The present embodiments relate to a method and apparatus for generating automatically a component fault tree of a safety-critical system on the basis of continuous function charts of system components of the respective safety-critical system.
Safety-critical systems may be found in a wide range of technical domains such as aerospace, transport systems, healthcare systems, automotive systems and industrial automation systems. With the growing system complexity of such safety-critical systems, also the need for safety assessment of the safety-critical system is increasing in order to meet the high quality demands in these technical domains. The goal of a safety assessment process is to identify all failures that cause hazardous situations and to demonstrate that the probability of occurrence of such failures is sufficiently low. In the application domains of safety-critical systems, the corresponding safety assurance process may be defined by means of safety standards. The analysis of a safety-critical system may be performed by using bottom-up safety analysis approaches such as failure mode and effect analysis FMEA, or by using top-down safety analysis approaches such as fault tree analysis FTA. By performing a safety analysis it is possible to identify failure modes, their causes and effects having an impact on the system safety. Component fault trees CFTs provide a model- and component-based methodology for fault tree analysis FTA which supports a modular and compositional safety analysis of the respective safety-critical system. Component fault tree elements are related to their development artefacts and may be reused along with the respective development artefact. However, the generation of a component fault tree of a complex safety-critical system may be cumbersome and prone to errors since it is mostly done manually by a safety engineer.
Accordingly, there is a need to provide a method and apparatus for generating automatically a component fault tree of an investigated safety-critical system.
The present embodiments provide according to a first aspect a method for generating automatically a component fault tree of a safety-critical system,
the method including the acts of:
In a possible embodiment of the method according to the first aspect, the safety-critical system includes software components and/or hardware components.
In a still further possible embodiment of the method according to the first aspect, a fault tree analysis is performed on the basis of the generated component fault tree.
In a still further possible embodiment of the method according to the first aspect, a root cause analysis is performed on the basis of the generated component fault tree.
In a further possible embodiment of the method according to the first aspect, the automatically generated component fault tree is compared with a component fault tree manually created by a software engineer for a verification of the component fault tree.
In a still further possible embodiment of the method according to the first aspect, the component fault tree is generated automatically during runtime of the safety-critical system in response to an observed event.
In a further possible alternative embodiment of the method according to the first aspect, the component fault tree is generated automatically during a design phase of the safety-critical system.
In a further possible embodiment of the method according to the first aspect, the generic mapping is performed by using a generic mapping table stored in a database.
In a further possible embodiment of the method according to the first aspect, the interconnected function blocks of the continuous function chart are read from a function block database.
In a further possible embodiment of the method according to the first aspect, a function block of a continuous function chart stored in said function block database includes at least one automation function representing a logical relation between input parameters and output parameters and/or a dependency of output parameters from input parameters.
The present embodiments further provide according to a second aspect an apparatus for generating automatically a component fault tree of an investigated safety-critical system, said apparatus including:
In a possible embodiment of the apparatus according to the second aspect, the output component fault tree of the safety-critical system is supplied to an analysis unit adapted to perform a fault tree analysis and/or a root cause analysis on the basis of the component fault tree.
In a possible embodiment of the apparatus according to the second aspect, the processing unit is adapted to generate the component fault tree automatically during runtime of the safety-critical system in response to an observed event.
In a further possible embodiment of the apparatus according to the second aspect, the processing unit is adapted to perform the generic mapping on the basis of a generic mapping table stored in a database.
In a still further possible embodiment of the apparatus according to the second aspect, the processing unit is adapted to read the interconnected function blocks of the continuous function chart from a function block database.
The present embodiments further provide according to a third aspect a safety-critical system including an apparatus configured to generate automatically a component fault tree of the safety-critical system, said apparatus including:
In a possible embodiment of the safety critical system according to the third aspect, the processing unit is adapted to generate and evaluate the component fault tree of the safety-critical system during runtime of the safety-critical system in response to an observed failure of a system component of said safety-critical system.
In the following, possible embodiments of the different aspects are described in more detail with reference to the enclosed figures.
