This invention relates to a method for analysing the concentration of an analyte in a sample and to automatic analysing apparatus. The invention will be described herein with particular reference to a method and apparatus for measuring the concentration of glucose or other analytes in blood but is not limited to that use.
In our copending applications PCT/AU/00365, PCT/AU/00723, and PCT/AU/00724 (the disclosures of which are incorporated herein by reference) we have described a method for determining the concentration of an analyte in a carrier. In that method a sample to be analysed is brought into contact with a reagent containing an enzyme and a redox mediator in an electrochemical cell. The cell is a thin layer cell comprising a working electrode spaced apart from a counter electrode by a spacer which ensures that the two electrodes have substantially identical area and predetermined spacing. The spacing between the electrodes is essentially close so that after a potential is applied between the electrodes, reaction products from the counter electrode migrate to the working electrode and vice versa, eventually establishing a steady state concentration profile between the electrodes which in turn results in a steady state current.
It has been found that by comparing a measure of the steady state current with the time rate at which the current varies in the current transient before the steady state is achieved, the diffusion coefficient of the redox mediator can be measured as well as its concentration. It can be shown that over a restricted time range a plot a ln(i/iss−1) vs time (measured in seconds) is linear and has a slope (denoted by S) which is equal to −4 p2D/L, where “i” is the current at time “t”, “iss” is the steady state current, “D” is the diffusion coefficient in cm2/sec, “L” is the distance between the electrodes in cm and “p” is the constant pi, approximately 3.14159. The concentration of reduced mediator present when the potential was applied between the electrodes is given by −2 p2iss/FALS, where “F” is Faraday's constant, A is the working electrode area and the other symbols are as given above. As this later formula uses S it includes the measured value of the diffusion coefficient.
Since L and the electrode area are constants for a given cell, measurement of i as a function of time and iss enable the value of the diffusion coefficient of the redox mediator to be calculated and the concentration of the analyte to be determined. In our copending application PCT/AU/00724 there are described methods suitable for mass production of cells having a substantially constant electrode separation L and electrode area A.
Currently glucose in blood samples is measured in pathology laboratories and the like by means of apparatus such the YSI blood analyser in which successive samples are analysed by means of a hollow cylindrical probe in which is mounted a silver and a platinum electrode. The face of the probe is fitted with a three layer membrane. The middle layer contains an immobilized enzyme which is sandwiched between a cellulose acetate and a polycarbonate membrane. The face of the probe, covered by the membrane, is situated in a buffer filled sample chamber into which successive samples are injected. Some of the sample diffuses through the membrane. When it contacts the immobilised oxidase enzyme it is rapidly oxidised producing hydrogen peroxide, the glucose forming a glucono-delta-lactone.
The hydrogen peroxide is in turn oxidised at the platinum anode producing electrons. A dynamic equilibrium is achieved when the rate of peroxide production and removal reach a steady state. The electron flow is linearly proportioned to the steady state peroxide concentration and therefore to the concentration of the glucose.
The platinum electrode is held at an anodic potential and is capable of oxidising many substances other than hydrogen peroxide. To prevent these reducing agents from contribution to sensor current, the membrane contains an inner layer consisting of a very thin film of cellulose acetate. This film readily passes hydrogen peroxide but excludes chemical compounds with molecular weights above approximately 200. The acetate film also protects the platinum surface from proteins, detergents, and other substances that could foul it. However the cellulose acetate film can be penetrated by compounds such as hydrogen sulphide, low molecular weight mercaptans, hydroxylamines, hydrozines, phenols and analytes.
In use, the sample (or a calibration standard) is dispensed in to the chamber, diluted into 600 microliters of buffer, and then a measurement is made by the probe. The sensor response increases and then reaches a plateau when a steady state is reached. After several seconds a buffer pump flushes the chamber and the sensor response decreases.
The apparatus monitors the base line current. If it is unstable a buffer pump will continue to flush the sample chamber with buffer. When a stable base line is established an automatic calibration is initiated. The apparatus calibrates itself for example after every five samples or 15 minutes. If a difference of more than 2% occurs between the present and previous calibration, the apparatus repeats the calibration. Recalibration also occurs if the sample chamber temperature drifts by more than 1° C.
