The present invention relates to a solution for automatically aligning one or more arrays of printing elements in a printing apparatus. More specifically the invention is related to the automatic alignment of ink jet print heads in an ink jet printing system.
Inkjet printing is a non-impact method for producing images by the deposition of ink droplets in a pixel-by-pixel manner into an image-recording element in response to digital signals. There are various methods which may be utilized to control the deposition of ink droplets on the receiver member to yield the desired image. In one process, known as drop-on-demand inkjet printing, individual droplets are ejected as needed on to the recording medium to form the desired image. Common methods of controlling the ejection of ink droplets in drop-on-demand printing include piezoelectric transducers and thermal bubble formation using heated actuators. With regard to heated actuators, a heater placed at a convenient location within the nozzle or at the nozzle opening heats ink in selected nozzles and causes a drop to be ejected to the recording medium in those nozzle selected in accordance with image data. With respect to piezoelectric actuators, piezoelectric material is used in conjunction with each nozzle and this material possesses the property such that an electrical field when applied thereto induces mechanical stresses therein causing a drop to be selectively ejected from the nozzle selected for actuation. The image data provided as signals to the print head determines which of the nozzles are to be selected for ejection of a respective drop from each nozzle at a particular pixel location on a receiver sheet. In another process known as continuous inkjet printing, a continuous stream of droplets is discharged from each nozzle and deflected in an imagewise controlled manner onto respective pixel locations on the surface of the recording member, while some droplets are selectively caught and prevented from reaching the recording member. Inkjet printers have found broad applications across markets ranging from the desktop document and pictorial imaging to short run printing and industrial labeling.
A typical inkjet printer reproduces an image by ejecting small drops of ink from the print head containing an array of spaced apart nozzles, and the ink drops land on a receiver medium (typically paper, coated paper, etc. ) at selected pixel locations to form round ink dots. Normally, the drops are deposited with their respective dot centers on a grid or raster, with fixed spacing in the horizontal and vertical directions between grid or raster points. The inkjet printers may have the capability to either produce only dots of the same size or of variable size. Inkjet printers with the latter capability are referred to as (multitone) or gray scale inkjet printers because they can produce multiple density tones at each selected pixel location on the page.
Inkjet printers may also be distinguished as being either pagewidth printers or swath (scanning) printers. Pagewidth printers are equipped with a pagewidth print head or print head assembly being able of printing one line at a time across the full width of a page. The line is printed as a whole as the page moves past the pagewidth print head while the print head is stationary. Pagewidth printers are also referred to as single pass printers because the image area is printed in only one pass of the page past the print head. An example of a pagewidth printer is the: Factory printer commercially available from Agfa-Gevaert NV (Belgium).
Swath printers on the other hand use multiple passes to print an image. In each pass a swath of the image is printed on the page. The width of a swath typically is linked to the print width of the print head or print head assembly used for printing the swath while passing across the page. Between such passes the page is advanced relative to position of the print head so that a next pass of the print head across the page prints a next swath of the image next to or (partially) overlapping the already printed swath. In swath printers a print head is traversed in a fast scan direction during a pass across the page to be printed. Often the traversal is such as to be perpendicular to the direction of the arrangement of the array of nozzles of the print head. The page to be printed moves in a slow scan direction, typically perpendicular to the fast-scan direction. An example of a swath printer is the: Anapurna large format printer commercially available from Agfa-Gevaert NV (Belgium). Print heads or print head assemblies used in both pagewidth printers and swath printers may comprise multiple arrays of nozzles mounted together as a single module in a print head or print head assembly. The arrays may be arranged in an interleaved position along the fast scan direction to increase print resolution or may be arranged to abut each other to increase the print (swath) width of the print head. The arrays may be arranged after each other with their respective nozzles in line with each other along the print direction. The first arrangements are often used to create improved monochrome print head assemblies, whereas the latter arrangement is often used in the design of multicolor print head assemblies.
To create pleasing printed images, the dots printed by one nozzle array must be aligned such that they are closely registered relative to the dots printed by the other nozzle arrays. If they are not well registered, then the maximum density attainable by the printer will be compromised, banding artifacts will appear and inferior color registration will lead to blurry or noisy images and overall loss of detail. These problems make good registration and alignment of all the nozzle arrays within an inkjet printer critical to ensure good image quality. That is, not only should a nozzle array be well registered with another that jets the same color ink, but it should be well registered with nozzle arrays that jet ink of another color.
