. DoE contract No. DE-FG03-96ER82187, Sep. 29, 1999 (25 pages).
Aerosonde hazard estimation, T. McGeer, 1994 (7 pages).
Aerosonde Pacific reconnaissance: ready when you are!, T. McGeer, Pacific Northwest Weather Workshop, Mar. 2005 (15 pages).
An Airspeed Vector Sensor for V/STOL Aircraft, E. Durbin and T. McGeer, Journal of Aircraft, vol. 19, No. 6, Jun. 1982 (7 pages).
Automated Launch, Recovery, and Refueling for Small Unmanned Aerial Vehicles, K. Mullens, et al., 2004 (11 pages).
Autonomous Aerosondes for Economical Atmospheric Soundings Anywhere on the Globe, G.J. Holland, T. McGeer and H.H. Youngren, Bulletin of the American Meteorological Society, vol. 73, No. 12, Dec. 1992 (12 pages).
European Search Report for European Patent Application No. 10250229.1, dated Jan. 21, 2013 (5 pages).
European Search Report for European Patent Application No. 11159710.0, dated Aug. 2, 2013 (7 pages).
Examiner's First Report for Australian Patent Application No. 2007347147, dated Oct. 26, 2011 (2 pages).
Flexrotor Long-Endurance VTOL Aircraft Transitions to Wing-Borne Flight, available at http://www.aerovelco.com/papers/FlexrotorTransitionsAnnouncement.pdf, dated Aug. 4, 2011 (2 pages).
International Search Report (PCT/US2007/076276), dated Sep. 22, 2008 (7 pages).
Laima: The First Atlantic Crossing by Unmanned Aircraft, T. McGeer, Feb. 25, 1999 (25 pages).
Quantitative Risk Management as a Regulatory Approach to Civil UAVs, T. McGeer, L. Newcombe, and J. Vagners, International Workshop on UAV Certification, Jun. 4, 1999 (11 pages).
Regulatory Issues Involving Long-Range Weather Observation by Aerosonde Autonomous Aircraft, T. McGeer, Oct. 9, 1998 (8 pages).
Safety, Economy, Reliability and Regulatory Policy for Unmanned Aircraft, T. McGeer, Mar. 2007 (9 pages).
The Beartrap—A Canadian Invention, Crowsnest Magazine, vol. 17, No. 3 and 4 [online], Mar.-Apr. 1965, [retrieved on Sep. 14, 2007]. Retrieved from the Internet at <URL: http://www.readyayeready.com/timeline/1960s/beartrap/index.htm> (4 pages).
Wide-Scale Use of Long-Range Miniature Aerosondes Over the World's Oceans, T. McGeer and J. Vagners, 1999 (25 pages).
Written Opinion (PCT/US2007/076276), dated Mar. 5, 2009 (6 pages).
Related Publications (1)
Number Date Country
20140054415 A1 Feb 2014 US
Provisional Applications (1)
Number Date Country
61317803 Mar 2010 US
Continuations (1)
Number Date Country
Parent 13037436 Mar 2011 US
Child 14034097 US