The present invention is in the field of methods and apparatuses for automated quilting, in particular in the field of methods and apparatuses for the automated control of mechanized quilting frame providing for movement of a sewing machine mounted thereon.
Automated quilting has become increasingly popular because it allows persons to quilt who lack the time, skill, physical ability or patience to quilt by hand. Mechanized quilting frames provide for a sewing machine to be mounted on a sewing machine carriage which is movably mounted on the quilting frame. The sewing machine carriage typically has a pair of carriage motors, each motor being connected to a gear box which is connected to a carriage drive mechanism. The carriage drive mechanism interacts with the quilting frame, thereby providing for the two dimensional, x-y, horizontal movement of the sewing machine carriage and the sewing machine mounted thereon. This x-y horizontal movement of the sewing machine provides for the automated positioning of the sewing machine for the automated sewing of a pattern. The fabric layers being quilted are typically held on and between a pair of fabric rails, a feed rail and a take up rail, the take up rail passing through the throat of the sewing machine and the feed rail being positioned outside the throat of the sewing machine. The two fabric rails provide for the linear positioning and retention of the fabric and for maintaining a desired tension on the fabric as the sewing machine is moved in the x and y dimensions and sews a desired pattern.
A typical prior art automated quilting frame 4 is illustrated in
In
The foregoing identifies a primary difficulty and limitation of known automated quilting systems. There have been a number of prior art methods and devices developed for attempting to deal with this difficulty and limitation, including, for example, devices providing for the automated scrolling of the fabric between a feed rail and a take up rail to provide for expanding the available effective y dimension movement. Some of the notable problems with such devices are fabric stretch and varying diameters of fabric roll on the feed rail and take up rail. Other prior art methods and devices are known which provide for dividing oversized embroidery patterns and for the segmented sewing of the patterns. A notable problem with such methods and devices is that they do not provide for the pattern adjustment that is required in consecutively sewed pattern segments to provide for an accurate match of pattern lines between segments and to provide for the preservation of the integrity of the overall pattern as sewed.
It is therefore an objective of the present invention to provide a method and apparatus for the automated sewing of an over-sized quilt pattern, or other sewing pattern such as an embroidery pattern, i.e., a sewing pattern that has a length that is greater than the available throat length of the sewing machine being used, or has a width that is greater than the maximum available lateral movement of the sewing machine.
It is a further objective of the present invention to provide a method and apparatus for the automated sewing of an over-sized quilt pattern or other sewing pattern that provides for the accurate sewing of complex, over-sized, sewing patterns.
It is a further objective of the present invention to provide a method and apparatus for automated sewing of over-sized sewing patterns that minimizes stitching error or mismatch.
It is a further objective of the present invention to provide a method and apparatus for automated sewing of an over-sized sewing pattern that operates with fabric positioned stationary on a feed rail or other feed mechanism and a take-up rail or other take-up mechanism during the sewing operation.
It is a further objective of the present invention to provide a method and apparatus for automated sewing of an over-sized sewing pattern by dividing the sewing pattern into pattern segments and providing for matching the stitching at the respective borders of the segments of the pattern, thereby preventing stitching mismatch at segmental borders.
It is a further objective of the present invention to provide a method and apparatus for automated sewing of an over-sized sewing pattern which provide for dividing the sewing pattern into pattern segments and provide for accurately matching of the stitching at the respective borders of the segments of the pattern, while preserving the integrity of the overall pattern, by adjusting the pattern lines in consecutively sewed pattern segments.
As stated previously, a primary difficulty and limitation with automated quilting or automated sewing of other items arises from the limitation imposed on y dimension movement of the sewing machine carriage and thus the sewing machine. So long as the pattern width is less than the quilt or other sewing item width and the mechanized quilting or sewing frame accommodates the full width of the quilt or other sewing item, then the x dimension movement is not a problem for a typical automated quilting or sewing frame. The difficulty arises when the pattern length is greater than the maximum y dimension needle bar travel, which is limited by the available throat length of the sewing machine. The available throat length is dependent on the throat length, the amount of fabric on the take-up rail, and the diameter of the fabric roll.