In addition to good image quality, faster print rates are desired by customers of inkjet printers. For swath printers, a well-known means by which to accomplish high productivity is by increasing the number of nozzles. One way in which nozzle count may be increased is by simply adding extra nozzle arrays. This has the advantage that the same print head design may be used. However, this adds to the number of nozzle arrays that must be aligned, thereby increasing the possibility for misalignment and the labor required to properly align all the nozzle arrays.
An alternative to gain higher productivity is to increase the nozzle count within a nozzle array. This does not increase the count of nozzle arrays, but usually results in longer nozzle arrays as increasing the nozzle density of a nozzle array typically requires a completely new print head design and/or a new manufacturing process. Longer nozzle arrays also increase the difficulty of alignment of the nozzle arrays as the sensitivity to angular displacements increases proportionately.
In high-end inkjet printers, such as one that might be used in a wide-format application, there are still other considerations that must be made to ensure proper alignment of the nozzle arrays. For instance, bi-directional printing in the fast-scan direction to increase productivity requires that the nozzle arrays be properly aligned whether traveling in the right-to-left direction or the left-to-right direction.
Some high-end printers accept a variety of ink-receiving materials that may differ significantly in thickness. As a result, the printer may have several allowable discrete gaps between the nozzle arrays and the printer platen to accommodate these different receivers. Invariably, the gap between the nozzle arrays and the top of the receiver, referred to as the throw-distance, can vary significantly because of the range of receiver thicknesses and the limited number of discrete nozzle array heights. Due to the carriage velocity, the flight path of the drop is not straight down but really is the vector sum of the drop velocity and carriage velocity. This angular path and the differences in throw-distance make nozzle array registration sensitive to both the average of throw-distance as well as the variation in the throw-distance. These sensitivities further complicate the nozzle array alignment process.
Additionally, some high-end printers allow the customer to select different carriage velocities, higher carriage velocities resulting in increased productivity usually at a price in image quality. The term “carriage velocities” implies the supporting of the print heads upon a carriage support that moves in the fast-scan direction while being supported for movement by a rail or other support. The angular flight path of the droplets described will be a function of the carriage velocity. This then makes nozzle array alignment sensitive to yet another variable, namely carriage velocity.
Current alignment techniques fall within two varieties. Visual techniques use patterns printed by the printer that permit a user to simultaneously view various alignment settings and choose the best setting. Visual techniques are disadvantaged in many ways. First, for a printer with many nozzle arrays (24 separate nozzle arrays is not uncommon), multiple throw-distances, and multiple carriage velocities, the number of alignments can become overbearing as each variation adds multiplicatively to the rest. Secondly, only a moderate level of accuracy is attainable with most of these techniques and finely tuned printers require a higher degree of accuracy than is attainable by most of these techniques. Thirdly, interactions can occur between the various alignment parameters, which further degrade the ultimate quality of alignment that can be obtained through these visual techniques, or multiple iterations are required, thereby increasing the labor of the effort. Lastly, since several of these techniques usually operate by providing several alignment settings to the operator who then chooses the best choice, significant amounts of consumables (ink and media) may be required to obtain satisfactory alignment of all nozzle arrays in all print modes.
The second way nozzle arrays are typically aligned is with an on-carriage optical sensor that interprets patterns printed by the nozzle arrays to automatically make adjustments to the nozzle array alignment. While much improved over the more common visual techniques, these methods, too, have several shortcomings. Firstly, the optical sensors are typically of the LED variety with economical optics and cannot provide the high degree of accuracy required of finely tuned, high-end printers. Secondly, these sensors require significant averaging to create a reliable signal, making the amount of receiver required to perform the alignment larger than one would desire. Furthermore, this high degree of averaging necessitates a separate measurement for each nozzle array, requiring even more ink and receiver as the number of nozzle arrays increases. Thirdly, these on-carriage optical sensors are typically arranged to provide data primarily in the fast-scan direction. For demanding applications, slow-scan adjustments are equally important. Some techniques provide means by which slow-scan misalignments may be determined, but these measurements require separate, additional patterns, further consuming additional ink and receiver. Furthermore, this fast-scan limitation makes determination of nozzle array skew very difficult or impossible. Another result of the fast-scan directional limitation is the inability to measure errors in the movement of the receiver, yet another critical alignment variable.
It is therefore desired to develop a nozzle array alignment technique and process that provides a high degree of accuracy of alignment of all critical alignment variables while requiring very little labor and time to execute and while consuming as little ink and receiver as possible.
