The subject disclosure relates to a communication device performance, and in particular, to a method and apparatus for beam forming and antenna tuning in a communication device.
Cellular telephone devices have migrated to support multi-cellular access technologies, peer-to-peer access technologies, personal area network access technologies, and location receiver access technologies, which can operate concurrently. Cellular telephone devices in the form of smartphones have also integrated a variety of consumer features such as MP3 players, color displays, gaming applications, cameras, and other features. Cellular telephone devices can be required to communicate at a variety of frequencies, and in some instances are subjected to a variety of physical and function use conditions.
As mobile communication technology continues to develop, users will likely desire higher quality of services and the ability to utilize more and more features and services.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The subject disclosure describes, among other things, illustrative embodiments of enhancing communication device performance through selective beam forming utilizing amplitude and/or phase shifters to reduce antenna gain towards an interference signal. The selective beam forming can be applied to outside and/or inside interference. In one or more embodiments, antenna beam forming and antenna isolation can be applied in a mobile communication device to improve inside interference (also known as self de-sensing) between radios of the mobile communication device in conjunction with improving radiated throughput.
In one or more embodiments, the magnitude and/or phase of antenna(s) can be adjusted to realize desired antenna beam forming and/or desired antenna isolation, including between GSM/CDMA/WCDMA/LTE antennas and RF connectivity antennas, such as WLAN and Bluetooth antennas.
In one or more embodiments, reactive element adjustments can be applied to an antenna matching circuit and its associated conductive structure with tunable area, tunable shape, and tunable coupling factor to the main ground. This can enable adjustment of a first antenna (such as LTE B7 antenna) pattern without the involvement of a second antenna, and reduce the coupling to another antenna (such as 2.4 GHz WLAN antenna).
One embodiment of the subject disclosure includes a mobile communication device which has a plurality of antennas including radiating elements. The mobile communication device has phase shifters connected with the radiating elements, a memory storing computer instructions, and a processor coupled to the memory and the phase shifters. The processor, responsive to executing the computer instructions, performs operations including obtaining Received Signal Strength Indicator (RSSI) data, performing beam forming based on the RSSI data utilizing the phase shifters, and determining whether a throughput threshold can be satisfied. The processor adjusts the beam forming utilizing the phase shifters responsive to a determination that the throughput threshold cannot be satisfied. The adjusting of the beam forming can be based on forming a desired antenna pattern that increases radiated throughput and reduces antenna coupling among the plurality of antennas.
One embodiment of the subject disclosure includes a method comprising determining, by a controller circuit of a communication device, antenna coupling among a plurality of antennas of the communication device. The method can include adjusting, by the controller circuit, beam forming for the plurality of antennas utilizing phase shifters coupled with radiating elements of the plurality of antennas. The adjusting of the beam forming can be based on forming a desired antenna pattern that increases radiated throughput and reduces the antenna coupling among the plurality of antennas.
One embodiment of the subject disclosure includes a mobile communication device having a transceiver and an antenna assembly that is coupled with the transceiver. The antenna assembly includes a first structure with a first ground, a second structure with a second ground, and a plurality of tunable capacitors connected between the first and second structures. The antenna assembly can include an antenna having a feed point and a radiating element. The feed point can be connected with the first structure. The radiating element can be connected with the second structure.
One or more of the exemplary embodiments can provide for antenna tuning based on quality of service parameter(s) and/or through power consumption management (e.g., reduction of transmit power without sacrificing desired throughput). In one or more embodiments, layers of tuning can be performed utilizing a matching network having one or more adjustable reactive elements, where the tuning layers utilize different parameters and/or goals. For example, a first layer of tuning can be performed based on tuning toward a pre-determined match (e.g., a 50Ω match or other desired match value). The first tuning layer can be an open-loop process and/or a closed loop process. A second layer of tuning can be performed based on use cases (e.g., a physical and/or operational state(s) of the communication device) and based on Total Radiated Power (TRP) and/or Total Isotropic Sensitivity (TIS). A third layer of tuning can be performed based on radiated throughput of the communication device, including Uplink (UL) and Downlink (DL) throughput. Any one or more of these tuning layers can be utilized alone or in combination with each other, and they can be utilized in various orders, including the order in the above-described example.
In one embodiment, transmit power for the communication device can be adjusted (e.g., reduced) when the radiated throughput is in a desired range (e.g., satisfies a throughput threshold). In another embodiment, the third layer of tuning can include adjusting the matching network when the radiated throughput is outside of a desired range (e.g., does not satisfy the throughput threshold). The throughput threshold can be determined based on a number of different factors, including a modulation scheme being utilized, signal strength, information provided from a remote source such as a base station, and so forth.
In one embodiment, a closed-loop tuning process can be utilized so that the antenna matching circuit is tuned towards a pre-determined match across operating Tx and Rx bands. In another embodiment, the closed-loop tuning process can be implemented for the best or better and respective TRP and TIS in each pre-defined use case (e.g., free space, handheld, handheld close to head, on-a-metal table, speaker-phone operation, etc.). In another embodiment, calibration can be performed under each pre-defined use case, where the calibration goal is not the best TRP and TIS, but rather the best or better UL and DL throughputs. In one embodiment, the closed-loop process during a Rx mode (e.g., when the Rx band is different from Tx band) can utilize a pre-defined TIS for a specific use case as a starting point and can tune based on the DL throughput. Other embodiments are contemplated by the subject disclosure.
One embodiment of the subject disclosure includes a mobile communication device having a matching network including an adjustable reactive element, an antenna coupled with the matching network, a memory storing computer instructions, and a processor coupled to the memory and the matching network. The processor, responsive to executing the computer instructions, performs operations including identifying a use case for the mobile communication device. The processor retrieves a tuning value from a look-up table of the memory that correspond to the use case, where the tuning value is empirical data based on at least one of a total radiated power or a total isotropic sensitivity. The processor tunes the matching network based on the tuning value. The processor determines radiated throughput for at least one of an uplink throughput or a downlink throughput. The processor reduces transmit power responsive to the radiated throughput satisfying a throughput threshold. The processor tunes the matching network responsive to the radiated throughput not satisfying the throughput threshold.
