Information
-
Patent Grant
-
6646626
-
Patent Number
6,646,626
-
Date Filed
Monday, November 1, 199925 years ago
-
Date Issued
Tuesday, November 11, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Hjerpe; Richard
- Laneau; Ronald
Agents
- Bose; Romi
- Watanabe; Hisashi D.
-
CPC
-
US Classifications
Field of Search
US
- 345 87
- 345 88
- 345 90
- 345 95
- 345 96
- 345 97
- 345 100
- 345 649
- 345 650
- 345 656
- 345 658
- 345 659
- 379 43313
- 379 43304
- 379 447
- 455 90
- 455 575
-
International Classifications
-
Abstract
An apparatus (10) for automatically adjusting the viewing angle of a liquid crystal display (LCD) (12) is provided. The apparatus (10) includes a controller (26), an LCD driver (28), a memory (30), and a user interface (34). The apparatus (10) is software enabled to perform a screen flip function while concurrently adjusting the viewing angle to correspond to the new screen orientation. The viewing angle is automatically adjusted without user intervention. The apparatus (10) has particular value where the keypads (22) are located on only one side of its display (12). In this manner, the apparatus (10) can be conveniently used by both left-handed and right-handed users.
Description
FIELD OF THE INVENTION
The invention relates to liquid crystal displays and, more particularly, to a liquid crystal display for a hand-held apparatus that is adapted for use in different orientations.
BACKGROUND OF THE INVENTION
The explosion in the use of hand-held electronic devices, such as organizers, pagers and cellular telephones including liquid crystal displays (LCDs) to provide text and/or graphical output to the user, has been dramatic in recent years. LCDs are desirable because of their small size and weight and low power requirements which makes them ideal for use with hand-held electronic devices. LCDs are also capable of displaying different types of images, such as characters, graphics, captured images, such as photographs, or the like. Many LCDs are reflective, meaning that they use only ambient light to illuminate the display. Others require an external light source such as a back lit computer display screen.
LCDs do have drawbacks, such as with respect to their viewing angle. The viewing angle of an LCD defines the field of view in which a user can see characters or images displayed by the LCD, relative to the display surface of the LCD. With conventional LCDs, the viewing angle is limited, and thus, characters or images on these LCDs are not visible from all possible views. Moreover, items displayed on LCDs normally exhibit asymmetrical visibility, which means that the visibility of a character or image depends not only on the angle at which the LCD is viewed, but also depends on the direction at which the LCD is viewed. The viewing angle and contrast setting of an LCD are closely related and both are controlled by a drive voltage applied to the LCD. As the applied drive voltage changes, so does the viewing angle of the LCD. Each different LCD viewing angle is associated with a different viewing angle cone for the user so that depending on the relative position of the user and LCD, there is a particular voltage that produces an optimum LCD viewing angle for providing a viewing angle cone for the user that maximizes the visibility of the characters on the screen.
Typically, a user adjustment is provided such as by a knob that controls a potentiometer or variable resistor of a contrast adjustment circuit for the LCD. Accordingly, manual operation of the control knob adjusts the drive voltage applied to the LCD for adjusting the viewing angle thereof. Other types of user/operator interfaces also are known such as with control keys for operating Windows or icon based software programs that allow for a contrast adjustment mode to be selected. In the contrast adjustment mode, different contrast settings can be selected according to user preferences. In this manner, different levels of drive voltage and thus viewing angles can be keyed into the device for changing the viewing angle of the LCD under microprocessor control. However, where the device is consistently disposed in orientations that are different but predictable relative to the user, it is undesirable to have to continually adjust the contrast setting to obtain the appropriate viewing angle for the LCD. This occurs with hand-held electronic devices that are used by both right and left-handed people, for instance.
