The features, objects, and advantages of the presently disclosed method and apparatus will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration”. Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments of the invention” does not require that all embodiments of the invention include the discussed feature, advantage, or mode of operation.
When a user installs a new hardware device, such as a PCMCIA card, the OS first looks for a native device driver with which to operate the device. If a native device driver is not found, the OS will prompt the user to supply the location of the driver software. As discussed above, this is undesirable. Embodiments described herein provide for automatic installation of device drivers in ADs. This embodiment is advantageous because it does not require operating system support, separate software, or user intervention.
In one embodiment a PCMCIA card that has the necessary device drivers integrated with the device is provided. For example, a wireless modem (e.g., CDMA 1x/DO) card may reserve a small portion of memory to store the device drivers. On insertion into an AD, the card appears as a removable memory device and the memory automatically installs the device drivers.
Yet another embodiment places an executable file on the card. The user accesses the executable file when the device appears as a memory card to the AD. The user then runs the executable file to install the device drivers. The executable file contains instructions to detect which OS it is running on; fetch the most current device driver over the internet from the device manufacturer for that OS; install the device driver ahead of the OS detecting that the device is present, thus by-passing the OS installation screens.
Thus, a novel and improved method and apparatus for automatic distribution of device drivers in a communications system has been described. Those of skill in the art would understand that the data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof. Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. The various illustrative components, blocks, modules, circuits, and steps have been described generally in terms of their functionality. Whether the functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans recognize the interchangeability of hardware and software under these circumstances, and how best to implement the described functionality for each particular application. As examples, the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented or performed with a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components such as, e.g., registers and FIFO, a processor executing a set of firmware instructions, any conventional programmable software module and a processor, or any combination thereof designed to perform the functions described herein. The processor may advantageously be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, programmable logic device, array of logic elements, or state machine. The software module could reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary processor is advantageously coupled to the storage medium so as to read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a telephone or other user terminal. In the alternative, the processor and the storage medium may reside in a telephone or other user terminal. The processor may be implemented as a combination of a DSP and a microprocessor, or as two microprocessors in conjunction with a DSP core, etc.
In further embodiments, those skilled in the art will appreciate that the foregoing methods can be implemented by the execution of a program embodied on a computer readable medium, such are the memory of a computer platform. The instructions can reside in various types of signal-bearing or data storage primary, secondary, or tertiary media. The media may comprise, for example, RAM accessible by, or residing within, the client device and/or server. Whether contained in RAM, a diskette, or other secondary storage media, the instructions may be stored on a variety of machine-readable data storage media, such as DASD storage (e.g., a conventional “hard drive” or a RAID array), magnetic tape, electronic read-only memory (e.g., ROM or EEPROM), flash memory cars, an optical storage device (e.g., CD-ROM, WORM, DVD, digital optical tape), paper “punch” cards, or other suitable data storage media including digital and analog transmission media.
While the foregoing disclosure shows illustrative embodiments of the invention, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The activities or steps of the method claims in accordance with the embodiments of the invention described herein need not be performed in any particular order. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
Preferred embodiments of the present invention have thus been shown and described. It would be apparent to one of ordinary skill in the art, however, that numerous alterations may be made to the embodiments herein disclosed without departing from the spirit or scope of the invention. Therefore, the present invention is not to be limited except in accordance with the following claims.