One embodiment of the subject disclosure includes a method in which a controller circuit of a communication device determines a radiated throughput for at least one of an uplink throughput or a downlink throughput of the communication device. The method includes reducing transmit power for the communication device responsive to the radiated throughput satisfying a throughput threshold. The method includes tuning, by the controller circuit, a matching network of the communication device responsive to the radiated throughput not satisfying the throughput threshold.
One embodiment of the subject disclosure includes a mobile communication device having a matching network including an adjustable reactive element, an antenna coupled with the matching network, and a controller circuit coupled to the matching network. The controller circuit, responsive to executing computer instructions, performs operations including adjusting transmit power responsive to a radiated throughput satisfying a throughput threshold, and tuning the matching network responsive to the radiated throughput not satisfying the throughput threshold.
Other tuning techniques and components can be utilized with the exemplary embodiments, including the techniques and components described in U.S. application Ser. No. 13/552,804 filed contemporaneously herewith entitled “METHOD AND APPARATUS FOR ANTENNA TUNING AND POWER CONSUMPTION MANAGEMENT IN A COMMUNICATION DEVICE,” as well as U.S. application Ser. No. 13/552,753 filed contemporaneously herewith entitled “MOBILE DEVICE WITH SELECTIVE WLAN RECEIVE GAIN LEVELS AND RELATED METHODS.” The disclosures of both of these applications are incorporated by reference herein in their entirety.
The UI 104 can include a depressible or touch-sensitive keypad 108 with a navigation mechanism such as a roller ball, a joystick, a mouse, or a navigation disk for manipulating operations of the communication device 100. The keypad 108 can be an integral part of a housing assembly of the communication device 100 or an independent device operably coupled thereto by a tethered wireline interface (such as a USB cable) or a wireless interface supporting, for example, Bluetooth. The keypad 108 can represent a numeric keypad commonly used by phones, and/or a QWERTY keypad with alphanumeric keys. The UI 104 can further include a display 110 such as monochrome or color LCD (Liquid Crystal Display), OLED (Organic Light Emitting Diode) or other suitable display technology for conveying images to an end user of the communication device 100. In an embodiment where the display 110 is touch-sensitive, a portion or all of the keypad 108 can be presented by way of the display 110 with navigation features.
The display 110 can use touch screen technology to also serve as a user interface for detecting user input. As a touch screen display, the communication device 100 can be adapted to present a user interface with graphical user interface (GUI) elements that can be selected by a user with a touch of a finger. The touch screen display 110 can be equipped with capacitive, resistive or other forms of sensing technology to detect how much surface area of a user's finger has been placed on a portion of the touch screen display. This sensing information can be used to control the manipulation of the GUI elements or other functions of the user interface. The display 110 can be an integral part of the housing assembly of the communication device 100 or an independent device communicatively coupled thereto by a tethered wireline interface (such as a cable) or a wireless interface.
The UI 104 can also include an audio system 112 that utilizes audio technology for conveying low volume audio (such as audio heard in proximity of a human ear) and high volume audio (such as speakerphone for hands free operation). The audio system 112 can further include a microphone for receiving audible signals of an end user. The audio system 112 can also be used for voice recognition applications. The UI 104 can further include an image sensor 113 such as a charged coupled device (CCD) camera for capturing still or moving images.
The power supply 114 can utilize common power management technologies such as replaceable and rechargeable batteries, supply regulation technologies, and/or charging system technologies for supplying energy to the components of the communication device 100 to facilitate long-range or short-range portable applications. Alternatively, or in combination, the charging system can utilize external power sources such as DC power supplied over a physical interface such as a USB port or other suitable tethering technologies.
The location receiver 116 can utilize location technology such as a global positioning system (GPS) receiver capable of assisted GPS for identifying a location of the communication device 100 based on signals generated by a constellation of GPS satellites, which can be used for facilitating location services such as navigation. The motion sensor 118 can utilize motion sensing technology such as an accelerometer, a gyroscope, or other suitable motion sensing technology to detect motion of the communication device 100 in three-dimensional space. The orientation sensor 120 can utilize orientation sensing technology such as a magnetometer to detect the orientation of the communication device 100 (north, south, west, and east, as well as combined orientations in degrees, minutes, or other suitable orientation metrics).
The communication device 100 can use the transceiver 102 to also determine a proximity to a cellular, WiFi, Bluetooth, or other wireless access points by sensing techniques such as utilizing a received signal strength indicator (RSSI) and/or signal time of arrival (TOA) or time of flight (TOF) measurements. The controller 106 can utilize computing technologies such as a microprocessor, a digital signal processor (DSP), and/or a video processor with associated storage memory such as Flash, ROM, RAM, SRAM, DRAM or other storage technologies for executing computer instructions, controlling, and processing data supplied by the aforementioned components of the communication device 100.
Other components not shown in
The communication device 100 as described herein can operate with more or less of the circuit components shown in
Other configurations of
The tunable capacitors 404-408 can each utilize technology that enables tunability of the reactance of the component. One embodiment of the tunable capacitors 404-408 can utilize voltage or current tunable dielectric materials. The tunable dielectric materials can utilize, among other things, a composition of barium strontium titanate (BST). In another embodiment, the tunable reactive element 310 can utilize semiconductor varactors. Other present or next generation methods or material compositions that result in a voltage or current tunable reactive element are contemplated by the subject disclosure for use by the tunable reactive element 310 of
The DC-to-DC converter 304 can receive a DC signal such as 3 volts from the power supply 114 of the communication device 100 in
Although the tunable reactive element 310 is shown in a unidirectional fashion with an RF input and RF output, the RF signal direction is illustrative and can be interchanged. Additionally, either port of the tunable reactive element 310 can be connected to a feed point of the antenna 206, a radiating element of the antenna 206 in an on-antenna configuration, or between antennas for compensating cross-coupling when diversity antennas are used. The tunable reactive element 310 can also be connected to other circuit components of a transmitter or a receiver section such as filters, power amplifiers, and so on.