The apparatus 1 further includes a processing unit 3 adapted to generate for each continuous function chart CFC a corresponding component fault tree, CFT, element. Inports and outports of the component fault tree, CFT, elements are generated and interconnected by the processing unit 3 of the apparatus 1 based on unique names of the inputs and outputs of the corresponding continuous function chart CFC of the respective system component C of the investigated safety-critical system SYS. The processing unit 3 is further adapted to generate input failure modes IFM and output failure modes OFM of each generated component fault tree, CFT, element based on generic mapping between connector types of the continuous function chart CFC and failure types of failure modes of the component fault tree element. In a possible embodiment, the processing unit 3 is adapted to perform the generic mapping on the basis of a generic mapping table MT stored in a database 4 as shown in
As shown in
In a first act S1, a continuous function chart CFC for each system component of the investigated safety-critical system SYS may be provided and for each provided continuous function chart a corresponding component fault tree element is automatically generated. The inports and outports of the component fault tree element are generated and interconnected based on unique names of the inputs and outputs of the corresponding continuous function chart CFC of the respective system component. The system component C may be a hardware component of the safety-critical system SYS or a software component of the safety-critical system SYS.
In a further act S2, input failure modes IFM and output failure modes OFM for each generated component fault tree element are generated based on generic mapping between connector types in the continuous function chart CFC and failure types of failure modes of the component fault tree element.
Finally, in act S3, for each generated component fault tree element of the system component C, the input failure modes IFM of the component fault tree element are connected to output failure modes OFM of the same component fault tree element via internal failure propagation paths based on interconnected function blocks FB of the continuous function chart CFC of the respective system component C. After the component fault tree CFT of the safety-critical system SYS has been generated automatically in acts S1 to S3, a fault tree analysis FTA may be performed on the basis of the generated component fault tree CFT. Further, a root cause analysis RCA may be performed on the basis of the generated component fault tree CFT of the investigated system SYS. It is further possible that the automatically generated component fault tree CFT of the investigated system SYS is compared with a component fault tree which has been created manually by a software engineer for verification of the generated component fault tree CFT.
In a further possible embodiment, the component fault tree is generated automatically in acts S1 to S3 as shown in
In a further possible embodiment of the method illustrated in
The system S consists of a set of components C={c1, . . . , cn}. Each system component c ∈C includes a set of inports IN(c)={in1, . . . , inp} and a set of outports OUT(c)={out1, . . . , outq}. The information flow between the outport of a component ci∈C and the inport of another component cj∈C (with ci/=cj) is represented by a set of connections.
CON={(outx,iny)|outx∈OUT(ci),iny∈IN(cj)}
The example system S presented as depicted in
The behavior of each component ci∈C is defined by a CFC diagram cfci∈CFC with C{tilde over (F)}C(ci)=cfci and cfc|=θ.
Each CFC may be defined by a tuple
cfci=(FB(cfci),LINK(cfci),IN(cfci),OUT(cfci))
where FB(cfci)={fb1, . . . , fbm} is a set of function blocks, LINK(cfci) is a set of linkages, IN(cfci)=IN(ci) is a set of input parameters of the CFC and equals the set of inports of the corresponding component ci, and OUT(cfci=OUT(ci) is a set of output parameters of the CFC and equals the set of outports of the corresponding component ci.
A function block fbi∈FB(cfci) of a CFC cfci∈CFC may be defined as a tuple
fbi=(t(fbi),f(fbi),IN(fbi),OUT(fbi))
where t(fbi) is the unique type of a function block, f(fbi) is the automation function, IN(fbi)={ini,1, . . . , ini,u}) is a set of input parameters of the function block FB, and OUT(fbi)={outi,1, . . . , outi,v)} is a set of output parameters of the function block FB.
A linkage linkj,i∈LINK(cfci) of a CFC cfci∈CFC is a relation
linkj,i=(xk,yl)|xk∈OUT(fbj)∪IN(cfci),yl∈IN(fbi)∪OUT(cfci))
where outj,k is either the kth output parameter of function block fbj or the kth input parameter of the CFC and ini,l is either the lth input parameter of function block fbi or the lth output parameter of the CFC.