The apparatus described suffers from a number of disadvantages. Firstly, a high proportion of its time in use is spent in performing calibrations rather than analysis. Furthermore the consumption of buffer and calibrating solutions is a substantial cost. Another disadvantage is that as the enzyme membrane ages, a graph of reading versus concentration becomes non-linear. It would be highly desirable to provide apparatus which is able to make measurements of the kind described with improved speed, efficiency, and at lower running cost.
An object of the present invention is an improved method and apparatus for automatically analysing samples which avoids or ameliorates at least some of the disadvantages of prior art. An object of the preferred embodiment of the invention is an automatic apparatus for estimating the concentration of glucose in samples of blood.
According to a first aspect the invention consists in a method for estimating the concentration of a reduced (or oxidised) form of a redox species in a liquid comprising the steps of:
According to a second aspect the invention consists in automatic analysing apparatus comprising:
Various embodiments of the invention will now be described by way of example only with reference to the accompanying drawings wherein:
By way of example a first embodiment of apparatus according to the invention will be described.
With reference to
First electrode 1 is provided on palladium surface 2 with an enzyme and a redox mediator. These may be selected (without limitation) from the systems in table 1 and in the present example a GOD enzyme and ferricyanide mediator are used. The enzyme and redox mediator may be printed in predetermined quantities at predetermined intervals on the first electrode surface as a dried reagent coating 4.
Electrode 1 is driven by means not shown in the drawings through a sample station “S” at which a precise volume of a sample 1 is placed as a droplet 5 on a reagent coating 4 on electrode surface 1, for example, by means of an automatic pipette 6. Less preferably, predetermined quantities of enzyme and redox mediator may be combined with the sample before or after deposition of the droplet on the electrode.
A second electrode 11 which in the present example is of similar construction to the first electrode, and comprising a palladium layer 12 sputter coated onto a flexible PET carrier 13, is then brought into closely spaced relationship with electrode 1 and into contact with a droplet 5. The droplet wets both palladium surfaces 1 and 10 and adopts a substantially cylindrical configuration between the two electrodes as more clearly illustrated in FIG. 2. The droplet is bounded intermediate electrodes 1, 2 by a liquid/gas interface 14.
An electric potential is then applied to the two electrodes (by means not illustrated in
As described in our co-pending applications PCT/AU96/00723 and PCT/AU96/00724, the potential between the electrodes is set such that the rate of electro-oxidation of the reduced form of the species (or of electro-reduction of the oxidised form) is diffusion controlled. Because the working and counter electrodes are placed in very close proximity (about 0.5 mm apart or less) ferricyanide that is generated at the counter electrode has time to reach the working electrode and contribute to the current at the working electrode. That is, a ferricyanide molecule can be reduced at the counter electrode to ferrocyanide, and can then diffuse to the working electrode, where it will be re-oxidised to ferricyanide. This situation results in a decreasing current at short times that steadies to reach a constant value at longer times (the steady state current). This steadying of the current occurs because a constant stream of ferrocyanide is being supplied to the working electrode from the counter electrode. This mechanism is quite distinct from that which occurs in a Cottrell device in which the electrodes are separated so that ferricyanide that results from the reduction of ferricyanide at the counter electrode does not influence the observed current.
In the present cell the steady state current is given by
wherein iss is the steady state current, D is the diffusion coefficient, F is the Faraday constant, A is the area of the electrode, C0 is the concentration of the analyte (ferricyanide) and L is the separation of the electrodes.
The current i at time t is given by the equation:
where p is pi.
At longer times the higher exponential terms in equation 2 can be ignored. Therefore equation 2 can be approximated by equation 3 for times greater than a certain value
If it is assumed that equation 2 can be approximated by equation 3 when the second exponential term in equation 2 is 1% of the first exponential term, equation 3 is valid for times greater than
It will be understood that Equation 3 can be transformed to give:
So a plot of the left hand side of equation (4′) versus time will give a straight line with new
Combining equations (1) and (5′) gives
where V=AL is the volume of the drop of sample pipetted onto the tape. Since the parameters “slope” and “iss” are measured in the test and p and F are universal constants, to measure the concentration of the analyte derived from the test (Co) it is only required to know the volume of the sample pipetted. Since this can be done very accurately it is possible to have a very accurate measure of Co without the need for any other calibration of the system. Significantly, neither the spacing between the electrodes nor the electrode area wetted need be known.