In another embodiment, the tunable matching network 202 of
The tunable reactive elements 310 and 504 of
With the flip open a user is likely to hold the bottom flip 802 with one hand while positioning the top flip 804 near the user's ear when an audio system of the phone 800, such audio system 112 of
For a phone 900 with a slideable keypad 904 (illustrated in
The number of hands and fingers used in the portrait mode may be determined by the particular type of game being played by the user. For example, a particular video game may require a user interface where a single finger in portrait mode is sufficient for controlling the game. In this scenario, it may be assumed that the user is holding the smartphone 1000 in one hand in portrait mode and using a finger with the other. By empirical analysis, a possible range of impedances of the internal antenna can be determined when using this video game in portrait mode. Similarly, if the video game selected has a user interface that is known to require two hands in landscape mode, another estimated range of impedances of the internal antenna can be determined empirically.
A multimode phone 1100 capable of facilitating multiple access technologies such as GSM, CDMA, LTE, WiFi, GPS, and/or Bluetooth in two or more combinations can provide additional insight into possible ranges of impedances experienced by two or more internal antennas of the multimode phone 1100. For example, a multimode phone 1100 that provides GPS services by processing signals received from a constellation of satellites 1102, 1104 can be empirically analyzed when other access technologies are also in use. Suppose, for instance, that while navigation services are enabled, the multimode phone 1100 is facilitating voice communications by exchanging wireless messages with a cellular base station 1106. In this state, an internal antenna of the GPS receiver may be affected by a use case of a user holding the multimode phone 1100 (e.g., near the user's ear or away from the user's ear). The affect on the GPS receiver antenna and the GSM antenna by the user's hand position can be empirically analyzed.
Suppose in another scenario that the antenna of a GSM transceiver is in close proximity to the antenna of a WiFi transceiver. Further assume that the GSM frequency band used to facilitate voice communications is near the operational frequency of the WiFi transceiver. Also assume that a use case for voice communications may result in certain physical states of the multimode phone 1100 (e.g., slider out), which can result in a probable hand position of the user of the multimode phone 1100. Such a physical and functional use case can affect the impedance range of the antenna of the WiFi transceiver as well as the antenna of the GSM transceiver.
A close proximity between the WiFi and GSM antennas and the near operational frequency of the antennas may also result in cross-coupling between the antennas, thereby changing the load impedance of each of the antennas. Cross-coupling under these circumstances can be measured empirically. Similarly, empirical measurements of the impedances of other internal antennas can be measured for particular physical and functional use configurations when utilizing Bluetooth, WiFi, Zigbee, or other access technologies in peer-to-peer communications with another communication device 1108 or with a wireless access point 1110.
The number of physical and functional use cases of a communication device 100 can be substantial when accounting for combinations of access technologies, frequency bands, antennas of multiple access technologies, antennas configured for diversity designs such as multiple-input and multiple output (MIMO) antennas, and so on. These combinations, however, can be empirically analyzed to load impedances and affects on other tunable circuits. The empirical data collected can be recorded in the look-up table of
The empirical data of the look-up table of
Referring to
In one or more exemplary embodiments, antenna beam forming can be performed through use of amplitude and/or phase shifters to reduce the antenna gain towards the interference signal. This technique can be applied to either or both of outside interference and inside interference (self de-sense). As an example illustrated in
In one or more embodiments, tunable reactive elements, such as voltage tunable dielectric capacitors, can be utilized to adjust antenna matching circuits, so that the magnitude and phase of the matching circuits can be selectively changed to allow a first antenna (Tx/Rx) (e.g., a main antenna) and second antenna (Rx) (e.g., auxiliary antenna) forming an antenna array to create a desired antenna pattern, which can reduce the antenna coupling from an interfering radio antenna and avoid receiving interference signal from it. In other embodiments, the amplitude and/or phase shifters can be a sub-circuit coupled with the matching network and the antenna(s) for creating the desired antenna pattern through beam forming. One or more embodiments of selective antenna pattern generation to reduce antenna coupling can be applied for various antenna configurations, such as diversity antenna systems, Multiple-Input and Multiple-Output (MIMO) antenna systems, and so forth.
In one or more embodiments, various types of phase shifters can be utilized in performing the beam forming. For example,
Method 1400 can begin at 1402 where a WLAN radio of the communication device obtains and stores performance data, such as current radiated throughput and/or average RSSI data. At 1404, the WLAN radio can perform beam forming based on RSSI data and can store throughput data collected during the beam forming, which corresponds to the respective RSSI data. At 1406, the WLAN radio can compare radiated throughput with a conducted throughput (e.g., a throughput threshold) under the condition of the same RSSI.
At 1408, it can be determined whether the WLAN radio can achieve the conducted throughput or otherwise is able to satisfy a desired throughput threshold. If the threshold can be achieved then method 1400 can repeat itself. If on the other hand, it is determined or otherwise estimated that the WLAN radio will not be able to satisfy the threshold, then the WLAN radio at 1410 can adjust the beam forming to improve the radiated throughput by avoiding potential interference, such as antenna coupling. The adjustment to the beam forming based on throughput and reducing antenna coupling (or improving antenna isolation) can be an iterative process utilizing phase shifters and pre-determined or dynamic phase steps. The adjustment to the beam forming can be performed utilizing various components, including the antenna array and phase shifters of
In one or more embodiments, use cases can be utilized as part of method 1400, including utilizing use cases to determine step sizes for beam forming and/or tuning. In other embodiments, beam forming can be separately applied for different communications protocols, such as LTE and WLAN, and the order of performing the beam forming can be based on a number of different factors, including a current use case. Other factors, such as RSSI data, throughput measurements, base station instructions (e.g., to reduce power) can also be utilized as part of the beam forming.