An automation function f(fbi) of a function block fbi∈FB(cfci) is a relation between its input and output parameters (e.g. logical relations, such as or, and, not, etc.). It may be defined as f(fbi)⊂(IN(fbi)×OUT(fbi)), where for all ini,x∈IN(fbi) and outi,y
Each input parameter ini,k∈IN(fbi) and output parameter outi,l∈OUT(fbi) of a function block FB fbi∈FB(cfci) has a specific connector type CTY(xi)=cty with xi∈IN(fbi)∪OUT(fbi) (e.g. Boolean, integer, etc.). If linkj,i=(xa, yb)=(outfb
In the example system S, the CFC diagram cfc2 of component c2 presented in
Each component fault tree element cfti∈CFT(ci) of a component ci∈C may have input failure modes IFM (ink)={ifm1, . . . , ifms} which are related to an inport ink∈IN (c1) as well as output failure modes OFM (outl)={ofm1, . . . , ofmt} which are related to an outport outl ∈OUT(ci).
In order to specify the semantics of the failure modes within component the fault tree an unambiguous failure type fty is assigned to each input failure mode IFM and output failure mode OFM. The different failure types as well as the relation between them are specified in a so-called failure type system T:
Moreover, each CFT element CFT (ci)/=θ of a component ci∈C may have a set of gates G={g1, . . . , gr}. Each gate gi∈G has exactly one output gi.out, one or more inputs gi.IN={gi.in1, . . . , gi.ins}, and a Boolean formula b (e.g. g.out=g.in1 g.in2).
Input failure modes IFM and output failure modes OFM as well as gates are connected by a set of directed edges.
E⊂{(outx,iny)|outx∈IFM(in1)∪ . . . ∪IFM(inp)∪g1.out∪ . . . ∪gr.out,
iny∈g1.IN ∪ . . . ∪gr.IN ∪OFM(out1)∪ . . . ∪OFM(outq)}
The generation of a CFT from a CFC diagram may be performed in three subacts, which are defined as follows:
At first, a CFT element is created for each CFC diagram within a specific project:
∀cfci∈CFC with cfci=C{tilde over (F)}C(ci):C{tilde over (F)}T(ci)=cfti (1)
Thus, ∀ci∈C:∃cfti∈CFT.
Moreover, based on the inputs and outputs defined in each CFC diagram, inports and outports are generated and interconnected based on the unique names of the inputs and outputs of the CFC diagrams:
∀cfci∈CFC:IN(ci)→IN(cfci) (2)
∀cfci∈CFC:OUT(ci)→OUT(cfci) (3)
and
∀cfci,cfcj∈CFC with cfci|=cfcj:∀outi,k∈OUT(cfci),inj,l∈IN(cfcj):→
{(outi,k,inj,l)|name(outi,k)=name(inj,l)} (4)
For the exemplary system S as depicted in
In the next act, the input failure modes IFM and output failure modes OFM are generated for each of the previously created CFT elements.
The generation of the in- & output failure modes is based on a generic mapping between the connector types in the CFC diagram and the failure types of the failure modes in the CFT element. Each connector type corresponds to a set of failure types from the generic failure type system T:
MAP:CTY(xi)l→{fty1, . . . ,ftyn}∈T (5)
with xi∈IN(cfti)∪OUT(cfti) and cfti∈CFT and ftyj∈T.
The generic mapping from connector types IN CFCs to failure types in CFTs is presented in the following Table: For each CFT element cfti∈CFT, a set of input failure
Modes IFM and a set of output failure modes OFM are generated based on the connector types of the inputs IN (cfci) and outputs OUT (cfci) of the corresponding CFC diagram cfci∈CFc, where cfci=C{tilde over (F)}C(ci) and cfti=C{tilde over (F)}T(ci) with ci∈C:
∀cfci∈CFC:∀inj∈IN(cfci):→
{ifmk|MAP(CTY(inj))=FTY(ifmk)} (6)
and
∀cfci∈CFC:∀outj∈OUT(cfci):→
{ofmk|MAP(CTY(outj))=FTY(outk)} (7)
For the component c2 of the exemplary system S as depicted in
In a last subact, the failure propagation from the input failure modes IFM of each CFT element cfti∈CFT to its output failure modes OFM is generated based on the definition of the corresponding CFC diagram cfci=C{tilde over (F)}C(ci)∈CFC.
Therefore, input and output failure modes of the CFT element cfti may be connected using Boolean gates.