A preferred embodiment of the invention provides a method and apparatus for aligning the printing of dots generated by one or more arrays of printing elements wherein a calibration test pattern is printed, a camera is positioned relative to the printed calibration test pattern and a detail of the calibration test pattern is imaged and processed, and wherein the alignment of the one or more arrays of printing elements is adjusted on the basis of a calibration value derived from processing the imaged calibration test pattern.
In more preferred embodiment of the invention the detail of the calibration test pattern that is imaged by the camera comprises at least one pair of lines printed by different sets of printing elements at either opposite ends of one array of printing elements, or two ends of different arrays of printing elements.
In still another preferred embodiment of the invention the camera has an optical resolution better than or equal to about 5 μm to capture the details of the printed lines, and a depth of focus of at least 400 μm to handle varying throw-distances or non-flatness of the printing medium onto which the calibration test pattern is printed.
Other embodiments of the invention are set out in the attached dependent claims.
While the present invention will hereinafter be described in connection with preferred embodiments thereof, it will be understood that it is not intended to limit the invention to those embodiments.
A digital printer embodying the invention is shown in
Alternatively to using a sheet-based medium transport system, the digital printer may also be used with a web-based medium transport system. The printing medium transport may feed web media into the digital printer from a roll-off at the input end of the digital printer to a roll-on at the discharge end of the digital printer. In the digital printer the web is transported along the printing table that is used to support the printing medium during printing. In the particular case of a web-based medium transport with a printing medium feeding direction equal to the slow scan direction, the repositioning of the print head shuttle along the slow scan direction may be replaced by a repositioning of the web in the feeding direction. The print head shuttle then only reciprocates back and forth across the web in the fast scan direction.
As shown in
Mounting and positioning of print heads, in x, y and z-direction, at the 64 print head locations in the print head carriage may be realized with the use of print head positioning devices 10 as described in European patent application number 041068370.0, incorporated herein by reference.
The HPD's are movably mounted on the base plate by means of slide blocks 9 (see
The alignment and calibration process for 64 print heads, in a print head shuttle embodiment as shown in
In digital printing technology the digitally printed image is composed of individual pixels that are printed by the printing elements of a print head. A print head may comprise a number of printing elements. They may be physically arranged in a pattern, e.g. an array of nozzles. During printing, the array of printing elements prints corresponding arrays of dots on the printing medium. In the digital printer embodiment described above, 64 arrays of printing elements can print 64 corresponding arrays of dots simultaneously.
Part of the calibration process of the digital printer is measuring the position of each of the arrays of printing elements (print heads) relative to each other. The relative position of the arrays of printing elements may be determined by measuring the relative position of dots printed by these arrays, on a printing medium. In one embodiment of the invention an in-situ high resolution scanner system 90, further referred to as “calscan”, is provided to measure the position of printed dots. The calscan includes a high resolution reflection camera 91 for grabbing small size—high resolution image frames of a printed test pattern, a drive mechanism 92 that can position the high resolution camera along a scan direction CS and deliver linear position information of the camera and link this information to the image frames grabbed by the camera as a kind of position tag, and image analysis software for calculating dot positions. In a specific embodiment the camera may have a 5 μm optical resolution for scanning printed dots having a dot size of about 30 μm or more and for calculating a center of gravity of these dots with a 1 μm accuracy, a focal depth of minimum 400 μm (±200 μm to a reference), and an optical scan length or field of view of minimum 4 mm. The camera is specified with a required optical resolution, rather than an absolute accuracy, because in the calibration process the position of the dots relative to each other is more relevant than the absolute dot position. The calscan camera may be fitted with a telecentric lens that does not require a fixed focus distance and therefore delivers undistorted images of printed pixels on printing media with slightly varying media flatness (e.g. as a result of media cockling, inherent unflatness of plastic board or cardboards media, etc.).
With reference to
A specific embodiment of a calibration process described hereinafter includes the calibration of a bidirectional printing process, where printing is done during the forward and backward fast scan movement of the print head shuttle. Bidirectional printing, compared to unidirectional printing, imposes additional constraints on print head positioning onto the shuttle and timing of the printing element's activation during printing, as will be clear from the description hereinafter. The calibration process may include the following steps.
1. Correction of the print head's non-perpendicularity. This step assures that a line printed from an array of printing elements (shown as array 52 in
The non-perpendicularity of the print head is a calibration or alignment of the print head to the fast scan direction and not to other print heads.