In one or more exemplary embodiments, adjustable reactive elements can be utilized for altering antenna patterns for selected antenna(s) without altering patterns for other antenna(s). As an example, adjustable reactive elements (e.g., voltage tunable dielectric capacitors) can be coupled with a main antenna matching circuit and its associated structure of tunable area, tunable shape, and tunable coupling factor to the main ground. Control of the adjustable reactive elements can enable adjusting the main antenna (such as an LTE B7 antenna) pattern without the involvement of the auxiliary antenna, resulting in a reduction of the coupling to another antenna (such as 2.4 GHz WLAN antenna). In this example, the LTE B7 Tx signal would provide less interference to the WLAN receiver.
In one exemplary embodiment illustrated in
The exemplary embodiments can be applied to various communication protocols, such as GSM/CDMA/WCDMA/LTE and RF connectivity, to improve performance, such as through improving throughput and reducing antenna coupling. In one or more embodiments, the adjustable beam forming described herein can be applied to non-RF circuits, such as LCD, touch panel, speakers, audio receivers, cameras, flex cables, and others which emit analog and/or digital noise, harmonics of clocks, etc. Through dynamically forming the antenna radiation patterns, providing better antenna isolation, and making optimal trade-off between coexistence radio system performances, one or more of the exemplary embodiments can improve OTA throughput for the respective radio systems.
Method 1700 can begin at 1702 in which tuning is performed to achieve or otherwise tune toward a pre-determined match, such as a 50Ω match. The tuning can be performed across operating Tx and Rx bands. The particular tuning algorithm employed can vary and can include an open-loop process and/or a closed-loop process.
At 1704, tuning can be performed based on TRP and TIS. In one embodiment, the tuning is performed to improve the TRP and TIS, and utilizes stored tuning data (e.g., stored in a look-up table of the memory of the communication device) that is indexed based on use cases. For instance, the communication device can determine that it is in a hands-free operation state and can retrieve tuning data for the hands-free operation state that enables improvement of the TRP and improvement of the TIS depending on the Tx or Rx mode of operation. The tuning data can be utilized in the adjustment of the tunable reactive elements of the matching network, such as elements 310 or 504 of
At 1706, throughput can be utilized for tuning of the matching network to improve or maintain a desired UL or DL throughput for the communication device. At 1708, the link budget can be calculated, such as through determining received signal strength indicator, transmit power and antenna gain. Based on an analysis of the link budget at 1710, method 1700 can either proceed to 1712 for adjusting the transmit power (e.g. reducing the transmit power) or return to 1706 for tuning the matching network in an effort to improve or maintain the radiated throughput.
For example, radiated UL throughput can be compared with a desired UL throughput (e.g., a throughput threshold), such as through use of RSSI measurement, to determine whether tuning is to be performed to improve or maintain the radiated UL throughput. If tuning is to be utilized (e.g., the UL throughput is outside of a desired range) then an iterative process can be employed whereby the matching network is adjusted and the UL throughput is again compared with the throughput threshold to drive the UL throughput toward a desired value Improvement of the UL throughput can be achieved by presenting the load impedance to a Tx power amplifier, which would provide better trade-off between TRP and EVM. If on the other hand, the UL throughput is in a desired range, then an iterative process can be employed whereby the transmit power is adjusted (e.g. reduced in incremental steps) and the UL throughput is again compared with the throughput threshold to maintain the UL throughput in the desired range. The incremental step sizes that are utilized for the transmit power reduction can be pre-determined or can be dynamic.
Continuing with this example, radiated DL throughput can be compared with a throughput threshold, such as through use of RSSI measurement, to determine whether a reduction of transmit power can be performed. If the DL throughput is in a desired range, then an iterative process can be employed whereby the transmit power is adjusted (e.g., reduced in incremental steps) based on extra head room in the link budget. The incremental step sizes that are utilized for the transmit power reduction can be pre-determined or can be dynamic. If on the other hand, the DL throughput is not in a desired range then a determination can be made as to whether in-band and/or out-band interference exists. If it is determined that such interference exists then the communication device can perform antenna beam forming (e.g., via amplitude and phase shifters) to reduce the antenna gain towards the interference signal (e.g., applicable to both in-band and out-of-band interference) and/or can perform antenna matching with an emphasis towards the working channel frequency to reduce the interference signal more effectively for out-of-band, as well as for the adjacent channels, depending on the proximity of the adjacent channel interference signal, such as described with respect to
In one embodiment, a closed-loop antenna tuning process can be initially performed such as at 1702, where the antenna matching circuit is tuned towards a pre-determined match (e.g., 50Ω) across operating Tx and Rx bands. The closed-loop tuning can utilize feedback from one or more detectors, where the feedback provides operating metric(s) of the communication device, including one or more of RF voltage, output power, return loss, received power, current drain, transmitter linearity, and Voltage Standing Wave Ratio data. The operating metric(s) can be used to determine the desired adjustment to the matching network, such as through an iterative process that tunes and that retrieves the feedback. The particular type of detector utilized for obtaining the feedback can vary and can include one or more directional couplers. The detector(s) can be positioned in various configurations in the communication device, including one or more of connected between the antenna and a transceiver; connected between the antenna and the matching network (with or without a detector connected between the matching network and the transceiver); and connected between the matching network and the transceiver (with or without a detector connected in proximity to the antenna (e.g., between the antenna and the matching network)). The feedback can be obtained at various times during the communication session, including during transmission by the transceiver.