At first, the a set of Boolean gates G is generated based on specific predefined rules for each function block fbj∈FB (cfci). Therefore, a set of rules R(t(fbi))={r1, . . . , rs} is defined for each type of function block t (fbj)∈FB(cfci) in the CFC which describes how all possible failure types of the output parameter of a function block FB are related to the possible failure types its input parameters:
•cfci∈CFC:∀fbj∈FB(cfci):∀outk,l∈OUT(fbj):
R(t(fbj))={ri|ri:MAP(CTY(outk,l))l→MAP(CTY(ink,1))∘ . . . ∘MAP(CTX(nk,u)} (8)
with ∘={, ⊕}
and i=1, . . . , |MAP (CTY (outk,l))
The possible failure types of the input and output parameters of a function block FB in the CFC are defined by their connector type according to the mapping MAP (see above Table). For instance, if the connector type of the output parameter is a Boolean, two rules must be defined: one for the failure type false negative and one rule for the failure type false positive.
In case that no rule is predefined for a type of function block fbj∈FB(cfci) used in the CFC diagram cfci∈CFC, only the worst case scenario for the failure propagation may be assumed. This worst case scenario is defined as follows:
For the function blocks FB of component c2 in our exemplary system as depicted in
Based on these predefined rules, the following Boolean gates are generated for the CFT element cft2 of component c2:
Afterwards, the input failure modes IFM and output failure modes OFM as well as the Boolean gates of each CFT element cfti∈CFT are interconnected according to the corresponding CFC's linkage LINK(cfci). For creating the interconnections, the process starts from the output failure modes OFMs and connects them with the available input failure modes IFMs through the Boolean gates. Therefore, a set of direct edges is created automatically as follows:
∀outj∈OUT(cfci): ∀∀ofmk∈OFM(outj):
→{(x,ofmk)|x∈IFM(inl)x=gr.out,
∃linkz∈LINK(cfci)=(y,OUT(cfci)),y=inly∪
OUT(fbd),fbsgr} (10)
and
∀gj.IN∈G: ∀gj.ink∈gj.IN:
→{(x,gj.ink)|x∈IFM(in1)x=gr.out,gr|=gj
∃linkz∈LINK(cfci)=(y,OUT(cfci)),y=in1y
∪OUT(fbs),fbsgr} (11)
For the second component c2 in the exemplary system S, the following connections are created within the CFT element (cft2):
The result of the generation process for the exemplary system S is shown in
The method and apparatus may be provided for generating automatically a component fault tree CFT of a safety-critical system in different technical domains. By generating a component fault tree CFT from a continuous function chart CFC a failure propagation model is created automatically without any manual effort. The resulting component fault tree CFT may be used for fault tree analysis FTA or root cause analysis RCA of the overall investigated system SYS including also software components. Thus, the accuracy of a safety analysis of the investigated safety-critical system SYS is significantly increased without additional effort for the construction and maintenance of the safety analysis model, in particular for the software components of the respective system. Compared to conventional methods for analysis of components, in particular software components such as root cause analysis or fault injection tests, in which the quality of the results depends on the accuracy of the input data which are generated manually by a team of experts, for instance by brainstorming, the method and apparatus provide a complete set of input data without any additional manual effort. Moreover, the automatically generated component fault tree CFT may be compared to a component fault tree created manually by a safety engineer during system specification. Hence, it is possible also to verify the generated component fault tree CFT if the failure propagation model specified during system design is built correctly in terms of consistency and completeness.
With the method and apparatus, the verification whether a software component has been implemented correctly may be performed. Since the component fault tree CFT generated from the continuous function chart CFC provides an additional view on the implementation, the components and/or the complete investigated system SYS are compared with the correctly defined specification similar to the testing of a normal system behavior. The specified failure propagation model of the component fault tree CFT may be generated from a detailed software specification of the device under test. Hence, a testing scope of an implemented software component may be easily extended.
Further, the generated component fault tree data model may be used to determine the effects for the failure modes of a failure mode and effects analysis FMEA. Therefore, it is also possible either to fill the effects column of the FMEA sheet automatically for the given failure modes or to verify the effects in a filled FMEA sheet.