For example, clip-on type organizers are known that can be attached to the back of a cellular telephone so that the information stored in the organizer can be shared with and/or used by the phone such as for allowing one-touch calling of a number stored in the organizer. Where the keys are asymmetrically arranged on the organizer, i.e., on one side or the other of the LCD, the user can be at a disadvantage depending on which hand they tend to hold the phone with. For instance, where the keys are arranged on the right-hand side of the LCD for use by right-handed users with the phone held in the left hand and generally facing downwardly so that the organizer LCD can be viewed, the characters are in their standard, upright readable position on the screen. However, with a left-handed user who tends to hold the phone in their right hand to keep their left hand free for punching the keys on the phone and organizer, when they turn the phone so that it faces downwardly for viewing the LCD of the organizer clipped onto the back of the phone, the keys will now be on the left hand side of the LCD with the characters appearing inverted from their standard, upright readable position. To accommodate both right and left-handed users, the orientation of the characters can be shifted or rotated 180° so that when the left-handed user views the LCD, the characters will appear in their standard, upright readable position thereon.
It is also true that the organizer LCD screen will generally be at a different orientation relative to the user depending on whether they hold the organizer in their right or left hand with the keys accessible to their free strong hand. At different orientations, the visibility of the LCD display can vary greatly because the orientations can entail different viewing angles and different viewing directions. This can be a serious problem where both right and left-handed people use the same phone and organizer, or where the phone and organizer are regularly held in either hand, during operation or when the organizer is detached due to the configuration of the phone antenna or flipped-open portion of the phone. Thus, each time a user holds the phone with the hand opposite to the one previously used, employed or where a single user uses different hands for holding the organizer alone versus when it is clipped to the phone, an adjustment will have to be made to the contrast setting and viewing angle to accommodate for the different orientations of the screen.
Accordingly, there is a need for a hand-held electronic device that allows it to be used when held in either the right or left hand of a user while keeping the visibility of the images on the LCD maximized. More particularly, a hand-held electronic device that includes keys asymmetrically arranged relative to an LCD screen thereon, and where the characters on the screen can be shifted and rotated so that they can be read in their upright position by both right and left-handed users of the device, is needed where the viewing angle of the LCD is automatically adjusted to accommodate both right and left-handed users without requiring manual adjustments to the contrast setting.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a plan view of an apparatus in accordance with the present invention in the form of an organizer showing a housing of the organizer including an LCD and input keys mounted to one side of the LCD and removably attached to another hand-held electronic device in the form of a cellular telephone;
FIG. 2
is a perspective view of the organizer detached from the cellular telephone showing characters displayed on the LCD in a predetermined orientation relative to the keys for right-handed users of the organizer;
FIG. 3
is a view similar to
FIG. 2
with the housing rotated 180° for use by left-handed users so that the keys are now disposed on the left-hand side of the LCD and the characters are rotated 180° relative to their orientation depicted in
FIG. 2
;
FIG. 4
is a view of the organizer showing a screen of the LCD that allows for adjustments to the contrast setting and the orientation of the characters which automatically adjusts the LCD viewing angle to maximize the visibility of the characters thereon when the character orientation is shifted;
FIG. 5
is a block diagram of control circuitry for the LCD showing a programmable controller which automatically adjusts the drive voltage applied to the LCD when a screen flip switch is operated to reorient the image displayed on the LCD;
FIG. 6
is a graph depicting the relationship of the LCD viewing angle, θ, to the LCD drive voltage, V;
FIG. 7
is an elevation view of the LCD showing a first LCD viewing angle, θ
1
, and a user viewing angle cone associated therewith;
FIG. 8
is an elevation view similar to
FIG. 7
showing a second LCD viewing angle, θ
2
, and a user viewing angle cone associated therewith;
FIG. 9
is a plan view of the organizer detached from the cellular phone showing the keys on the right-hand side of the screen for use by a right-handed user;
FIG. 10
is a side elevation view of the organizer of
FIG. 9
showing a flanged end of the housing for being plugged into the cellular phone;
FIG. 11
is a bottom plan view of the organizer showing an electrical connector on the flanged end and a spring clip at the other end of the organizer;
FIG. 12
is an elevational view showing the attachment of the organizer to the cellular phone;
FIG. 13
is a side elevational view similar to
FIG. 12
with the organizer removably attached to the phone and showing the phone flipped open for use; and
FIG. 14
shows a flow chart diagram illustrating a method of operating the control circuitry shown in FIG.