In one embodiment, a closed-loop tuning process (e.g., at step 1704 of method 1700) can be utilized to achieve better or best TRP and/or TIS in each pre-defined use case (e.g., free space, handheld, handheld close to head, on-a-metal table, hands-free, speaker-phone operations, flip opened, slider out, etc.). In this example, the closed-loop tuning process can have an advantage over an open-loop process (that does not utilize feedback) in Tx mode, because the closed-loop process knows (through proper calibration) what load impedance the antenna would present to the PA output. In one embodiment, closed-loop tuning can be calibrated under each pre-defined use case (e.g., via empirical data gathered during chamber testing), where the calibration goal may not be the better or best TRP and TIS, but rather the better or best UL and DL throughputs. In this example, further tuning improvement or optimization can be utilized during real life radiated usage cases, where additional fine tuning based on steps 1706-1712 of method 1700 can be used to adapt the real environment for the better or best UL and DL throughputs.
Continuing with this example, a closed-loop tuning process during Rx mode (e.g., when the Rx band is different from Tx band) may not know the impedance that the antenna will present to the low noise amplifier of the communication device. The impedance presented to the low noise amplifier can be known via calibration in each pre-defined use case for the best TIS in an open-loop tuning process. But, a closed-loop tuning process may not dynamically provide the best TIS in the real life usages. In one embodiment, by changing the performance goal from TIS to DL throughput, an algorithm can be utilized to dynamically control the closed-loop tuning for the better or best DL throughput. In one embodiment, the tuning algorithm may start from the best or desired TIS in each pre-defined user case (derived from empirical data during chamber testing). In another embodiment, when in-band or out-of-band interference occurs or is detected, the closed-loop tuning process can adopt the similar method as the open-loop tuning process to overcome the interference with the goal of the best or better throughput.
The different tuning processes of the exemplary embodiments can be utilized together or can be utilized separately, and can include combining steps or features from one embodiment with steps or features from another embodiment. One or more of the exemplary embodiments can employ antenna tuning towards a 50Ω match across several and fairly wide Tx and Rx radio bands. One or more of these exemplary embodiments can also employ antenna tuning to optimize, improve or otherwise adjust TRP and/or TIS with known steady state use cases based on information from various sensors. One or more of the exemplary embodiments can employ dynamic antenna tuning towards the 50Ω match with a closed-loop tuning process. One or more of the exemplary embodiments can employ antenna tuning to achieve better TRP and/or TIS without utilizing tuning toward a 50Ω match via calibration and empirical data stored in look-up tables.
One or more of the exemplary embodiments can take into account that an optimized TRP and/or TIS may not provide the best user experience. In one or more embodiments, the best user experience can be defined by quality of service parameters, such as voice quality and/or data throughput. QoS is not directly proportional or otherwise 100% related to TRP and TIS, which are just two variables of QoS function.
Referring to
The tunable capacitances can be tuned over a range such as, for example, 0.3 to 1 times a nominal value C. For instance, if the nominal value of the tunable capacitance is 5 pF, the tunable range can be from 1.5 to 5 pF. In an exemplary embodiment, PTC1 can have a nominal capacitance of 5 pF and is tunable over the 0.3 to 1 times range, the first impedance L1 can have a value of 3.1 nH, and the second impedance L2 can have a value of 2.4 nH and the second tunable capacitance PTC2 can have a nominal value of 20 pF and can be tuned over a range of 0.3 to 1 times the nominal value. It should be understood that these values are exemplary and other ranges of values can also be employed. It will be appreciated that the tunable capacitances in the illustrated embodiment could be tuned or adjusted over their ranges in an effort to improve the matching characteristics of the antenna 1810 under various operating conditions. Thus, under various use conditions, operating environments and at various frequencies of operation, the tunable capacitances can be adjusted to attain a desired level of performance. The tuning goals can vary and can include tuning toward a pre-determined match (e.g., 50Ω match), tuning toward a desired UL and/or DL throughput, and so forth.
Referring additionally to
Thus, depending on the goal or objective, the target FOM can be defined to tune the matching network to achieve particular goals or objectives. As a non-limiting example, the objectives may focus on TRP, TIS, UL throughput, DL throughput, and so forth. Furthermore, the target FOM may be significantly different for a TDM system and an FDM system. It should be understood that the target FOM may be calculated or selected based on various operating conditions, prior measurements, and modes of operation.
New tuning values can be calculated or selected at 1935 when the current FOM is not equal to or within a desired range of the target FOM. In some embodiments, new tuning values may be stored as new default tuning values of the transmitter at the given state of operation.
In one embodiment, the tuning algorithm can tune one or more of the tunable components of the circuit of
In other embodiments, the tunable components can be set based on look-up tables or a combination of look-up tables and by performing fine-tuning adjustments. For instance, the step of calculating tuning values at step 1935 may involve accessing initial values from a look-up table and then, on subsequent loops, fine tuning the values of the components in the circuit of
Communication device 2000 can perform tuning and transmit power adjustment according to method 1700. For example, signals can be provided to the matching network 2075 to enable tuning towards a 50Ω match. Additional signals can be provided to the matching network 2075 to enable tuning based on TPR and TIS for an identified use case(s) for the communication device 2000. RSSI can be calculated based on data retrieved from one or more of the measuring devices 2001, 2002, 2025. The RSSI can be utilized to calculate the link budget for the communication device to determine whether the radiated throughput satisfies a throughput threshold (in which case transmit power reduction may be implemented) or whether the radiated throughput is outside of the desired range in which case additional tuning of the matching network 2075 toward the desired throughput can be performed.