The exact shape adopted by the droplet in contact with the two electrodes is not important.
If desired the chemistry of successive electrode locations could be different one from another so that a multiplicity of different tests could be performed on successive pipetted volumes of sample placed at successive electrode locations. In a second embodiment as shown in
It is not necessary for the upper electrode layer 11 to come into contact with the top surface of the well-defining layer 7 The volume of sample pipetted is such that the height of drop 5 is equal to or preferably greater than the thickness of the well-defining layer 7. If a layer 7 is used to define a well 8, it is undesirable for the sample volume to run to the sides of the well. It is sufficient that the sample is a known volume and wets both electrodes preferably forming a substantially cylindrical shape therebetween.
It will also be understood that the well-defining layer 7 can be replaced with a porous layer for example a porous paper, non-woven mesh, or felt, or a porous membrane, which acts to immobilise the sample spatially with respect to the electrode layers and to hold the reagents in place and in this case the second electrode will contact the surface of the porous layer immobilising the volume.
It will be understood that use of a porous or well-defining layer 7 is optional and that in other embodiments of the invention a layer 7 is unnecessary it being sufficient for a drop of sample to be pipetted onto a metal layer 2 and for an upper metal layer 12 to be brought into contact with a sample drop of predetermined volume, upper metal layer 12 being desirably but not essentially at a predetermined spacing from the lower metal layer 1.
It will also be understood that the metal layer tapes or bands need not be travelling in the same direction. For example, one metallised electrode layer may be proceeding transversely of the other, each tape being advanced after each measurement to expose a fresh lower and fresh upper electrode surface and fresh reagent at the sample filling station. In each case the resulting current is measured as a function of time while the electrodes are in contact with a sample drop of predetermined volume.
Continuous band electrodes are preferred. These may either be disposed of after use or may be passed through a washing station and then reused, if desired after reprinting with reagents.
In preferred embodiments of the invention predetermined quantities of reagent are placed on one or both of the electrodes by metering devices for example an ink jet print-head upstream of sample station 3 and may, but need not, be dried prior to contact with the sample. A reagent application system may be a part of the apparatus, or the apparatus may be adapted to receive electrodes in roll or other form pretreated with the desired reagents at another location or plant.
It will be understood that one or both electrodes need not be a continuous band but may, for example, be in the form of a retractable probe. The second electrode could be a disposable probe lowered into contact with a droplet on a first electrode and then withdrawn after current measurements are completed. Likewise the first electrode need not be in the form of a tape. The first electrode could for example be mounted to a carousel or be in the form of a rotating disc. Although it is preferred to use disposable electrode surfaces, the method may be applied with reusable electrodes washed in between successive uses. By way of example, there is shown schematically in
In use, as electrode 1 rotates, a drop 5 travels to a position where it comes into contact with the second electrode and with the reagents printed thereupon. While both discs are stationary with the droplet in contact with each electrode, a potential is applied between the electrodes and the current measured as previously discussed. During this time the reagent(s) dissolve in the sample and after the necessary measurements have been made, both electrodes are indexed to a new angle of rotation. The surfaces used for the analysis are washed clean by sprays 14, into drained sumps 15 and ready for reuse.
Apparatus according to the invention requires very much smaller samples than are required with the YSI device and because the chemical reagents can be better protected until used and more accurately metered, the apparatus provides greater accuracy and speed at reduced cost.