The sewing pattern selected by the user may be obtained by the user from a number of sources. Electronic data bases containing multiple patterns that a user may select from for automated quilting frame are readily available. Systems are also known that allow the user to generate a digital pattern using a computer aided drafting program.
The method and apparatus of the present invention provides for segmenting of the sewing pattern to pattern segments, with the segment length of each of the pattern segments being less than or equal to maximum y dimension needle bar travel. Simplified embodiments of the method and apparatus of the present invention require the user to select the pattern segment borders between the respective pattern segments. However, preferred embodiments of the method and apparatus of the present invention will provide for the automated selection of segment borders by an actuator, or may provide for the user to have the option of manually selecting one or more of the segment borders and having the actuator select one or more of the segment borders.
For some preferred embodiments, the actuator may have a pattern program with a segmentation algorithm which will attempt to optimize the segment border selection. The segmentation algorithm may rely on variables such as the number of pattern lines that will be cut by the segment border and the position of the cut points, to optimize the segment border selection. Other embodiments of the pattern program may provide simply for the division of the pattern into the pattern segments of equal length. Generally, however, preferred embodiments of the pattern program may attempt to optimize the segment borders by minimizing the number of cut points.
A preferred embodiment of the apparatus of the present invention may include an actuator with a pattern program that will display the selected pattern and display the segment borders. The user may have previously input the maximum y dimension needle bar travel, which is the maximum y dimension movement of the sewing machine carriage, and which may be equal to or dependent on the available throat length. Preferred embodiments may initially divide the pattern into pattern segments of equal segment length. Other preferred embodiments may provide for the pattern program to initially attempt to optimize the location of the segment borders, with the user confirming or modifying the segment borders.
Once the segment borders have been selected, the user may proceed to the sewing of the pattern. The user may select to sew the pattern segments in any order, but a preferred method would be to start with the top pattern segment and work down or to start with the bottom pattern segment and work up.
For a typical quilting frame application of the present invention, once the fabric is in position on a feed rail or other feed mechanism, and the fabric is fed into the throat of the sewing machine and rolled onto the take-up rail or other take-up mechanism, the fabric is fed onto and rolled onto the take up rail in sufficient quantity to appropriately position the fabric for sewing the pattern segment selected for sewing. The pattern program is then actuated and the selected pattern segment stitching is sewn into the fabric. Additional fabric is then rolled onto to the take up rail, positioning the fabric for the stitching of the next pattern segment.
Cut points are identified along the border between the previously sewed pattern segment and the next pattern segment to be sewed, which are points where the pattern lines of the previously sewed segment intersect the border between the two pattern segments. Once the fabric has been advanced, thereby positioning the second pattern segment for stitching, the user may manually move the needle sequentially to the each of the cut points. When positioning the needle immediately over the cut points, the user confirms, at an actuator, for the pattern program, that the needle is at the cut point position.
The pattern lines for the second pattern segment are then adjusted by the pattern program to match start points for the pattern lines of the second pattern segment to the cut points of the first pattern segment. The overall pattern for the second pattern segment is then adjusted to preserve the proportionality, overall presentation, and appearance of the second pattern segment. The stitching of the second pattern segment then begins at the adjusted start points which match the cut points of the previously sewed pattern segment as opposed to the pattern program attempting to maintain the design dimensions and design orientation of the pattern. Not only may the distance between start points be changed from the original pattern, due to the characteristics of the fabric and advancing the fabric, the angular orientation may also be altered. Therefore it is essential that the stitching of the second pattern segment start at the actual cut point location as opposed to a theoretical cut point location.
Once the matching of the cut points of the first pattern segment with the start points of the second pattern segment is accomplished, and the overall adjustment of the pattern lines of the second segment is accomplished, the pattern program is actuated for sewing of the pattern for the second segment. The order of sewing of the lines of the second pattern segment can either be manually selected by the user under certain embodiments or the order of stitching the pattern lines of segment two may be determined by the pattern program. Once the second pattern segment has been stitched, the fabric is once again advanced to a position appropriate for the stitching of the third pattern segment. The process is repeated for each pattern segment, matching start points of each pattern segment to be sewed, to the cut points of previously sewed, adjacent pattern segments, and making appropriate corresponding adjustments in the pattern lines for the pattern segment to be sewed.