Communication device 2000 can include one or more radiating elements 2055 of the antenna 2050. One or more tunable elements 2080 can be connected directly with one or more of the radiating elements 2055 to allow for tuning of the antenna 2050 in conjunction with or in place of tuning of the matching network 2075. The tunable elements 2080 can be of various types as described herein, including electrically tunable capacitors. The number and configuration of the tunable elements 2080 can be varied based on a number of factors, including whether the tuning is an open loop or a closed loop process. In one embodiment, all of the radiating elements 2055 has at least one tunable element 2080 connected thereto to allow for tuning of the radiating element. In another embodiment, only a portion of the radiating elements 2055 have a tunable element 2080 connected thereto. Like the matching network 2075, the tunable elements 2080 can be tuned based on a quality of service parameter, such as the radiating UL and DL throughputs.
In one or more embodiments, the antenna tuning and power consumption management described in the exemplary embodiments can be applied to multi-antenna systems, including systems that utilize main and auxiliary antennas and systems that use Multiple-In Multiple-Out (MIMO) configurations. The antenna tuning can be applied to select antennas of the multiple antenna system or can be applied to all of the antennas of the multiple antenna system. The multiple antenna systems can utilize matching networks, such as connected at a feedpoint of one or more of the antennas and/or can utilize on-antenna tuning with tunable elements directly connected to the antennas radiating elements.
Upon reviewing the aforementioned embodiments, it would be evident to an artisan with ordinary skill in the art that said embodiments can be modified, reduced, or enhanced without departing from the scope and spirit of the claims described below. For example, other information can be utilized for determining the throughput threshold, such as the modulation scheme being implemented at the communication device, signal strength, information received from a base station, the distance from the base station, and so forth.
The use cases can include a number of different states associated with the communication device, such as flip-open, flip-closed, slider-in, slider-out (e.g., Qwerty or numeric Keypad), speaker-phone on, speaker-phone off, hands-free operation, antenna up, antenna down, other communication modes on or off (e.g., Bluetooth/WiFi/GPS), particular frequency band, and/or transmit or receive mode. The use case can be based on object or surface proximity detection (e.g., a user's hand or a table). Other environmental effects can be included in the open loop process, such as temperature, pressure, velocity and/or altitude effects. The open loop process can take into account other information, such as associated with a particular location (e.g., in a building or in a city surrounded by buildings), as well as an indication of being out of range.
The exemplary embodiments can utilize combinations of open loop and closed loop processes, such as tuning a tunable element based on both a use case and a measured operating parameter (e.g., measured by a detector in proximity to the antenna and/or measured by a directional coupler between the matching network and the transceiver). In other examples, the tuning can utilize one process and then switch to another process, such as using closed loop tuning and then switching to open loop tuning based on particular factors associated with the communication device, including the UL and/or DL throughput.
In one embodiment, the tuning of the matching network(s) can be performed in combination with look-up tables where one or more desirable performance characteristics of a communication device 100 can be defined in the form of the FOMs. The communication device can be adapted to find a range of tuning states that achieve the desired FOMs by sweeping a mathematical model in fine increments to find global optimal performance with respect to the desired FOMs. In this example embodiment, the look-up table can be indexed (e.g., by the controller 106 of the communication device 100 of
In one embodiment, the tuning algorithm can apply a translation to the tuning values of the matching network derived during the transmitter time slot, to improve performance during the receive time slot. During the design of the transmitter and receiver circuitry, the characteristics of performance between the transmitter operation and receiver operation can be characterized. This characterization can then be used to identify an appropriate translation to be applied. The translation may be selected as a single value that is applicable for all operational states and use cases or, individual values which can be determined for various operational states and use cases.
Other information (from local or remote sources) can also be utilized in one or more of the tuning steps, including use of profile information or other data received from a base station. Examples of other information and other tuning methodologies usable with the embodiments of the present disclosure are described in U.S. Patent Application Publication 20110086630 to Manssen, the disclosure of which is hereby incorporated by reference.
The exemplary embodiments can utilize on-antenna tuning elements (in addition to or in place of a matching network element), which can be directly connected with the radiating element(s), including high band (HB) and low band (LB) radiating elements and/or a portion of the radiating elements. Other embodiments are contemplated by the subject disclosure.
It should be understood that devices described in the exemplary embodiments can be in communication with each other via various wireless and/or wired methodologies. The methodologies can be links that are described as coupled, connected and so forth, which can include unidirectional and/or bidirectional communication over wireless paths and/or wired paths that utilize one or more of various protocols or methodologies, where the coupling and/or connection can be direct (e.g., no intervening processing device) and/or indirect (e.g., an intermediary processing device such as a router).
The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet PC, a smart phone, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a communication device of the subject disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methods discussed herein.
The computer system 2100 may include a processor (or controller) 2102 (e.g., a central processing unit (CPU), a graphics processing unit (GPU, or both), a main memory 2104 and a static memory 2106, which communicate with each other via a bus 2108. The computer system 2100 may further include a video display unit 2110 (e.g., a liquid crystal display (LCD), a flat panel, or a solid state display. The computer system 2100 may include an input device 2112 (e.g., a keyboard), a cursor control device 2114 (e.g., a mouse), a disk drive unit 2116, a signal generation device 2118 (e.g., a speaker or remote control) and a network interface device 2120.
The disk drive unit 2116 may include a tangible computer-readable storage medium 2122 on which is stored one or more sets of instructions (e.g., software 2124) embodying any one or more of the methods or functions described herein, including those methods illustrated above. The instructions 2124 may also reside, completely or at least partially, within the main memory 2104, the static memory 2106, and/or within the processor 2102 during execution thereof by the computer system 2100. The main memory 2104 and the processor 2102 also may constitute tangible computer-readable storage media.