2. Aligning in x- and y-directions.
A second step may include the aligning of the print heads in x- and y-direction, relative to each other. In the x-direction the print head's position may be adjusted with the adjustment screw 32 of the HPD. In the y-direction the position of the print heads is virtually adjusted via a software offset (time or position related) for the activation of the corresponding array of printing elements. In
For the calibration of print head alignment, a test pattern 80 may be used as shown in
At first, the print heads in a column may be aligned using the printed test patterns from job 1 (lines 81) and job 3 (lines 83). The alignment process starts with a first pair of print heads near the center of the print head configuration on the print head shuttle. This reduces cumulative errors when adding print heads to the alignment process. So a first pair of adjacent print heads, near the center of the print head configuration and within one column, is selected. At the left side of
Secondly, for each row, the print heads in the row are aligned to the one row-reference print head in the row that already has been aligned during the column alignment procedure just described. Row alignment may be based on printed test patterns from job 1 (lines 81) and job 2 (lines 82). If the position of the row-reference print heads has been adjusted, a new test pattern may be printed providing actual position information of print heads in a row relative to an already aligned row-reference print head in that row. If the position of the row-reference print heads has not been adjusted after the column alignment process, a new printed test pattern would not incorporate the effect of the calculated column alignment position adjustment values Δxc and Δyc and therefore the calculations in the hereinafter discussed row alignment must take into account that the position of the row-reference print head has not yet been adjusted. Reference is now made to
3. Bidirectional Offset
A third step in the calibration process may include defining the bidirectional printing offset. This parameter reflects the offset between lines printed at the same fast scan position but during opposite fast scans of the print head shuttle. In bidirectional printing mode, i.e. a mode wherein printing is done during the forward and backward fast scan of the print head shuttle, a drop that is printed by a printing element at a specific print position, i.e. at a specific fast scan position of the print head shuttle, will land at different locations on the printing medium depending on the direction of the fast scan motion and the fast scan speed. Nonetheless, dots printed during a forward fast scan and a backward fast scan may be part of a single image and therefore need to be aligned to each other to create a single image reproduction. This is achieved by providing a calibration step wherein an offset to the print position is calculated for every fast scan direction and fast scan speed in order to get the printed dots landing on the printing medium where they are supposed to land.
Referring to the left side of
4. Throw Distance Variations
A forth step in the calibration procedure may include the calibration and compensation for throw distance variations. The throw distance is the perpendicular distance between the ejection point of drops from a printing element of a print head and the printing surface of a printing medium.
Reference is now made to
The throw distance can be measured by printing lines, similar to the test pattern shown in
5. Spatial Fire Correction
he print head alignment in the y-direction, the bidirectional offset calibration and the throw distance calibration may be used in calculating spatial fire corrections for each print head and each print position on the printing medium. (The term “fire” is often used in ink jet printing and is equivalent to the above used term “ejection”.) The spatial fire correction may be used in when printing in bidirectional print mode, when changing fast scan velocities, for compensating throw distance variations or for aligning the print heads in the y-direction in any print mode. A controller may store these corrections and apply them in real-time to adjust the fire position of drops to ensure correct landing of all the dots during the printing. Not applying corrections means that the fire position is identical to the print position. Spatial fire corrections may be calculated for each printing element and for each print position of the printing element or print head across the printing medium, and stored in a print head controller; provided the print head electronics is able to apply these corrections to individual printing elements during the printing. In another embodiment using print head electronics that only allows spatial correction of the fire position for the complete array of printing elements, it may be more preferable to calculate and store an average correction value for the complete array of printing elements. In still another embodiment, spatial fire corrections are only calculated for a discrete number of positions across the printing medium (samples). Interpolation techniques may be used to calculate the fire position offset at a particular print position, based on these samples. In a preferred embodiment, the fire position offset at a particular print position is calculated in real-time. Averaging across the array of printing elements and sampling across the printing medium significantly reduces the amount of data that is to be calculated during calibration and stored in the print head controller. In a preferred embodiment a reduced number of spatial fire correction values may be calculated and stored, based on a square grid of print positions, the size of the grid being the length of the array of printing elements of a print head. The grid may look like the one shown in
During printing, the spatial fire correction values calculated and stored for a discrete number of grid points are used to calculate in real-time fire position adjustments for every print position in between grid points, e.g. by 2D binomial interpolation executed in the print head controller. The fire position adjustments calculated and adapted in real-time at every print position ensure that ejected dots land on the printing medium at their targeted pixel position. An advantage of using fire position adjustment, instead of fire frequency adjustment often used in the prior art, is that all calibration work and adjustment during printing is done in units of length and that timing is irrelevant. I.e. calibration values are measured in units of length on a printed calibration test pattern and correction are made in units of length on print head shuttle position. In a preferred embodiment, correction values are stored in the look-up matrix in μm's.