In another embodiment of the invention the current can be followed with time after a potential has been applied between the electrodes until a predetermined time or state has been reached. The sign of the applied potential would then be reversed and analysis performed similar to that given above except with equations (3) and (4) being replaced with
This protocol has the advantage of being able to allow for slow processes occurring in the test. This can be done by:
Although the invention has been described with reference to palladium electrodes, the electrodes can be of other suitable metals such as described for example in our earlier applications referred to herein. One electrode may be different from the other. The electrodes may be supported by PET as exemplified above or by other suitable insulating materials or may be self-supporting. If supported on an insulating film, it is preferred, but not essential, that the metals be deposited on the film by sputter coating. Electrical contact for the application of a potential and/or for the measurement of current may be by any suitable means including clamping engagement with one end of the electrode if in the form of a tape, or by means of suitable rolling contacts, or springloaded contacts, or the like. The application of the electrical potential; the measurement of current; the calculation of the concentration of analyte; the synchronous control of the movement of one electrode with respect to the other and with the deposition of sample droplets and, if required, with the deposition of reagents may be controlled by a microprocessor or the like and the results may be printed, displayed, and/or otherwise recorded by means which are well-known to those skilled in the control arts.
As will be appreciated by those skilled in the art from the teaching hereof the features of one embodiment may be combined with those of another and the invention may be embodied in other forms without departing from the concepts herein disclosed.
Number | Date | Country | Kind |
---|---|---|---|
PO8558 | Aug 1997 | AU | national |
This application is a continuation of application Ser. No. 09/502,907, filed Feb. 11, 2002 and issued as U.S. Pat. No. 6,325,917 on Dec. 4, 2001, which is a continuation, under 35 U.S.C. §120, of prior PCT International Application No. PCT/AU98/00642 which has an International filing date of Aug. 13, 1998, which designated the United States of America, and which was published by the International Bureau in English on Feb. 25, 1999, and which claims the benefit of Australian Provisional Application No. PO 8558 filed Aug. 13, 1997.
Number | Name | Date | Kind |
---|---|---|---|
3552928 | Fetter | Jan 1971 | A |
4053381 | Hamblen et al. | Oct 1977 | A |
4076596 | Connery et al. | Feb 1978 | A |
4125372 | Kawai et al. | Nov 1978 | A |
4168146 | Grubb et al. | Sep 1979 | A |
4224125 | Nakamura et al. | Sep 1980 | A |
4225557 | Hartl et al. | Sep 1980 | A |
4259165 | Miyake | Mar 1981 | A |
4301412 | Hill et al. | Nov 1981 | A |
4301414 | Hill et al. | Nov 1981 | A |
4303887 | Hill et al. | Dec 1981 | A |
4319969 | Oda et al. | Mar 1982 | A |
4374013 | Enfors | Feb 1983 | A |
4404066 | Johnson | Sep 1983 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4431507 | Nankai et al. | Feb 1984 | A |
4508613 | Busta et al. | Apr 1985 | A |
4508821 | Mansour et al. | Apr 1985 | A |
4517287 | Scheibe et al. | May 1985 | A |
4517291 | Seago | May 1985 | A |
4533440 | Kim | Aug 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4552840 | Riffer | Nov 1985 | A |
4604264 | Rothe et al. | Aug 1986 | A |
4637978 | Dappen | Jan 1987 | A |
4654197 | Lilja et al. | Mar 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4790979 | Terminiello et al. | Dec 1988 | A |