Dedicated hardware implementations including, but not limited to, application specific integrated circuits, programmable logic arrays and other hardware devices can likewise be constructed to implement the methods described herein. Applications that may include the apparatus and systems of various embodiments broadly include a variety of electronic and computer systems. Some embodiments implement functions in two or more specific interconnected hardware modules or devices with related control and data signals communicated between and through the modules, or as portions of an application-specific integrated circuit. Thus, the example system is applicable to software, firmware, and hardware implementations.
In accordance with various embodiments of the subject disclosure, the methods described herein are intended for operation as software programs running on a computer processor. Furthermore, software implementations can include, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
While the tangible computer-readable storage medium 622 is shown in an example embodiment to be a single medium, the term “tangible computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “tangible computer-readable storage medium” shall also be taken to include any non-transitory medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methods of the subject disclosure.
The term “tangible computer-readable storage medium” shall accordingly be taken to include, but not be limited to: solid-state memories such as a memory card or other package that houses one or more read-only (non-volatile) memories, random access memories, or other re-writable (volatile) memories, a magneto-optical or optical medium such as a disk or tape, or other tangible media which can be used to store information. Accordingly, the disclosure is considered to include any one or more of a tangible computer-readable storage medium, as listed herein and including art-recognized equivalents and successor media, in which the software implementations herein are stored.
Although the present specification describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Each of the standards for Internet and other packet switched network transmission (e.g., TCP/IP, UDP/IP, HTML, HTTP) represent examples of the state of the art. Such standards are from time-to-time superseded by faster or more efficient equivalents having essentially the same functions. Wireless standards for device detection (e.g., RFID), short-range communications (e.g., Bluetooth, WiFi, Zigbee), and long-range communications (e.g., WiMAX, GSM, CDMA, LTE) are contemplated for use by computer system 2100.
The illustrations of embodiments described herein are intended to provide a general understanding of the structure of various embodiments, and they are not intended to serve as a complete description of all the elements and features of apparatus and systems that might make use of the structures described herein. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Figures are also merely representational and may not be drawn to scale. Certain proportions thereof may be exaggerated, while others may be minimized. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, are contemplated by the subject disclosure.
The Abstract of the Disclosure is provided with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
2745067 | True | May 1956 | A |
3117279 | Ludvigson | Jan 1964 | A |
3160832 | Beitman | Dec 1964 | A |
3390337 | Beitman | Jun 1968 | A |
3443231 | Roza | May 1969 | A |
3509500 | McNair | Apr 1970 | A |
3571716 | Hill | Mar 1971 | A |
3590385 | Sabo | Jun 1971 | A |
3601717 | Kuecken | Aug 1971 | A |
3794941 | Templin | Feb 1974 | A |
3919644 | Smolka | Nov 1975 | A |
3990024 | Hou | Nov 1976 | A |
3995237 | Brunner | Nov 1976 | A |
4186359 | Kaegebein | Jan 1980 | A |
4201960 | Skutta | May 1980 | A |
4227256 | O'Keefe | Oct 1980 | A |
4383441 | Willis | May 1983 | A |
4476578 | Gaudin | Oct 1984 | A |
4493112 | Bruene | Jan 1985 | A |
4509019 | Banu et al. | Apr 1985 | A |
4777490 | Sharma | Oct 1988 | A |
4799066 | Deacon | Jan 1989 | A |
4965607 | Wilkins | Oct 1990 | A |
4980656 | Duffalo | Dec 1990 | A |
5032805 | Elmer | Jul 1991 | A |
5142255 | Chang | Aug 1992 | A |
5177670 | Shinohara | Jan 1993 | A |
5195045 | Keane | Mar 1993 | A |
5200826 | Seong | Apr 1993 | A |
5212463 | Babbitt | May 1993 | A |
5230091 | Vaisanen et al. | Jul 1993 | A |
5243358 | Sanford | Sep 1993 | A |
5258728 | Taniyoshi | Nov 1993 | A |
5276912 | Siwiak | Jan 1994 | A |
5301358 | Gaskill | Apr 1994 | A |
5307033 | Koscica | Apr 1994 | A |
5310358 | Johnson | May 1994 | A |
5312790 | Sengupta | May 1994 | A |
5334958 | Babbitt | Aug 1994 | A |
5361403 | Dent | Nov 1994 | A |
5371473 | Trinh | Dec 1994 | A |
5409889 | Das | Apr 1995 | A |