5
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
It is an advantage of the present invention to provide an apparatus that automatically adjusts the LCD drive voltage of an electronic display to accommodate a predetermined rotation of the display. In adjusting the LCD drive voltage, the apparatus can also account for a preselected contrast setting determined by a user.
The apparatus can include an LCD, an LCD driver, a user interface, and a controller. The user interface permits a user to select a predetermined orientation of the LCD. In response to the user input, the controller directs the LCD driver to apply a drive voltage to the LCD. The drive voltage can be determined so that optimized visibility of the display is maintained despite shifting of the LCD predetermined orientation. Further, this drive voltage determination takes into account user adjustments made to the contrast setting for optimal viewing in one substantially predetermined orientation of the LCD when shifted to another substantially predetermined LCD orientation.
This arrangement permits hand-held electronic devices having keypads located asymmetrically relative to the LCD such as on one side thereof to be easily operated by either right-handed or left-handed users.
In
FIG. 1
, an apparatus
10
is shown including a screen
12
for displaying information to a user thereof via indicia or characters
14
in the form of text and/or graphical images thereon. As shown, the apparatus
10
is removably attached to a hand-held electronic device
16
which can use and/or share the information displayed on the screen
12
in its operation. The apparatus
10
can be used by itself or in conjunction with the device
16
. In this regard, the apparatus
10
and device
16
are provided with a detachable electronic connection
18
therebetween, as will be discussed more fully hereinafter.
The apparatus
10
includes a small, lightweight housing
20
so as to be readily portable by a user from one location to another without taking up much space. In this regard, the screen
12
of the apparatus
10
is an LCD screen
12
mounted to the housing
20
which enables the overall size and weight of the apparatus
10
to be kept to a minimum. Input keys, generally designated
22
, are provided on the housing
20
arranged to one side of the LCD
12
. For both left and right-handed users to operate the keys
22
without having to reach across the LCD screen
12
with their strong hand, a screen flipping function is incorporated into software programming of control circuitry
24
for the apparatus
10
and the LCD
12
thereof, with the circuitry
24
being disposed in the housing
20
of the apparatus
10
.
In this regard, the apparatus
10
utilizes a programmable microprocessor controller
26
that is programmed with the screen flipping function and to automatically adjust the viewing angle, θ, of the LCD
12
, as described herein.
More particularly and with reference to
FIG. 5
, the circuitry
24
includes a controller
26
, a memory
30
, a user interface
34
and an LCD driver
28
. A bus
35
couples and permits communication between the above-listed components. The LCD driver
28
can supply row and column drive signals, as well as drive voltage levels, to an LCD
12
.
The controller
26
can be a 6800 series microprocessor from Motorola, Inc., executing one or more software routines to perform the functions of the circuitry
24
as described herein. The software routines can be stored in an internal memory (not shown) of the controller
26
or the memory
30
.
The memory
30
can be non-volatile memory, such as read-only memory (ROM), programmable read-only memory (PROM), an electrically-erasable PROM (EEPROM), or the like. The memory
30
can store program instructions and data, such as user selected settings, predetermined offset drive voltage values, and LCD drive voltage values.
The user interface
34
can be any means for permitting users to select or input commands and data into the apparatus
10
. The interface
34
can include the conventional push-button keys
22
for generating interrupts that cause the controller
26
to execute one or more predetermined software routines for gathering user inputs. In addition, the interface can include conventional potentiometers for setting LCD screen display characteristics, such as contrast, brightness, or the like. Alternatively, as described below in connection with
FIG. 4
, the user interface
34
can include a keypad used in conjunction with a graphical user interface (GUI) having scrollable menus that permit users to select various operational settings for the apparatus
10
.
