The present invention relates to a method and apparatus for automatically recognizing audio data, especially audio data obtained from an audio file played by a general audio device and subsequently recorded by a microphone, or an existing digital audio segment.
Nowadays, with the development of the Internet and digital computing devices, digital audio data such as digital music is widely used. Thousands of audio files have been recorded and transmitted through the digital world. This means that a user who wishes to search for a particular one of a large number of audio files will have great difficulty doing so simply by listening. There exists a great demand to develop an automatic audio recognition system that can automatically recognize audio data. An automatic audio recognition (AAR) system should be able to recognize an audio file by recording a short period of the audio file in a noisy environment. A typical application of this AAR system could be an automatic music identification system. By this AAR system, a recorded music segment or an existing digital music segment can be recognized for further application.
There already exist some systems in the prior art that can analyze and recognize audio data based on the audio features of the data. An example of such a system is disclosed by U.S. Pat. No. 5,918,223, entitled “Method and article of manufacture for content-based analysis, storage, retrieval and segmentation of audio information”, Thomas L. Blum et al. This system mainly depends on extracting many audio features of the audio data, such as amplitude, peak, pitch, brightness, bandwidth, MFCC (mel frequency cepstrum coefficients). These audio features are extracted from the audio data frame by frame. Then, a decision tree is used to classify and recognize the audio data.
One problem with such a system is that it requires the extraction of many features such as amplitude, peak, pitch, brightness, bandwidth, MFCC and their first derivatives from the selected audio data, and this is a complex, time-consuming calculation. For example, the main purpose of the MFCC is to mimic the function of the human ears. The process of deriving MFCC can be divided into 6 steps shown in
One problem associated with such a system is the effect on it of noise in the audio data. The extracted audio features in the system are very sensitive to the noise. Especially, MFCC features are very sensitive to white Gaussian noise, which is a wide band signal, which has equal energy in all frequencies. Since the Mel scale filters have wide passband at high frequency, the MFCC results at the high frequency have a low SNR. This effect will be amplified by step 5, the logarithm operation. Then, after the step 6 (i.e. the DCT operation), the MFCC features will be influenced over the whole of the time domain. White Gaussian noise always exists in the circuits of the AAR system. Also, when microphones record audio data, white Gaussian noise is added to the audio data. Furthermore, in a real situation, there is also a lot of environmental noise.
All of these noises make it hard for the AAR system to deal with the recorded data.
A further problem with the known system is that it requires a large part of the audio data file to achieve high recognition accuracy. However, in real situations, it takes a long time to record such a large part of the audio file and extract the required features from it, which makes it difficult to achieve real time recognition.
The concept of audio recognition is frequently used in the areas of speech recognition and speaker identification. Speech recognition and speaker identification are implemented by comparing speech sounds, so research on the above technology is focused on the extraction of speech sound features. A more general approach that can compare all sorts of sounds is required since the audio recognition task is quite different when the audio data is not speech. Audio features used in a speech recognition system are normally MFCC or linear predictive coding (LPC). Also, when a speech recognition system is trained using audio training data, the training data is collected using a microphone, and therefore already contains the white Gaussian noise. Thus, adaptive learning of the training data overcomes effect of the white Gaussian noise. However, in the context of an AAR system for recognizing music files, the training data is digital data having a much lower level of white Gaussian noise than the audio data which is to be recognized, so the effect of the white Gaussian noise cannot be ignored.
The object of the present invention is to provide a method and apparatus for automatically recognizing audio data, which can achieve high recognition accuracy and which is robust to noise including white Gaussian noise and environmental noise.
In general terms, a first aspect of the invention proposes that, in a system in which an observation vector is created of audio features extracted from observed audio data and the observation vector used to recognize from which of a number of target audio files the observed audio data was derived, the audio features should include one or more of the following features obtained from the observed audio data: (i) ICA features obtained by processing the observed audio data by an ICA process, (ii) first MFCC features obtained by removing a logarithm step from the conventional MFCC process, or (iii) second MFCC features obtained by applying the ICA process to results of a mel scale filter bank.
A second aspect of the invention proposes in general terms that, in a system in which an observation vector is created of audio features extracted from the observed audio data and the observation vector is used to recognize from which of a number of target audio files the observed audio data was derived, the recognition should be performed by using a respective HMM (hidden Markov model) for each of the target audio files.