The generated component fault tree CFT forms a Boolean data model associated to system components C of the investigated system SYS. In a component fault tree, a separate component fault tree element is related to each system component. Failures that are visible at the output of a system component C may be modelled using output failure modes OFM which are related to a specific outport. To model how specific failures propagate from an inport of a component C to an outport, input failure modes IFM are used. The internal failure behavior that also influences the output failure modes OFM may be modeled using Boolean gates such as OR and AND as well as so-called basic events BE. Every component fault tree CFT may be transformed to a classic fault tree by removing the input and output failure mode elements. In both trees, top events TE or output events may be modelled as well. The component fault tree data model CFT allows additionally to the Boolean formula that are also modelled within the classic fault tree to associate the specific top events TE to the corresponding ports where the failures may appear.
The elements and features recited in the appended claims may be combined in different ways to produce new claims that likewise fall within the scope of the present invention. Thus, whereas the dependent claims appended below depend from only a single independent or dependent claim, it is to be understood that these dependent claims may, alternatively, be made to depend in the alternative from any preceding or following claim, whether independent or dependent. Such new combinations are to be understood as forming a part of the present specification.
While the present invention has been described above by reference to various embodiments, it should be understood that many changes and modifications can be made to the described embodiments. It is therefore intended that the foregoing description be regarded as illustrative rather than limiting, and that it be understood that all equivalents and/or combinations of embodiments are intended to be included in this description.
Number | Name | Date | Kind |
---|---|---|---|
4870575 | Rutenberg | Sep 1989 | A |
5369756 | Imura | Nov 1994 | A |
5581694 | Iverson | Dec 1996 | A |
7681086 | Vlassova | Mar 2010 | B2 |
8364626 | Heilmann | Jan 2013 | B2 |
9311434 | Berg | Apr 2016 | B1 |
20030028823 | Kallela | Feb 2003 | A1 |
20050160324 | Przytula | Jul 2005 | A1 |
20070150772 | Berenbach | Jun 2007 | A1 |
20070225948 | Takezawa | Sep 2007 | A1 |
20100100251 | Chao | Apr 2010 | A1 |
20120096318 | Kaiser | Apr 2012 | A1 |
20130024417 | Joanni | Jan 2013 | A1 |
20130073271 | Xiang | Mar 2013 | A1 |
20130317780 | Agarwal | Nov 2013 | A1 |
20150067400 | Ishii | Mar 2015 | A1 |
20150142402 | Ramesh | May 2015 | A1 |
20160266952 | Hofig | Sep 2016 | A1 |
Entry |
---|
Vesely W, Stamatelalos M, Dugan J, Fragola J, Minarick J. Fault tree handbook with aerospace applications. Report by NASA Office of Safety and Mission Assurance. 2002 [retrieved on Nov. 23, 2016]. Retrieved from the Internet: <URL: http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf>. |
Vesely W. Fault Tree Analysis (FTA): Concepts and Applications. 1998 [retrieved on Nov. 23, 2016]. Retrieved from the Internet: <URL: http://www.hq.nasa.gov/office/codeq/risk/ftacourse.pdf>. pp. 179-181. |
Kaiser B, Liggesmeyer P, Mackel O. A New Component Concept for Fault Trees. Oct. 1, 2003. In Proceedings of the 8th Australian Workshop on Safety Critical Systems and Software. vol. 33. pp. 37-46. |
Williamson, Louise M. Analysis of safety critical plc code against IEC 1508 development techniques, Durham theses, Durham University. 1998. |
Dugan, Joanne Bechta, Salvatore J. Bavuso, and Mark A. Boyd. “Dynamic fault-tree models for fault-tolerant computer systems.” IEEE Transactions on reliability 41.3 (1992): 363-377. (Year: 1992). |
Wardana, Awang Ni, Jens Folmer, and Birgit Vogel-Heuser. “Automatic program verification of continuous function chart based on model checking.” Industrial Electronics, 2009. IECON'09. 35th Annual Conference of IEEE. IEEE, 2009. (Year: 2009). |
Soliman, Doaa, Kleanthis Thramboulidis, and Georg Frey. “Transformation of function block diagrams to Uppaal timed automata for the verification of safety applications.” Annual Reviews in Control 36.2 (2012): 338-345. (Year: 2012). |
Number | Date | Country | |
---|---|---|---|
20170185470 A1 | Jun 2017 | US |