In the embodiment described above, a print head's non-perpendicularity and position regarding column and row alignment may be adjusted using adjustment screws 22 and 32 of the HPD head positioning device. An alignment adjustment tool is provided, referred to in this document as a “calibrero” robot, for accurately and reproducibly performing the adjustments to the HPD based on the calibration values calculated from printed calibration test patterns.
As previously described, the adjustment screws 22 and 32 of the PHD device are operable from the back of the HPD, i.e. the side used to insert the print head in the HPD which is often also the side where most print head connections are made (drive electronics, ink connection, etc.), and from the front of the slide block, i.e. the side where the printing elements are located which is also the side facing the printing table. The adjustment screws may be equipped with a click mechanism that ensures a fixed rotation angle per click and locks the angular position of the screw when the screw is not operated, e.g. 20 clicks may correspond with 360° rotation of the screw. Operability from the back of the HPD is provided for manual adjustment by an operator, based on instructions displayed on a user interface by the calscan software. Operability from the front of the HPD is provided for automatic adjustment by the calibrero robot, based on instruction from the calscan software. The front of the HPD's, i.e. the front of the slide block used mounting the HPD onto the base plate of the print head shuttle, becomes accessible when the print head shuttle is moved sideways the printing table. This position may be a service position used for print head maintenance, cleaning . . . and also calibration. When the print head shuttle is in the service position, the area underneath the shuttle may be used for installing automated tooling for maintenance and calibration processes. The calibrero robot is installed in the service area underneath the print head shuttle. The calibrero robot is an electric screwdriver mounted on a positioning device, but may be any tool that is suited for adjusting a print head positioning means. In this particular embodiment the screwdriver is the appropriate tool for adjusting the position of a screw. The positioning device allows for x-positioning of the screwdriver relative to the HPD's on the base plate of the print head shuttle. The x-positioning of the screwdriver is realized by a linear drive system operating along the slow scan direction. The y-positioning of the screwdriver relative to the HPD's is realized by the accurate fast scan drive system that operates the print head shuttle and brings the HPD's within range of the screwdriver. In one embodiment illustrated in
The calibrero robot may be used in the print head alignment process. This complete process may start with the printing of a calibration test pattern and scanning the printed pattern with a calscan module. Based on the scanned test pattern, the calscan software may then calculate a number of calibration values that can be used to physically adjust the alignment of the arrays of printing elements on the print head shuttle or can used as software corrections (e.g. spatial fire corrections) during the printing. The aim of these adjustments is to improve the alignment of printed dots onto the printing medium and as such improve global print quality. The step of physically adjusting the alignment of the arrays of printing elements may start by moving the print head shuttle along the y-direction or fast scan direction and positioning the shuttle right above the operating window of the calibrero robot. A complete column of HPD's is now within reach of the calibrero screwdriver which is moveable along the x-direction or slow-scan direction. Positioning of the print head shuttle is done by the very accurate fast scan drive system that is also used during printing. After adjusting the alignment of the arrays of printing elements in the column, by repositioning of the HPD's relative to the print head shuttle base plate, the print head shuttle may be repositioned so that a next column of HPD's comes within the operating window of the calibrero robot.
In the event that one of the HPD adjustment screws gets out of range, the HPD adjustments already executed may be recalculated and redone with a proper offset to allow that one HPD adjustment screw to be operated within its range and still keep the targeted alignment of the arrays of printing elements relative to each other.
An automated calibration solution may include the steps of (1) instructing the printer driver to print a number of calibration test patterns; (2) scanning the printed calibration test pattern via a calscan camera capturing high resolution image frames and calculating calibration values for the print heads on the basis of these images; (3) adjusting the print head position where necessary via adjustment screws on a head positioning device, by a calibrero robot, to align the print heads relative to each other and to the shuttle movement; (4) storing spatial fire correction values in the print head controllers; (5) instructing the printer driver to print a number of calibration test patterns to verify the calibration; (6) and either leaving or restarting the calibration process on the basis of the last printed calibration test patterns.