The LCD driver
28
can be any electronic circuit responsive to the controller
26
for generating an LCD drive voltage in accordance with the present invention. For example, the LCD driver
28
can be implemented using an LCD Segment/Common Driver, Part No. MC 141800A, from Motorola, Inc.
The bus
35
can use a conventional bus protocol, such as one available with 6800 series processors, for transferring data, commands and control signals between the components connected thereto.
The circuit structure shown in
FIG. 5
is exemplary, and it should be noted that many alternative, equivalent architectures are possible for implementing the present invention. For example, the circuitry
24
can be equivalently implemented using custom circuits, such as one or more application specific integrated circuits (ASICs), or alternative types of microprocessors and LCD drivers that are commercially available and capable of being configured to function in accordance with the invention.
Referring now to
FIG. 14
, there is shown an exemplary method
100
of operating the circuit
24
in accordance with the present invention. In step
102
, a user request to perform the screen flipping function is received at the user interface
34
. As described below in greater detail, the screen flipping function essentially rotates the items displayed on the LCD 180° about the LCD screen. In addition to flipping the screen, the circuitry
24
can adjust the LCD drive voltage to approximately adjust the viewing angle for each screen flip.
Upon receiving the flip screen request, the controller
26
is alerted to the request. In response, the controller
26
can access the memory
30
to retrieve a preselected user-defined contrast setting entered via the user interface
34
, as described in connection with FIG.
4
. Next, in step
106
, the controller
26
computes a drive voltage value by adding or subtracting an LCD voltage offset value to the retrieved contrast setting value. Alternatively, the drive voltage can be retrieved from a look-up table stored in the memory
30
. In using a look-up table, the offset value and user contrast setting can be combined so that they may be used as look-up table address.
In step
108
, the controller
26
can command the LCD driver
28
to adjust its output LCD drive voltage according to the LCD drive level computed or retrieved by the controller
26
.
Next, in step
110
, the controller
26
can command the LCD driver
28
to re-map the LCD rows and columns in order to flip the screen by 180°. In the implementation using Motorola Part No. 141800A, the screen flip can be accomplished by the controller
26
issuing a re-map column command to the driver
28
, followed by a re-map row command.
The controller
26
controls the LCD drive voltage drive, V, which is generated by the LCD driver
28
for driving the LCD
12
under program control. A value representing an initial LCD drive voltage can be stored by the controller
26
in the memory
30
so that it can be retrieved by the controller
26
when the apparatus
10
is turned on. In some instances, the stored drive voltage level can be overwritten in the memory
30
by a particular contrast setting selected by a user via the user interface
34
.
Accordingly, the user interface
34
includes a screen flip switch which when operated causes the controller
26
via its programming to undertake the character reorientation so that the characters
14
are shifted from the predetermined orientation currently being displayed on the screen
12
. More specifically, the character reorientation involves orienting the characters
12
so that they can be read in their standard, upright position when the housing
20
is held with the input keys
22
oriented on the right side of the screen
12
as when a right hand user is holding the apparatus
10
with their left hand, leaving their right hand free to operate the keys
22
, as shown in
FIG. 2
, or to the position of
FIG. 3
where the housing
20
is rotated 180° relative to the user with the keys
22
now on the left hand side of the screen
12
so that with a left-hand user holding the housing
20
with their right hand, their left hand is free to access the keys
22
without obstructing their view of the screen
12
.
The LCD screen
12
has opposite sides
38
and
40
. With the screen flip switch operated so that the characters
14
appearing on the LCD screen
12
are in their upright, standard readable position relative to the user with the input keys
22
accessible for a right-hand user, the character “M” designated
15
will appear on screen half portion
13
and be closer to side
38
of the screen
12
than side
40
as shown in FIG.
