This invention relates generally to control devices and more particularly to force controls as used with barrier controllers.
Movable barrier controllers are known in the art. Such devices typically respond to an actuation signal by actuating a motor and causing a movable barrier to move (the movable barrier can be, for example, a garage door, a date, a shutter, and the like). These devices have become increasingly sophisticated. For example, such controllers are often able to sense resistance to barrier movement. Such information can be used in a variety of ways, including automatically reversing movement of the barrier upon detecting an obstacle in the moving barrier's path. Unfortunately, a universal setpoint does not exist that will work for all barrier controllers systems to facilitate, under all operating conditions, utterly reliable obstacle detection with zero false positives all the time. Consequently, many barrier controllers include a force control that can be adjusted for an individual controller in a particular setting to better ensure safe, reliable, and effective operation.
Over the course of time, operating conditions for a given barrier controller can change. The barrier itself can be modified or exchanged for a different barrier. The barrier movement track can be altered (to obtain hoped-for improvement and/or through accident and mishap). The drive mechanism can also undergo change over time. For example, the motor and/or associated gear ratio can be changed (this often occurs in the context of maintenance and repair). Such changes can significantly impact the efficacy of previous force control settings. For example, consider
Unfortunately, the force control typically comprises a mechanical device having a corresponding mechanical setting range. As depicted in
A need therefore exists for a way to better accommodate subsequent operating system changes while providing an acceptable range of sensitivity control. Preferably, this need should be met in an economical and ergonomically sensitive manner. Further, minimized user responsibility to ensure such accommodation would be beneficial. Any such solution should also be relatively flexible and able to accommodate a relatively broad range of altered circumstances.
These needs and others are substantially met through provision of the method and apparatus for automatically establishing control values for a control device as disclosed herein. This benefit and others will become more clear upon making a thorough review and study of the following description, and particularly when taken in conjunction with the drawings, wherein:
Generally speaking, upon entering a learning mode, a device is automatically operated and at least one parameter that corresponds to operation of the device is automatically measured. That measured parameter is then used to establish a specific control value and that specific control value is then automatically assigned to a specific location within the mechanical setting range of a corresponding control device. For example, upon initiating this learning mode, a barrier controller can operate its motor and measure at least one parameter that corresponds to operation of the motor. This measured parameter value is used to establish a specific force control value that is then assigned to a specific location within the user manipulative setting range for a force control.
So configured, the setting range for a force control can be substantially optimized for a given set of operating conditions (including motor and gear ratio selection) as may occur over the installed life of the corresponding barrier controller system. This setting range optimization occurs substantially automatically.
Referring now to
All of the above components are well understood in the prior art. Therefore, for the sake of brevity and clarity of explanation, additional elaboration will not be presented here.
Referring now to
Referring now to
Pursuant to one embodiment, the learning mode 51 will operate for a predetermined period of time. One way of achieving this is to optionally began 62 a timer. Such a timing function can be provided by a dedicated timer that provides timing information within and/or to the barrier controller 41 or by a software implemented timing function within the computational platform of the barrier controller 41, all in accordance with well understood prior art technique. In one embodiment, the learning mode 51 can be rendered active for 30 seconds.
The barrier controller 41 then operates 52 the motor 42. In one embodiment, the motor 42 is operated 52 in a substantially unloaded operating state. Operating 52 the motor 42 in this state will provide a reliable indication of the highest speed that the motor 42 is likely capable of. In another embodiment, the motor 42 is operated 52 in an ordinary loaded operating state. Operating 52 the motor 42 in this state will provide a reliable indication of the highest speed that the motor 42 is likely capable of under ordinary operating conditions. If desired, and as may be appropriate to a particular application, the motor 42 could be operated 52 under some other known predetermined operating condition, such as by operating the motor 42 while coupled to a specific known weight.
The barrier controller 41 then measures 53 a parameter that corresponds to operation of the motor 42. For example, using the sensor 47, measurement can be taken of a parameter that corresponds to speed of rotation of the motor's drive axle. This can be achieved, for example, by directly measuring speed of rotation of the drive axle, or by measuring speed of rotation of a rotating member that has a speed of rotation that varies with respect to speed of rotation of the drive axle of the motor 42 as a function of, for example, a gear ratio or pulley ratio. In addition, or in the alternative, such a parameter can be obtained by measuring a parameter that corresponds to speed of movement of the barrier 43 itself as the motor 42 operates. As well understood in the art, such a sensor 47 will provide electric pulses that corresponds to the sensed parameter. For example, if a gear plate has two magnets disposed on the plate and opposite from one another, two such electric pulses per revolution of the gear plate will be provided by the sensor 47. Pursuant to one embodiment, two consecutive pulses can be utilized to obtain a parameter value that corresponds to speed of rotation of the drive axle of the motor 42. In another embodiment, such pulses can be counted over a predetermined period of time to obtain an average number of pulses per window of time. This average number can be utilized as the parameter value that corresponds to speed of rotation of the drive axle of the motor 42. By measuring such a parameter, the parameter can be seen to correspond to the rotational output of the motor 42, and hence the speed of the motor 42.
