This application is the National Stage of PCT/AT2009/000484 filed on Dec. 14, 2009, which claims priority under 35 U.S.C. ยง119 of Austrian Application No. A 1962/2008 filed on Dec. 16, 2008, the disclosure of which is incorporated by reference. The international application under PCT article 21(2) was not published in English.
The invention relates to a method for backing the inside teeth of a sliding sleeve produced by way of powder metallurgy for a manual transmission, where the backings of the teeth forming the front-side pitches are formed with the aid of a rolling tool by back-rolling accompanied by plastic displacement of material from the backing region.
Recesses in the region of the tooth flanks of the inner teeth of annular components are designated as backing if they cannot be produced with tool delivery axially parallel to the ring axis but require setting of the tool onto the workpiece radially outwards. For reasons of cost such backings of the inner teeth of sliding sleeves for manual transmissions are frequently fabricated by back rolling accompanied by a plastic displacement of material from the backing region, in which case undesired geometrical deformations and burr formations in the tooth region cannot be avoided so that an expensive finishing treatment is required. In order to avoid these disadvantages, it has already been proposed (DE 198 09 039 A1, DE 101 22 184 A1) to create free spaces in the region of the tooth head into which the plasticised material can be displaced in order to avoid accumulations of material in the region of functional surfaces of the sliding sleeve. Despite this measure, it has not however been possible to fabricate backings meeting higher requirements by means of rolling tools so that in such cases milling of the backings is avoided (DE 102 50 432 A1).
It is therefore the object of the invention to configure a method of the type described initially for backing the inside teeth of a sliding sleeve produced by way of powder metallurgy for manual transmissions such that after back rolling the backings, a dimensionally stable, largely burr-free workpiece is obtained without expensive finishing treatment.
The invention solves the formulated object by calibrating the front-side tooth sections delimited by the backings whilst shaping and/or calibrating the relevant pitches with the aid of the rolling tool for forming the backings.
Since as a result of these measures, not only the backing region is back rolled but the front-side tooth sections delimited by the backings are also subjected to plastic deformation, which effects at least a calibrating of these tooth sections provided with front-side pitches if the pitches are not first formed with the rolling tool, the plastic displacement of material over the entire front-side tooth section can be better controlled with the effect that the material accumulations which restrict the dimensional accuracy and functional efficiency and therefore burr formations can be avoided. It is therefore possible to produce backings of the inside teeth of sliding sleeves without milling treatment with the aid of a rolling tool under series production conditions with sufficient dimensional accuracy in order to satisfy even higher requirements on the precision.
In order to assist the flow of plasticised material in a desired form, the rolling tool can be pressed in an oscillating manner onto the inside teeth of the sliding sleeve, where the amplitude and direction of the oscillations or pulses should be selected depending on the tool and the shape to be produced. Such oscillation of the rolling tool can be achieved by a corresponding tumbling of the rolling tool.
For carrying out such a method, a usual apparatus for backing the inside teeth of a sliding sleeve produced by way of powder metallurgy for a manual transmission having a rolling tool profiled according to the backing can be taken as the starting point if the rolling tool has a profile section adjoining the profile shape for the backing, which corresponds to the final form of the front-side tooth sections of the inside teeth delimited by the backings. In this case, not only the backing is rolled into the tooth head but at the same time, the front-side tooth section separated from the remaining tooth by the backing is treated so that no accumulations of material caused by a local delimitation of the rolling tool can be obtained along this tooth section. In addition, the profile shape of the rolling tool extending over the entire front-side tooth section including the backing brings about a calibrating of these tooth regions which ensures the required dimensional stability.
The rolling tool can be arranged in a conventional manner with an axis of rotation parallel to the axis of the sliding sleeve which, however brings with it the disadvantage that the impact forces due to the rolling tool are directed radially outwards. In order that deformation forces having a more strongly defined component in the axial direction can be used for the deformation process, the axes of rotation of the rolling tool and the sliding sleeve can together include an acute angle so that the radial impact of the rolling tool in relation to the sliding sleeve to be treated brings with it force components in the radial and axial direction. The inclined arrangement of the rolling tool in relation to the sliding sleeve furthermore constitutes advantageous conditions for the simultaneous use of two rolling tools, with the result that the treatment process can be accelerated accordingly.
The method according to the invention will be explained in detail with reference to the drawings. In the figures:
The inside teeth 2 of a sliding sleeve 3 to be produced with backings 1 for a conventional manual transmission, for example, of a motor vehicle, are formed in the sliding sleeve 3, which is produced by a corresponding sintering of a compression-moulded iron material by way of powder metallurgy, by axially continuous teeth 4 over the sleeve width, which according to the exemplary embodiment shown have a preform for a subsequent pitch on a front side, but otherwise have axially parallel flanks and an axially parallel head. In order to be able to back roll the backings 1 by means of a rolling tool 5 through a plastic displacement of material, the profile tool has a profile shape adapted to the end shape of the teeth 4, having a profile 6 which determines the backings 1 and an adjoining front-side profile section 7, which corresponds to the outline shape of the front-side tooth section 8 separated from the remaining tooth by the backing 1 and therefore at least calibrates if not shapes the front-side pitches 9 of the inside teeth 2 in their final shape.
In
Unlike
Number | Date | Country | Kind |
---|---|---|---|
A 1962/2008 | Dec 2008 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AT2009/000484 | 12/14/2009 | WO | 00 | 5/31/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/075600 | 7/8/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1510889 | Hooker | Oct 1924 | A |
1712095 | Schurr | May 1929 | A |
1935965 | Wahlberg | Nov 1933 | A |
3735618 | Zook | May 1973 | A |
3765202 | Bauknecht et al. | Oct 1973 | A |
3777345 | Brown | Dec 1973 | A |
5096037 | Knoess et al. | Mar 1992 | A |
5701574 | Derflinger et al. | Dec 1997 | A |
6216550 | Schwuger et al. | Apr 2001 | B1 |
6730263 | Ernst et al. | May 2004 | B2 |
6883358 | Hauf | Apr 2005 | B2 |
7246439 | Rau et al. | Jul 2007 | B2 |
20010025520 | Tittmann | Oct 2001 | A1 |
20090142153 | Prock et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
4117365 | May 1992 | DE |
4200418 | Dec 1992 | DE |
44 18 632 | Dec 1994 | DE |
196 04 386 | Aug 1996 | DE |
197 44 639 | Feb 1999 | DE |
198 09 039 | Sep 1999 | DE |
198 50 326 | May 2000 | DE |
199 33 468 | Jan 2001 | DE |
101 22 184 | Nov 2002 | DE |
102 50 432 | May 2004 | DE |
Entry |
---|
English Machine Translation of De4200418C1 from espacenet.com. |
International Search Report of PCT/AT2009/000484, Apr. 26, 2010. |
Number | Date | Country | |
---|---|---|---|
20110232092 A1 | Sep 2011 | US |