2
. On the other hand, when the screen flip switch is operated so that a left-handed user can hold the housing
20
with their right hand flipped 180° from its
FIG. 2
position with the keys
22
accessible to their free left hand, the character
15
also will be shifted or rotated by 180° from its position of
FIG. 2
so that it now appears on the other half portion
17
of the screen
12
flipped over so as to be in its standard, upright readable position closer to side
40
of the screen
12
than side
38
, as shown in FIG.
3
.
In accordance with the invention, at the same time the screen flip switch is actuated by a user, the controller
26
is programmed to determine an offset voltage. The offset voltage can be combined with the selected contrast setting stored in the memory
30
for being applied to the LCD
12
. In this manner, the screen
12
, although held in different orientations relative to the user, as shown in
FIGS. 2 and 3
, will have the characters
14
appearing thereon automatically maximized in visibility. This is because the adjusted voltage will automatically compensate for the reorientation of the screen
12
when the housing
20
is reoriented from one of the FIG.
2
and
FIG. 3
positions to the other position. Thus, the visibility of the characters
14
in both of their upright positions relative to the user is automatically maximized irrespective of whether the housing
20
and thus the screen
12
mounted thereon is in the
FIG. 2
or the
FIG. 3
position in the apparatus
10
herein. Accordingly, the apparatus
10
herein includes circuitry where a portion thereof is for automatically adjusting the LCD drive voltage and thus its viewing angle as an incidence of the reorientation of the characters
14
on the LCD screen
12
.
The visibility of the information displayed by the LCD
12
to a user at a particular location relative to the screen
12
depends on the LCD viewing angle, θ, which is generated by the LCD drive voltage, V, with which the display
12
is driven. As described, the operation of the screen flip switch adjusts the LCD drive voltage, V, to maximize visibility of the characters
14
, whether in the right-hand use mode of
FIG. 2
or left-hand use mode of FIG.
3
. In this regard, it is assumed users will tend to utilize the apparatus
10
so that they will generally consistently be in the same reference position relative to the apparatus
10
whether held in their right hand (
FIG. 2
) or left hand (FIG.
3
). It is also generally true that a user will not be looking straight on at the screen
12
so that their line of sight is normal thereto along line
43
as the apparatus
10
will typically be held at a slight angle therefrom. Thus, the particular hand in which the housing
20
is held by the user will make a difference as to the orientation of the screen
12
relative to the user since the housing
20
is flipped 180° between the
FIG. 2
position where screen half portion
13
is closer to the user and the
FIG. 3
position where screen half portion
17
is now closer. This change in the screen orientation necessitates a change in the LCD viewing angle, θ, and thus viewing cone to keep the characters
14
maximized in visibility to the user.
As can be seen in
FIG. 6
, the LCD viewing angle, θ, becomes larger as the drive voltage, V, increases. Each LCD viewing angle, θ, generates a different viewing angle cone for the user in which the line of sight from the user to the screen
12
should fall for maximum visibility of the characters
14
thereon. This viewing angle cone is generally bisected by the line defining the LCD viewing angle, θ, with the plane of the screen
12
, as can be seen in
FIGS. 7 and 8
.
With the above in mind, the apparatus
24
can operate in conformity with the preferred form of the present invention as follows. When the user initiates a screen flip via interface
34
, the controller
26
generates the characters
14
in an orientation that is shifted or rotated 180° from the prior orientation, as previously described. Coincident with this change, the user then physically repositions the apparatus
10
so that the viewing angle, θ, obtained by the contrast ratio previously set optimally by the user is no longer optimal. In order to maintain the user preset viewing angle, θ, stored contrast setting is offset automatically by a determination made under control of the microprocessor
26
. Referring to
FIGS. 7 and 8
, the voltage offset, Vo, can be determined by way of the equation:
θ
1
+θ
2
=θmax.