Preferred embodiments of the method of the present invention may also provide for the user, upon completion of the sewing of a pattern segment and the advancement of the fabric for the next pattern segment, to rely on the pattern program to move the sewing machine needle to the theoretically correct physical location of the cut point where the sewing should start. The pattern program captures the difference between where the needle might be theoretically positioned and the actual position of the cut point.
The pattern program then determines the appropriate adjustment in the stitching of the next segment to maintain the overall integrity of the stitched pattern. The ability of the pattern program to adjust the stitching of the pattern segments to match the cut points and the start points is an essential feature of the method and apparatus of the present invention. A start point alignment algorithm of the pattern program actually performs a pattern distortion so that the start points of the subsequent pattern segment will precisely match the cut points of the pattern lines of the previously stitched pattern segment. This is accomplished by the algorithm stretching or shrinking the pattern longitudinally or laterally, or both, to get the cut points and the start points to match between contiguous pattern segments.
Regardless of the number of pattern segments, the end result will be a finished pattern where all of the pattern stitching, for pattern lines which transition from one pattern segment to another, are continuous and appropriately aligned. While the adjustments made by the pattern program algorithms may result in a stitched pattern which varies dimensionally from the pattern selected by the user, the overall intent of the pattern and the presentation of the pattern will be preserved. The method may involve starting with any of the segments and progressing to the other segments in any order.
Additional, more complex variations of the method and apparatus of the present invention provide for accommodating a pattern having a pattern width that exceeds the maximum x dimension movement, also referred to as the maximum lateral movement, of the sewing machine with respect to a quilting frame or other fabric retention mechanism. For those embodiments, the pattern may be segmented laterally, in the x dimension, as well as longitudinally in the y dimension. For these variations of the present invention, the pattern segments have to be matched laterally as well as longitudinally. The method for segmenting and sewing a sewing pattern that is oversized laterally as well as longitudinally is similar to the method described above for segmenting and sewing patterns that are oversized only longitudinally.
Even if the pattern width of the sewing pattern does not exceed the maximum lateral movement of the sewing machine with respect to a quilting frame or other fabric retention mechanism, it may be desirable to segment the pattern laterally in order to reduce error and distortion of the pattern and to provide for better matching between longitudinal pattern segments. The result may be an overall more accurately sewed pattern.
First, the sewing pattern must be segmented both longitudinally and laterally. An order for sewing the segments is selected and the segments are processed and sewed sequentially in the order selected. As each segment is positioned for sewing, cut points for the pattern lines are located at the adjacent border for each previously sewed, longitudinally adjacent pattern segment, and start points are identified for the pattern segment to be sewed. Likewise, lateral cut points are located at the adjacent border for each previously sewed, laterally adjacent pattern segment, and lateral start points are identified for the pattern segment to be sewed. The pattern lines for the pattern segment to be sewed are then adjusted by the pattern program to fit the start points and the lateral start points.
The method and apparatus of the present invention may utilize any fabric retention mechanism and any sewing machine positioning system, so long as: (a) the fabric can be securely positioned and repositioned as the user progresses from pattern segment to pattern segment; (b) the user can position the needle bar at all cut points and all lateral cut points, respectively, of previously sewed adjacent pattern segments, and thereby generate digitized start points for the pattern segment to be sewed which will match the start points and lateral start points to the cut points and lateral cut points, respectively, of the previously sewed, adjacent pattern segments; and (c) the actuator can move the sewing machine, or the fabric retention mechanism, to follow the pattern within the pattern segment, as adjusted to provide for matching of the start points to the cut points of longitudinally adjacent pattern segments, and the lateral start points to the lateral cut points of laterally adjacent pattern segments.
The present invention is adapted for sewing a quilt pattern on multiple layers of fabric or for sewing a pattern on any fabric, multiple layers or single layers. For example, in addition to quilting, it can be used for embroidery involving only one layer of fabric. Even further, a fabric cutting device may be attached to a sewing machine needle bar and the sewing machine thereby used for cutting fabric, employing the method and apparatus of the present invention.