One or more of the calibration steps may be performed manually. The adjustment of the HPD positions may for example be done manually. A calibration user interface may then instruct an operator to perform a calibration, and provide him with HPD identification (e.g. row and column coordinates) and adjustment values (e.g. x clicks clockwise on screw 32 and y clicks counterclockwise on screw 22). The operator may turn the HPD adjustment screws via the backside of the HPD device and confirm the adjustment at the calibration user interface. The user interface may then provide the operator with instructions for a next HPD adjustment, etc.
The accuracy of the calibration procedure may be increased by increasing the number of dots used to print the lines of the calibration test pattern. In the examples discussed in this application, 4 printed dots are used to define a line but this amount may be altered as required. Increasing the number of dots in a printed line may increases the amount of data that can be used in the statistics for calculating the center of gravity of the printed line. A number of algorithms are available to calculate the center of gravity of a line of adjacent printed dots, such as the algorithms used in image quality analysis products commercially available from QEA or ImageXpert. One example may be based on the calculation of the center of mass of each of the individual dots, fitting a straight line through these centers and using the center of this line to represent the center of gravity of the printed line in the calibration test pattern.
The accuracy of the calibration procedure also depends on the quality of the printed dots (shape, size, density). Highly ink absorbing receiver media will reduce the density of the printed dots and reduce contrast, making it more difficult for the image analysis system to define the dot circumference and the center of mass. When the receiver medium shows a significant and uncontrolled dot spread, the calculated center of mass of the printed dots will not necessarily coincide with the landing position of the drop on the receiver medium. The calibration procedure may therefore benefit from using a curable ink for printing the calibration test pattern. The curable ink is instantly (and at least partially) cured after landing on the receiver medium so as to fix the location of the printed dots on the receiver medium. Often this will also keep the colorant on the surface of the receiver medium, being an advantage towards printed dot density and contrast. The size of the printed dot should not be too small for the calscan camera to be able to digitally represent the printed dot, i.e. dot size and camera resolution should be matched.
In the discussion above, there was little reference towards color registration or alignment of print heads jetting different colors of ink. That is because the calibration procedure aims at aligning arrays of printing elements relative to each other and is therefore intrinsically independent of color. For the purpose of properly scanning color printed dots, the calscan camera system may be extended with suitable color filters and/or switchable RGB LED illumination.
Calibration of printing medium (see next paragraph) and throw-distance may be performed at regular positions across the printable area of the printing medium. The calibration test pattern may therefore include several patches, at regular positions across the printable area, that can be used to calculate positional or regional calibration correction values (see also
In the calibration and print head alignment process, the calscan module has been used to grab image frames from the printed calibration test pattern, the purpose of the image frames being gathering positional information of printed dots on the printing medium and using this information for the alignment of the array of printing elements. The calscan module may also be used to gather information on print quality parameters like dot size and dot shape, and use this information for the calibration of the printing process. The additional information may for example be used to determine the optimal print resolution for a given drop volume and given wetting properties (form factor) of the printing medium, or it may be used to determine the optimal drop volume for a given print resolution and given wetting properties (form factor) of the printing medium. (The latter option may require the use of a print head where a drop volume of the ejected drops is adjustable, such as the Omnidot 760 available from Xaar plc (UK).) Other parameters that may be relevant in this discussion are printing medium pre-treatment, ink type, ink drying settings (e.g. time between drop landing and UV-curing of the drop), etc.
In the description of a printer embodiment where the invention may be used, the printing medium is held fixed during the printing and the print head shuttle can move in a fast scan and slow scan direction to cover the whole of the printable area. The invention may however also be used with other swath printer configurations, e.g. configurations where the slow scan movement of the print head shuttle relative to the printing medium is implemented by moving the printing medium relative to a fixed print head shuttle location in the slow scan direction. Also other types of printing media and transport systems may be used such as in web printing.
In a preferred embodiment the calscan module is mounted on the print head shuttle. This avoids an additional linear motion drive system for moving the calscan module in the fast scan direction. However, in other printer configuration this may not be the preferred setup and the calscan module may be operated in x and y direction completely independent from the print head shuttle drive controls.
Having described in detail preferred embodiments of the current invention, it will now be apparent to those skilled in the art that numerous modifications can be made therein without departing from the scope of the invention as defined in the appending claims.
Number | Date | Country | Kind |
---|---|---|---|
05108659.3 | Sep 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP06/66483 | 9/19/2006 | WO | 00 | 3/19/2008 |