As a general characteristic, LCDs have a known maximum viewing angle, θmax, based on their particular construction. The range of LCD viewing angles, θ, limited by θmax provided by the LCD
12
is assumed to be 180° herein, but can be other values without significantly affecting the operation of the apparatus
10
in accordance with the present invention as described herein. Further, the current drive voltages, either V
1
, or V
2
which generates θ
1
or θ
2
, respectively, can also be known as they can be stored in the memory
30
of the control circuitry
24
. Accordingly, the circuitry
24
can make use of a relatively simple calculation that allows the controller
26
to determine the drive voltage, V, to be generated by the driver
28
for driving the LCD
12
to generate the appropriate LCD viewing angle, θ, thereof to satisfy the above equation. As is apparent, the voltage offset, Vo, can be positive or negative and may be either obtained from a calculation or can be predetermined based on the particular characteristics of the LCD used in the apparatus
10
. One or more offset values can be stored in a look-up table contained in the memory
30
. By storing offsets corresponding to different LCDs, the circuitry
24
can be easily reconfigured in software to adapt to the characteristics of LCDs from different manufacturers. In this manner, the apparatus
10
can be implemented and manufactured with a minimum of expense, as it does not require any further hardware for the apparatus
10
that is not already provided for performing with the screen flip function.
To complete the screen flip process, the controller
26
adjusts the LCD drive voltage, V, and stores this setting in the memory
30
for later use. Upon request for another display flip, the entire process can be repeated. A voltage offset adjustment is made to a user preferred contrast setting rather than an absolute setting so that the circuitry
24
operates to maintain any user inputted contrast setting. In addition, the voltage offset can be combined with a predetermined drive LCD drive voltage selected to compensate for temperature in order to arrive at an optimal LCD drive voltage.
As earlier noted, the LCD screen
12
itself may not be capable of providing a large enough range of viewing angle adjustments (θmax<180°) to maintain the relationship θ
1
+θ
2
=180°. The circuitry
24
is still operable with an LCD that is limited to less than 180° in its viewing angle range as the determination
42
will use the maximum LCD viewing angle, θmax, and thus make the best case automatic adjustment instead. Accordingly, the circuitry
24
described herein generally can allow the user to avoid having to make a manual contrast adjustment each time the screen flip switch
34
is operated.
Referring to
FIGS. 6
,
7
and
8
, the relationship of the viewing angles θ
1
+θ
2
, the LCD drive voltages, V
1
and V
2
, and associated viewing angle cones
44
and
52
can be seen. In this instance, it is assumed that the LCD
12
can provide the entire 180° range of viewing angle adjustments for maintaining the relationship of θ
1
+θ
2
=180°, so that θ
1
and θ
2
are supplementary angles to each other. With LCD viewing angle, θ
1
, it is assumed that the user has already adjusted the contrast setting by way of input keys
22
, as will be more fully described hereinafter, so that the drive voltage, V
1
, provides the viewing cone
44
preferred by the user as shown in FIG.
7
. The viewing cone
44
is defined by the vectors
46
and
48
which, in turn, are bisected by the line
50
that defines the LCD viewing angle, θ
1
, in conjunction with the plane of the LCD display
12
.
When the screen flip switch is operated, the controller
26
determines the offset drive voltage, Vo, via circuitry portion
24
from the voltage, V
1
, that generates LCD viewing angle, θ
1
, and viewing cone
44
. The controller
26
regulates the power to the LCD driver
28
so that drive voltage, V
2
, is applied to the display
12
for shifting the viewing angle, θ, from θ
1
to θ
2
. In the described LCD
42
having θmax=180°, this will change the viewing cone
44
symmetrically about axis
43
to viewing cone
52
, which is defined by vectors
54
and
56
. The viewing cone
52
is bisected by line
58
which together with the plane of the LCD
12
defines the LCD viewing angle, θ
2
.
As is apparent, the viewing angle cones
44
and
52
are shifted from one another to accommodate the changing orientation of the housing
20
between the FIG.