Referring first to
Referring now to
Referring now to
The structure and components of the sewing machine carriage 35, including any variations thereof, including any motors, gears, and alternative drive mechanisms, providing for interface of the sewing machine carriage 35 with the quilting frame 33, and providing for the automated movement of the sewing machine 36 in the x and y dimensions on the quilting frame, as well as the structure of the quilting frame itself, will be known to persons of ordinary skill in the art, and therefore those structural and mechanical details are not shown in the drawings or described in detail in this specification. Neither embodiments of the method nor embodiments of the apparatus of the present invention are dependent on or limited to any particular structure for the quilting frame or the sewing machine carriage.
It must also be noted that although, for illustrative purposes, the embodiments of the method and apparatus of the present invention shown in
Referring again to
The actuator may be an independent, external PC or computer network. The actuator may also be a dedicated computer used solely for the purpose of controlling the sewing machine carriage and the sewing machine. The sewing pattern may be input to and stored in memory in the actuator, or may be accessed by the actuator in a separate or remote database.
Referring again to
Referring also now to
Referring also now to
Referring again to
Other preferred embodiments of the method and apparatus of the present invention may provide for the pattern program to initially attempt to optimize the location of the segment borders, thereby minimizing the number of cut points 75. The pattern program may display, on an actuator screen, the pattern 77 and the initial selection of segment borders 69. The pattern program may also display, on an actuator screen, the location of the segment borders if the pattern is segmented into pattern segments of equal length and simultaneously indicate, perhaps by a different color line, the segment borders that the pattern program determines to be the optimal location, perhaps based on the locations which minimize the number of cut points.
The sewing pattern selected by the user may be obtained by the user from a number of sources. Electronic data bases containing multiple patterns that a user may select from for automated quilting frame are readily available. Systems are also known that allow the user to generate a digital pattern using a computer aided drafting program. Other systems are also known that provide for the user to manually trace a pattern using an electronic stylus that will digitize the pattern based upon the manual movement of the stylus. Regardless of whether the user selects a pattern from an electronic catalog, generates the pattern through the use of a CAD system or similar system, or generates the pattern through some other method that will be known to persons of skill in the art, the end result will be a digital representation of a pattern which may be accessed by the pattern program of an embodiment of the present invention. The pattern will be displayed on a computer monitor and the segment borders established entirely by user selection, by a combination of pattern program initial segment border selections and subsequent user modification, or may be entirely pattern program determined to achieve equal segment lengths or to achieve an optimization objective.
Regardless of the embodiment method, once the segment borders have been selected, the user may proceed to the sewing of the pattern. The user may select to sew the pattern segments in any order, but a preferred method would be to start with the top pattern segment and work down or to start with the bottom pattern segment and work up.
Referring now to
Referring also to
Other embodiments of the method and apparatus of the present invention may provide for the actuator to pre-position the needle bar at a trial position for a start point, with the user then moving the needle bar from the trial position to the actual position of the corresponding cut point. More sophisticated embodiments may provide for the actuator to pre-position the needle bar at a trial position for a start point, for an optical sensor or the like to sense the actual position of the corresponding cut point, and for the actuator to move the needle bar from the trial position to the actual corresponding cut point position. The user may then confirm that the needle bar is correctly positioned and the actuator may digitize the adjusted start point. This may then be repeated for any other adjacent pattern segment.
Because of the inherent nature of fabric, i.e., it stretches and bunches, the respective dimensioning between cut point one and cut point two as originally sewn for the top pattern segment may be altered as the fabric is advanced onto the take up rail. Therefore an essential step of the method and the function of the pattern program is that once the fabric has been advanced and the cut points are located and confirmed for the pattern program, the stitching of the second pattern segment begins at the manually located cut point locations as opposed to the pattern program attempting to maintain the design dimensions and design orientation of cut point one with respect to cut point two. So not only may the distance between the two cut points be changed due to the characteristics of the fabric and advancing the fabric onto the take up rail, the angular orientation of cut point two with respect to cut point one may be altered. Therefore it is essential that the stitching of the second pattern segment start at the actual cut point location as opposed to a theoretical cut point location.