4797256 | Watllington, IV | Jan 1989 | A |
4820489 | Rothe et al. | Apr 1989 | A |
4871258 | Herpichboehm et al. | Oct 1989 | A |
4874501 | Christiansen et al. | Oct 1989 | A |
4883764 | Kloepfer | Nov 1989 | A |
4897173 | Nankai et al. | Jan 1990 | A |
4900424 | Birth et al. | Feb 1990 | A |
4919770 | Preidel et al. | Apr 1990 | A |
4943522 | Eisinger et al. | Jul 1990 | A |
4963815 | Hafeman | Oct 1990 | A |
4988429 | Matthiessen | Jan 1991 | A |
4994238 | Daffern et al. | Feb 1991 | A |
5059908 | Mina | Oct 1991 | A |
5096809 | Chen et al. | Mar 1992 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5122244 | Hoenes et al. | Jun 1992 | A |
5126034 | Carter et al. | Jun 1992 | A |
5128015 | Szuminsky et al. | Jul 1992 | A |
5156972 | Issachar | Oct 1992 | A |
5179005 | Phillips et al. | Jan 1993 | A |
5185256 | Nankai et al. | Feb 1993 | A |
5192415 | Yoshioka et al. | Mar 1993 | A |
5229282 | Yoshioka et al. | Jul 1993 | A |
5264103 | Yoshioka et al. | Nov 1993 | A |
5272087 | El Murr et al. | Dec 1993 | A |
5286362 | Hoenes et al. | Feb 1994 | A |
5288403 | Ohno | Feb 1994 | A |
5288636 | Pollmann et al. | Feb 1994 | A |
5290420 | Matson | Mar 1994 | A |
5306623 | Kiser et al. | Apr 1994 | A |
5312590 | Gunasingham | May 1994 | A |
5314605 | Matthiessen | May 1994 | A |
5320732 | Nankai et al. | Jun 1994 | A |
5322610 | Ishibashi | Jun 1994 | A |
5348630 | Yagi et al. | Sep 1994 | A |
5382346 | Uenoyama et al. | Jan 1995 | A |
5384028 | Ito | Jan 1995 | A |
5385846 | Kuhn et al. | Jan 1995 | A |
5393399 | Van den Berg et al. | Feb 1995 | A |
5405511 | White et al. | Apr 1995 | A |
5413690 | Kost et al. | May 1995 | A |
5418142 | Kiser et al. | May 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5508171 | Walling et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5518590 | Fang | May 1996 | A |
5520787 | Hanagan et al. | May 1996 | A |
5567302 | Song et al. | Oct 1996 | A |
5611908 | Matthiessen et al. | Mar 1997 | A |
5620579 | Genshaw et al. | Apr 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5645709 | Birch et al. | Jul 1997 | A |
5863400 | Drummond et al. | Jan 1999 | A |
5942102 | Hodges et al. | Aug 1999 | A |
5965456 | Malmqvist et al. | Oct 1999 | A |
5997817 | Crismore et al. | Dec 1999 | A |
6077408 | Miyamoto et al. | Jun 2000 | A |
6325917 | Maxwell et al. | Dec 2001 | B1 |
Number | Date | Country |
---|---|---|
A-3104293 | Jul 1993 | AU |
A-5487394 | Aug 1994 | AU |
0 010 457 | Nov 1982 | EP |
0 251 915 | Jan 1988 | EP |
0 255 291 | Feb 1988 | EP |
0 278 647 | Aug 1988 | EP |
0 345 781 | Dec 1989 | EP |
0 351 516 | Jan 1990 | EP |
0 400 918 | Dec 1990 | EP |
0 407 800 | Jan 1991 | EP |
0 206 218 | Mar 1991 | EP |
0 415 679 | Mar 1991 | EP |
0 418 404 | Mar 1991 | EP |
0 475 692 | Mar 1992 | EP |
0 479 394 | Apr 1992 | EP |
0 560 336 | Sep 1993 | EP |
0 574 134 | Dec 1993 | EP |
0 593 096 | Apr 1994 | EP |
0 127 958 | Apr 1996 | EP |
0 732 406 | Sep 1996 | EP |
0 741 186 | Nov 1996 | EP |
0 764 469 | Mar 1997 | EP |
0 537 761 | Aug 1997 | EP |
0 964 059 | Dec 1999 | EP |
2 201 248 | Aug 1988 | GB |
59-3345 | Jan 1984 | JP |
6310746 | Nov 1994 | JP |
WO 8908713 | Sep 1989 | WO |
WO 9215701 | Sep 1992 | WO |
WO 9402842 | Feb 1994 | WO |
WO 9503543 | Feb 1995 | WO |
WO 9516198 | Jun 1995 | WO |
WO 9521934 | Aug 1995 | WO |
WO 9528634 | Oct 1995 | WO |
9700441 | Jan 1997 | WO |
WO 9718464 | May 1997 | WO |
WO 9718465 | May 1997 | WO |
WO 9811426 | Mar 1998 | WO |
WO 9835225 | Aug 1998 | WO |
WO 9843073 | Oct 1998 | WO |
WO 9843074 | Oct 1998 | WO |
WO 9946585 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20020117404 A1 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09502907 | Feb 2002 | US |
Child | 09970461 | US | |
Parent | PCTAU98/00642 | Aug 1998 | US |
Child | 09502907 | US |