The present invention is better understood by reading the following detailed description of the preferred embodiment with reference to the accompanying figures, in which like reference numerals refer to like elements throughout, and in which:
An embodiment of the invention which performs audio data recognition is illustrated in detail in
For the feature extraction, improved mel frequency cepstrum coefficients (IMFCC) features and independent component analysis (ICA) features are introduced to the system. As described above, conventional MFCC features are very sensitive to white Gaussian noise. By improving the MFCC features, the AAR system can be made robust to white Gaussian noise. In the embodiment, the MFCC features are improved in two alternative ways: removing the logarithm operation from the conventional MFCC algorithm, and replacing the logarithm operation and the Discrete Cosine Transform (DCT) of the MFCC algorithm with an ICA process. Details of these two ways will be introduced in the later section. The other kind of the audio features are called ICA features. By using the independent component analysis (ICA) methods to directly extract audio features from the audio data, the system performance can be dramatically improved.
Two ways of improving the MFCC features are shown in
The second way of improving the MFCC features is motivated by the technique known as ICA analysis, which aims to extract from audio data a set of features which are as independent as possible in a higher-order statistical sense. ICA has been widely used to extract features in image and audio processing, e.g. to extract speech features for speech recognition application as disclosed in “Speech Feature Extraction Using Independent Component Analysis” by J.-H. Lee et al, at 3rd International Conference of Independent Component Analysis, 2001, San Diego, Calif., USA. This analysis generates more distinguishable audio features than those produced by the DCT operation which is only based on 2nd-order statistics. The second way of improving the MFCC feature is to replace the logarithm and DCT operations in the conventional MFCC algorithm with an ICA process, as shown in
As shown in
Referring to
Whereas in
With the above two audio feature extraction methods, a vector of audio features (IMFCC1, IMFCC2, ICA1) can be obtained.
For the pattern recognition, a Hidden Markov Model (HMM) is introduced to the AAR system of the present invention. For each audio file, segments with equal length (which may for example be 5 seconds) are randomly selected from each of the target audio files and used to train the HMM models. By selecting enough segments from the audio data to train the HMM models, the audio data can be represented by these HMM models. During the recognition process, only one segment from target audio data file or from an existing digital audio data is required. With this segment, the HMM recognition algorithm can recognize its label by using a model database containing all of the HMM models.
The process of the HMM modeling in
The embodiment uses a respective HMM model for each of the W target audio files, and each of the HMM has a left-to-right structure. Although the present invention is not limited to models having a left-to-right structure, such models are preferred because their structure resembles that of the data (i.e. the linear time sequence represents the left-to-right HMM structure). As is conventional, the state of each HMM is denoted here as a set of model parameters λ={A, B, π}. In step 204, the HMM model for each target audio file is initialized according to the training data. In this step, the HMM is told which target audio file the training data comes from (“classification”). For each target audio file, the model parameters λ={A, B, π} are set to initial values based on the training data using a known HMM initialization algorithm.
During a model training step 205, the W initialized HMM models are trained to optimize the model parameters by using the HMM training algorithm. During the training process, an iterative approach is applied to find the optimum model parameters for which the training data are best represented. During this procedure, the model parameters, λ={A, B,π}, are adjusted in order to maximize the probability of observations, given the model: P(O|λ), where 5 represents the observations. The optimization of the HMM parameters is thus an application of probability theory, i.e. expectation maximization techniques.
After finding the model parameters λ={A, B, π} of each model, a database 207 containing data D={λ1, λ2, . . . , λw} is created containing all the models for the target audio files, as shown in step 206. For example, if the AAR is a song recognition system, a database containing a model for each selected song is set up, so that the song recognition system can recognize all the selected songs in this database. Each model is associated with a pre-determined audio label for further recognition.
After setting up the audio modeling database 207, the next task is to construct an audio recognition scheme. The audio recognition process can be seen in
The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiment described above may occur to those skilled in the art and these can be made without departing from the scope of the invention. For example, in the above embodiment of the present invention, the extracted audio features are a combination of IMFCC1, IMFCC 2 and ICA1. However, experiments show that the audio recognition can also achieve high accuracy when the audio feature(s) include only one feature selected from these three (e.g. an accuracy rate of 95% when there are 100 target files, each having an average length of 200 seconds; note that in other embodiments of the invention it is expected that the number of target files will be much higher than this). Furthermore, it would be possible (though not desirable) for any one of more of these three novel features to be used in combination with other audio features known from the prior art.
Number | Date | Country | Kind |
---|---|---|---|
200304014-4 | Jul 2003 | SG | national |
Number | Name | Date | Kind |
---|---|---|---|
5864803 | Nussbaum | Jan 1999 | A |
5918223 | Blum et al. | Jun 1999 | A |
5953700 | Kanevsky et al. | Sep 1999 | A |
6542866 | Jiang et al. | Apr 2003 | B1 |
7050977 | Bennett | May 2006 | B1 |
20010044719 | Casey | Nov 2001 | A1 |
20030046071 | Wyman | Mar 2003 | A1 |
20040167767 | Xiong et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
0 387 791 | Sep 1990 | EP |
0 575 815 | Dec 1993 | EP |
0 935 378 | Aug 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20050027514 A1 | Feb 2005 | US |