Once the matching of the cut points of the first pattern segment with the start points of the second pattern segment is accomplished, and the overall adjustment of the pattern lines of the second segment is accomplished, the pattern program is actuated for sewing of the pattern for the second segment. The order of sewing of the lines of the second pattern segment can either be manually selected by the user under certain embodiments or the order of stitching the pattern lines of segment two may be determined by the pattern program. Once the second pattern segment has been stitched, the fabric 40 is once again advanced from the feed rail 37 to the take up rail 38 to a position appropriate for the stitching of the third pattern segment 88.
Referring again to
As described previously, under one preferred embodiment of the method of the present invention, after the fabric 40 is further advanced from the feed rail 37 to the take-up rail 38 and appropriately positioned for the third pattern segment 88, the user manually positions the needle sequentially at each of the cut points three, four, five and six, and upon positioning the needle at each of these points, confirms to the pattern program, the respective positions of these cut points.
Referring to
Preferred embodiments of the method of the present invention may also provide for the user, upon completion of the sewing of a pattern segment and the advancement of the fabric for the next pattern segment, to rely on the pattern program to move the sewing machine needle to the theoretically correct physical location of the cut point where the sewing should start. The pattern program captures the difference between where the needle might be theoretically positioned and the actual position of the cut point. The pattern program then determines the appropriate adjustment in the stitching of the next segment to maintain the overall integrity of the stitched pattern. The ability of the pattern program to adjust the stitching of the pattern segments to match the cut points and the start points is an essential feature of the method and apparatus of the present invention.
The pattern program provides for the user to precisely match the cut points of each sewed pattern segment with the start points for the stitching of the corresponding lines of the subsequent pattern segment. A start point alignment algorithm of the pattern program actually performs a pattern distortion so that the start points of the subsequent pattern segment will precisely match the cut points of the pattern lines of the previously stitched pattern segment. This is accomplished by the algorithm stretching or shrinking the pattern longitudinally or laterally, or both, to get the cut points and the start points to match between contiguous pattern segments.
The foregoing illustration of the method and apparatus of the present invention is a three pattern segment example. However, the process indicated between the top pattern segment and the second pattern segment and between the second pattern segment and the third pattern segment is the process that would be repeated for each pattern segment regardless of the number of pattern segments involved. Regardless of the number of pattern segments, the end result will be a finished pattern where all of the pattern stitching for pattern lines which transition from one pattern segment to another are continuous and appropriately aligned while the adjustments made by the pattern program algorithms may result in a stitched pattern which varies dimensionally from the pattern selected by the user, the overall intent would be of the pattern and the presentation of the pattern will be preserved.
The illustration of the method described above is for beginning with the top pattern segment and progressing down segment by segment to the bottom pattern segment. However, the method could involve starting with any of the segments and progressing to the other segments in any order. For instance, the user could start with the bottom segment and progress to the top segment next and finish by filling in with the segments between the top segment and the bottom segment. However, if the start point alignment algorithm has to make adjustments for matching to both top cut points and bottom cut points for a pattern segment, the extent of the pattern distortion may be greater for that segment. The end result may be an overall pattern which varies from the selected pattern by a greater degree than would be the case if the user started with the top segment or bottom segment and proceeded in an orderly fashion to contiguous segments.
Referring now to
Referring again to
Although the description of the use of the method of the present invention, for a pattern that is segmented longitudinally and laterally, presented above, illustrates the use of a particular order in the sewing of the pattern segments, as described previously, any order can be used. The key required step is that, regardless of the order used, after the fabric is repositioned, the pattern start points of a pattern segment to be sewed must be matched to the pattern cut points of any previously sewed, longitudinally adjacent pattern segment, and the pattern lateral start points of the segment to be sewed must be matched to the pattern lateral cut points of any previously sewed, laterally adjacent pattern segment. This is accomplished by the user, after the fabric is repositioned and secured following the sewing of a pattern segment, positioning the needle bar at all cut points and all lateral cut points, respectively, of previously sewed adjacent pattern segments, and thereby generate digitized start points and digitized lateral start points for the pattern segment to be sewed which will match the start points and lateral start points to the cut points and lateral cut points, respectively, of the previously sewed, adjacent pattern segments. The sewing pattern is adjusted by the pattern program to fit the start points and the lateral start points.