Following measurement 53 of the parameter, if the learning mode is being conducted over a predetermined period of time, the running time can be checked 63. If time remains, the process can continue with motor operation 52 and parameter measurement 53 (in this way an average for the parameter can be established as appropriate to a corresponding embodiment). Otherwise, the barrier controller 41 determines 54 a specific force control value while using the parameter value. For example, in one embodiment, the barrier controller 41 can assign the previously determined parameter value as the specific force control value. As an example of the latter, if the parameter value were “1600” as measured over a 32nd operating period and if this parameter value reflected sensor 47 output wherein one electrical pulses was provided per motor axle revolution, then the parameter value of “1600” could be used to assign a corresponding value as the force control value. In another embodiment, the barrier controller 41 can assign a modified version of the previously determined parameter value as the specific force control value. As an example of the latter, if the parameter value were “3200” as measured over a one minute operating period and if this parameter value reflected sensor 47 output wherein two electrical pulses are provided per motor axle revolution, then the parameter value could be divided by two to obtain a specific force control value of “1600” (which value would correspond to 1600 rpm).
If desired, additional control values can optionally be determined 64 as well. For example, the previously determined force control value can be utilized to calculate a maximum force control value. In one embodiment, such a maximum force control value can be calculated by decreasing the previously determined force control value by a predetermined amount such as, for example, 10 percent. In such an embodiment, a previously determined force control value of “1600” would yield a calculated maximum force control value of “1440.” In the alternative, the previously determined force control value could be increased or decreased as appropriate by a specific amount or through consideration of other stored or measured parameters to calculate the maximum force control value. In another embodiment, rather than calculating the maximum force control value directly, a lookup table could be utilized to correlate the previously determined force control value (or a modified version thereof) to a predetermined maximum force control value. In addition to determining a maximum force control value, the previously determined force control value could also be utilized to calculate or otherwise determine other control values as well. In the alternative, if desired, additional control values can simply be determined 64 by using previously stored control values, including a previously stored maximum force control value, either alone or in conjunction with the previously determined force control value.
Once the specific control value(s) are determined, it or they are assigned 55 to specific positions within the setting range of the force control 44. There are of variety of ways by which this can be done. In one embodiment, the initially determined control value is assigned to one of the limits of the force control 44 and most typically is assigned to the lower limit of the setting range. For example, with reference to
Referring now to
Other assignment possibilities also exist. For example,
The assignment of such values to the setting range of the force control 44 can be effected in various ways. For example, when the force control 44 comprises a potentiometer, the biasing voltage for that potentiometer can be varied to reflect the assigned control values. For example, if the presently applied bias voltage is 4 volts and if the barrier control or 41 is programmed to interpret 5 volts as 1440 and if the value to be assigned to the upper limit 72 is 1440, then altering the bias voltage from 4 volts to 5 volts will result in effectively assigning the control value “1440” to the upper limit 72 of the force control 44. Pursuant to another embodiment, the bias voltage can remain constant such that the force control 44 provides effectively never changing electric signals for each physical location within the setting range. In this case, the barrier controller 41 is itself modified to map (or calculate) those electric signals to the appropriate control value as assigned 55 during the learn mode 51.
If a visual indicator had been activated 61 at the initiation of the learn mode 51, then that visual indicator can be deactivated 65 at the conclusion of the learn mode 51.
When newly installing a barrier controller system 40, it may be desired to require that the learn mode 51 be processed prior to allowing normal functionality of the system 40. In this case, one or more functions of the system 40 can be disabled until the learn mode 51 has been processed. With reference to
So configured, the operating conditions for any given barrier controller can be significantly altered over time. This includes the changing of motors and gear ratios. Notwithstanding such changes, upon initiation of the learn mode 51, the barrier controller 41 can automatically ascertain one or more values to be assigned to the setting range of the force control 44 for that barrier controller. In particular, control values for the entire setting range can be selected to ensure that the setting range largely or wholly contains control values that are relevant and appropriate for the new operating conditions. This greatly enhances the ease of and likelihood that the operation of the barrier controller 41 will be appropriately adjusted to ensure both safe and appropriate performance.
Those skilled in the art will recognize that various alterations, modifications, and combinations can be made with respect to the various embodiments described above. Such alterations, modifications, and combinations are not to be viewed as being outside the appropriate scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4394607 | Lemirande | Jul 1983 | A |
4625291 | Hormann | Nov 1986 | A |
4638433 | Schindler | Jan 1987 | A |
4673848 | Hagiwara et al. | Jun 1987 | A |
4831509 | Jones et al. | May 1989 | A |
4855653 | Lemirande | Aug 1989 | A |
5278480 | Murray | Jan 1994 | A |
5453736 | Noren | Sep 1995 | A |
5682090 | Shigematsu et al. | Oct 1997 | A |
5982124 | Wang | Nov 1999 | A |
5986421 | Fukazawa et al. | Nov 1999 | A |
5994858 | Miura | Nov 1999 | A |
6081203 | Fitzgibbon | Jun 2000 | A |
6097166 | Fitzgibbon et al. | Aug 2000 | A |
6107765 | Fitzgibbon et al. | Aug 2000 | A |
6111374 | Fitzgibbon et al. | Aug 2000 | A |
6133703 | Fitzgibbon et al. | Oct 2000 | A |
6150784 | Nagaoka | Nov 2000 | A |
6172475 | Fitzgibbon et al. | Jan 2001 | B1 |
6310451 | Fitzgibbon et al. | Oct 2001 | B1 |
6340872 | Fitzgibbon et al. | Jan 2002 | B1 |
6400112 | Fitzgibbon et al. | Jun 2002 | B1 |
6426604 | Ito et al. | Jul 2002 | B1 |
6528961 | Fitzgibbon et al. | Mar 2003 | B1 |
6799140 | Bernard et al. | Sep 2004 | B2 |
6806665 | Fitzgibbon et al. | Oct 2004 | B2 |
20010029437 | Bernard | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20030102837 A1 | Jun 2003 | US |