2
and
FIG. 3
positions thereof. Accordingly, one of the viewing cones
44
or
52
will be used when screen half portion
13
is closer to the user (
FIG. 2
) and the other of cones
44
and
52
will be used when screen half portion
17
is closer to the user (FIG.
3
)so that with a user at a single reference position, their line of sight to the LCD
12
will fall within the cone
44
or
52
that is in effect thus maximizing the visibility of the characters
14
appearing on the LCD
12
. This automatic changeover between cones
44
and
52
enables screen flipping via interface or switch
34
with automated contrast adjustment so as to avoid the need to make changes to the settings when one screen portion
13
or
17
is shifted from being furthest from the user to closest.
In addition, the user can adjust the cones
44
and/or
52
to their preferences via user interface
34
and the program will automatically correct the other of the cones
44
or
52
so that it too will be at the preference adjustment made by the user for maximum visibility. This is because the controller
26
bases the determination of the offset voltage, V
0
, from the adjusted voltage V
1
or V
2
stored in memory
30
so that this adjustment is worked into the automatic adjustment made to generate the other cone when the screen orientation is changed. Accordingly, the offset voltage, V
0
, is variable and determined by the controller
26
based on a user preferred viewing cone such as cones
44
or
52
.
In the preferred and illustrated form, the apparatus
10
is shown as being a battery powered organizer
60
which can store a user's contact and calendar information. The organizer
60
can be used as a stand alone device, or in conjunction with device
16
, which is shown as being a cellular telephone
62
in
FIGS. 1
,
12
and
13
. As previously described, the housing
20
of the organizer
60
has a compact and light-weight size that enables it to be readily transported while taking up a minimum of space such as in a person's pocket or the like. As shown in
FIG. 8A
, the input keys or keypad
22
is asymmetrically arranged adjacent the side
40
of the LCD
12
at end portion
64
of the housing
20
. The keys
22
allow a user to click through the calendar and address book functions of the organizer
60
. The keys
22
have symbols thereon rather than letters or numbers so that a user can flip the organizer
60
over and still comfortably determine which keys
22
are to be utilized.
FIG. 4
shows the preference screen
66
of the commercial organizer
60
of the assignee herein. As can be seen thereon, the preference screen
66
allows the user to select various modes including LCD contrast and screen orientation modes as shown in the left hand column of the preference screen
66
, at
68
and
70
, respectively. At the preferences screen
66
, the arrow keys
72
and
74
allow the user to move between the various modes displayed thereon. When the desired mode is reached as indicated by highlighting thereof, the user presses the enter key
76
to enter the highlighted mode. Thereafter, the arrow keys
72
and
74
are used to move through the list of options that show up on the right-hand side of the preference screen
66
across from the selected mode, and when the desired option appears, it can be selected via enter key
76
.
The preference screen
66
operates as a conventional scroll-down menu having multiple levels of selections. Implementation of the screen
66
using a programmable microprocessor and a commercially-available operating system supporting a graphical user interface (GUI) can be readily accomplished by one of ordinary skill in the art.
In the contrast mode
68
, the user can change the contrast setting and thus the drive voltage, V, stored in the voltage memory
30
at which the LCD
12
is driven by the driver
28
to their preferences. Thereafter, this setting will be used to make the offset voltage determination when the screen flip switch is operated, as previously described. In the orientation mode
70
, the user can select either the right-hand or left-hand orientation for the characters
14
on the screen
12
depending on their preferences. Further, when the screen orientation is selected by operating the keys
72
-
76
which together form the afore-described screen flip switch, the offset voltage determination is also made so that the viewing cone is switched for improving the visibility of the shifted characters
14
on the reoriented housing
20
and LCD
12
thereof.