Referring again to
Additional embodiments of the method and apparatus of the present invention may incorporate a fabric hoop to retain the fabric in a desired position for sewing. For those embodiments, either the sewing machine may be controlled by an actuator and moved by a sewing machine carriage in the x dimension and the y dimension as required to position the sewing machine for sewing the desired pattern, or, alternatively, the sewing machine may be stationary and the fabric hoop position may be controlled by an actuator and moved in the x dimension and the y dimension as required to position the hoop for sewing the desired pattern.
The method and apparatus of the present invention may utilize any fabric retention mechanism and any sewing machine positioning system, so long as: (a) the fabric can be securely positioned and repositioned as the user progresses from pattern segment to pattern segment; (b) the user can position the needle bar at all cut points and all lateral cut points, respectively, of previously sewed adjacent pattern segments, and thereby generate digitized start points for the pattern segment to be sewed which will match the start points and lateral start points to the cut points and lateral cut points, respectively, of the previously sewed, adjacent pattern segments; and (c) the actuator can move the sewing machine, or the fabric retention mechanism, to follow the pattern within the pattern segment, as adjusted to provide for matching of the start points to the cut points of longitudinally adjacent pattern segments, and the lateral start points to the lateral cut points of laterally adjacent pattern segments.
The foregoing method and apparatus has been illustrated and described in particular for use in sewing a quilt pattern on multiple layers of fabric. However, the foregoing method and apparatus may be used for sewing a pattern on any fabric, multiple layers or single layers. For example, in addition to quilting, it can be used for embroidery involving only one layer of fabric.
The foregoing method and apparatus has been illustrated and described for use in sewing. However, as will be known to persons of ordinary skill in the art, a fabric cutting device may be attached to a sewing machine needle bar and the sewing machine thereby used for cutting fabric. If a pattern is to be cut, a digitized cut pattern is used which includes gaps in the cut pattern where the fabric is not cut, in order to retain the fabric in position as the fabric is being cut. The foregoing method and apparatus may be used for segmenting and matching a cut pattern in the same manner as described and shown for segmenting and matching a sewing pattern, and for cutting the fabric to the segmented and matched cut pattern in the manner described and shown for sewing a segmented and matched sewing pattern.
Other embodiments and other variations and modifications of the embodiments described above will be obvious to a person skilled in the art. Therefore, the foregoing is intended to be merely illustrative of the invention and the invention is limited only by the following claims and the doctrine of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4953485 | Brower et al. | Sep 1990 | A |
5095835 | Jernigan et al. | Mar 1992 | A |
5537946 | Sadeh et al. | Jul 1996 | A |
5544599 | Frazer et al. | Aug 1996 | A |
5865133 | Herbach et al. | Feb 1999 | A |
6026756 | Frazer et al. | Feb 2000 | A |
6158366 | Codos | Dec 2000 | A |
6216619 | Musco et al. | Apr 2001 | B1 |
6237516 | Wakayama | May 2001 | B1 |
6237517 | Bondanza et al. | May 2001 | B1 |
6263816 | Codos et al. | Jul 2001 | B1 |
6367397 | Musco et al. | Apr 2002 | B1 |
6755141 | Musco et al. | Jun 2004 | B2 |
6796254 | Bondanza et al. | Sep 2004 | B2 |
7063028 | Codos et al. | Jun 2006 | B2 |
7210419 | Naka et al | May 2007 | B2 |
7840304 | Mizuno | Nov 2010 | B2 |
7954441 | Stutznacker et al. | Jun 2011 | B2 |
8074590 | Bentley | Dec 2011 | B2 |
8087368 | Raimondo | Jan 2012 | B2 |
20090151612 | Bentley | Jun 2009 | A1 |
20110005441 | Roche | Jan 2011 | A1 |
20110190922 | Walker et al. | Aug 2011 | A1 |