As mentioned, the organizer
60
can be attached to and used with a cell phone
62
such as the assignees commercial StarTac® cell phone
62
. For this purpose, the housing
20
of the organizer
60
has a flanged end portion
78
opposite end portion
64
, as best seen in
FIGS. 10 and 11
. The flanged end portion
78
includes a pair of inwardly directed small prong members
80
and
82
. Intermediate the members
80
and
82
is an electrical connector portion
84
. A spring clip
86
is disposed opposite the electrical connector portion
84
on the bottom of the housing
20
at end portion
64
thereof. Referring to
FIG. 9
, the phone
62
is provided with small laterally spaced apertures
88
(one such aperture
88
being shown) and an accessory electrical connector portion (not shown) at one end thereof and a slotted opening
90
at the other end of the phone
62
, with the opening
90
normally used to attach the auxiliary battery for the phone
62
thereto.
To attach the organizer
60
to the back of the cell phone
62
, the spring clip
86
is inserted into the slotted opening
90
of the phone
62
. The organizer
60
is then slid toward the opposite end of the phone in the direction of arrow
92
so that the prong members
80
and
82
can be inserted in the phone apertures
88
and the organizer electrical connector portion
84
can be plugged into the auxiliary electrical connector portion of the phone
62
. The electrical connector portion
84
of the organizer
60
and the auxiliary electrical connector portion of the cellular telephone
62
together form the previously described detachable electrical connection
18
.
With the organizer
60
electrically connected to the cell phone
62
, phone numbers from the organizer
60
can be exported directly therefrom to the internal phone directory of the cell phone
62
. The attached organizer
60
thus enables users to scroll through contact lists and, with the push of a key
22
, automatically dial a phone number. In this manner, a user does not have to look up an entire phone number and then dial it as is normally the case.
Referring next to
FIG. 13
, the cell phone
62
includes a pivotal or flip open portion
92
thereof that includes a speaker for being placed next to a user's ear during a call. The phone
62
also includes a telescoping antenna
94
. The present invention affords the user flexibility when the organizer
60
is clipped to the back of the cell phone
62
in that it is possible that with the phone portion
92
flipped open and the antenna
94
extended, it would be more convenient for the user to hold the attached organizer
60
and cell phone
62
when viewing the organizer LCD
12
in a hand that is different from the one they use when the organizer
60
is used alone. In this instance, the user can operate the screen flip switch
34
and the characters
14
on the screen
12
will remain at the preferred contrast setting that maximizes the visibility of the characters
14
to the user, as previously described.
While in the foregoing, there have been set forth preferred embodiments of the invention, it will be appreciated by those skilled in the art that the details herein given may be varied without departing from the true spirit and scope of the appended claims.
Claims
- 1. An apparatus comprising:a display capable of being positioned in first and second orientations; and a controller, operatively coupled to the display, configured to control a function that provides output to the display and to change contrast of the output of the function from a first contrast level to a second contrast level in response to the display changing position from the first orientation to the second orientation; and a driver configured to provide to the display at least two contrast signals including a first contrast signal responsive to the display being positioned in the first orientation and a second contrast signal responsive to the display being positioned in the second orientation, the first contrast signal providing a contrast level on the display that is different from a contrast level provided on the display by the second contrast signal.
- 2. The apparatus of claim 1, further comprising a user interface for indicating an orientation of the display.
- 3. The apparatus of claim 1, wherein the controller determines each of the first and second contrast levels as a function of a user-selected contrast setting and an orientation of the display.
- 4. The apparatus of claim 3, wherein the controller is configured to receive the user-selected contrast setting for the first contrast level, and determine the user-selected contrast setting for the second contrast level based on the user-selected contrast setting for the first contrast level.
- 5. The apparatus of claim 1, wherein the first and second orientations differ by about 180 degrees.
- 6. The apparatus of claim 5, wherein the first orientation of the display permits one of either right-handed manipulation and left-handed manipulation of the output of the function whereas the second orientation of the display permits the other of either right-handed manipulation and left-handed manipulation of the output of the function.
US Referenced Citations (7)