5427988 | Sengupta | Jun 1995 | A |
5430417 | Martin | Jul 1995 | A |
5446447 | Carney | Aug 1995 | A |
5448252 | Ali | Sep 1995 | A |
5451567 | Das | Sep 1995 | A |
5451914 | Stengel | Sep 1995 | A |
5457394 | McEwan | Oct 1995 | A |
5472935 | Yandrofski | Dec 1995 | A |
5479139 | Koscica | Dec 1995 | A |
5486491 | Sengupta | Jan 1996 | A |
5496795 | Das | Mar 1996 | A |
5502372 | Quan | Mar 1996 | A |
5524281 | Bradley | Jun 1996 | A |
5548837 | Hess et al. | Aug 1996 | A |
5561407 | Koscica | Oct 1996 | A |
5564086 | Cygan | Oct 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5593495 | Masuda | Jan 1997 | A |
5635433 | Sengupta | Jun 1997 | A |
5635434 | Sengupta | Jun 1997 | A |
5640042 | Koscica | Jun 1997 | A |
5679624 | Das | Oct 1997 | A |
5689219 | Piirainen | Nov 1997 | A |
5693429 | Sengupta | Dec 1997 | A |
5694134 | Barnes | Dec 1997 | A |
5699071 | Urakami | Dec 1997 | A |
5721194 | Yandrofski | Feb 1998 | A |
5766697 | Sengupta | Jun 1998 | A |
5777581 | Lilly | Jul 1998 | A |
5778308 | Sroka | Jul 1998 | A |
5786727 | Sigmon | Jul 1998 | A |
5812572 | King | Sep 1998 | A |
5812943 | Suzuki | Sep 1998 | A |
5830591 | Sengupta | Nov 1998 | A |
5846893 | Sengupta | Dec 1998 | A |
5874926 | Tsuru | Feb 1999 | A |
5880635 | Satoh | Mar 1999 | A |
5886867 | Chivukula | Mar 1999 | A |
5892482 | Coleman et al. | Apr 1999 | A |
5929717 | Richardson | Jul 1999 | A |
5940030 | Hampel et al. | Aug 1999 | A |
5963871 | Zhinong | Oct 1999 | A |
5969582 | Boesch | Oct 1999 | A |
5982099 | Barnes et al. | Nov 1999 | A |
5990766 | Zhang | Nov 1999 | A |
6009124 | Smith | Dec 1999 | A |
6020787 | Kim | Feb 2000 | A |
6020795 | Kim | Feb 2000 | A |
6029075 | Das | Feb 2000 | A |
6045932 | Jia | Apr 2000 | A |
6061025 | Jackson | May 2000 | A |
6064865 | Kuo et al. | May 2000 | A |
6074971 | Chiu | Jun 2000 | A |
6096127 | Dimos | Aug 2000 | A |
6100733 | Dortu | Aug 2000 | A |
6101102 | Brand | Aug 2000 | A |
6115585 | Matero | Sep 2000 | A |
6125266 | Matero et al. | Sep 2000 | A |
6133883 | Munson | Oct 2000 | A |
6172385 | Duncombe | Jan 2001 | B1 |
6215644 | Dhuler | Apr 2001 | B1 |
6242989 | Barber | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6281748 | Klomsdorf et al. | Aug 2001 | B1 |
6281847 | Lee | Aug 2001 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6377142 | Chiu | Apr 2002 | B1 |
6377217 | Zhu | Apr 2002 | B1 |
6377440 | Zhu | Apr 2002 | B1 |
6384785 | Kamogawa | May 2002 | B1 |
6404614 | Zhu | Jun 2002 | B1 |
6408190 | Ying | Jun 2002 | B1 |
6414562 | Bouisse | Jul 2002 | B1 |
6415562 | Donaghue | Jul 2002 | B1 |
6452776 | Chakravorty | Sep 2002 | B1 |
6461930 | Akram | Oct 2002 | B2 |
6466774 | Okabe | Oct 2002 | B1 |
6492883 | Liang | Dec 2002 | B2 |
6514895 | Chiu | Feb 2003 | B1 |
6525630 | Zhu | Feb 2003 | B1 |
6531936 | Chiu | Mar 2003 | B1 |
6535076 | Partridge | Mar 2003 | B2 |
6535722 | Rosen | Mar 2003 | B1 |
6538603 | Chen | Mar 2003 | B1 |
6556102 | Sengupta | Apr 2003 | B1 |
6556814 | Klomsdorf | Apr 2003 | B1 |
6570462 | Edmonson | May 2003 | B2 |
6590468 | du Toit | Jul 2003 | B2 |
6590541 | Schultze | Jul 2003 | B1 |
6597265 | Liang | Jul 2003 | B2 |
6608603 | Alexopoulos | Aug 2003 | B2 |
6624786 | Boyle | Sep 2003 | B2 |
6640085 | Chatzipetros | Oct 2003 | B1 |
6657595 | Phillips | Dec 2003 | B1 |
6661638 | Jackson | Dec 2003 | B2 |
6670256 | Yang | Dec 2003 | B2 |
6710651 | Forrester | Mar 2004 | B2 |
6724611 | Mosley | Apr 2004 | B1 |
6724890 | Bareis | Apr 2004 | B1 |
6737179 | Sengupta | May 2004 | B2 |
6747522 | Pietruszynski et al. | Jun 2004 | B2 |
6759918 | Du Toit | Jul 2004 | B2 |
6765540 | Toncich | Jul 2004 | B2 |
6768472 | Alexopoulos | Jul 2004 | B2 |
6774077 | Sengupta | Aug 2004 | B2 |
6795712 | Vakilian | Sep 2004 | B1 |
6825818 | Toncich | Nov 2004 | B2 |
6839028 | Lee | Jan 2005 | B2 |
6845126 | Dent | Jan 2005 | B2 |
6859104 | Toncich | Feb 2005 | B2 |
6862432 | Kim | Mar 2005 | B1 |
6864757 | Du Toit | Mar 2005 | B2 |
6868260 | Jagielski | Mar 2005 | B2 |
6882245 | Utsunomiya | Apr 2005 | B2 |
6888714 | Shaw | May 2005 | B2 |
6905989 | Ellis | Jun 2005 | B2 |
6906653 | Uno | Jun 2005 | B2 |
6907234 | Karr | Jun 2005 | B2 |
6920315 | Wilcox et al. | Jul 2005 | B1 |
6943078 | Zheng | Sep 2005 | B1 |
6946847 | Nishimori | Sep 2005 | B2 |
6949442 | Barth | Sep 2005 | B2 |
6961368 | Dent | Nov 2005 | B2 |
6964296 | Memory | Nov 2005 | B2 |
6965837 | Vintola | Nov 2005 | B2 |
6987493 | Chen | Jan 2006 | B2 |
6993297 | Smith | Jan 2006 | B2 |
7009455 | Toncich | Mar 2006 | B2 |
7071776 | Forrester | Jul 2006 | B2 |
7106715 | Kelton | Sep 2006 | B1 |
7107033 | du Toit | Sep 2006 | B2 |
7113614 | Rhoads | Sep 2006 | B2 |
7151411 | Martin | Dec 2006 | B2 |
7176634 | Kitamura | Feb 2007 | B2 |
7176845 | Fabrega-Sanchez | Feb 2007 | B2 |
7180467 | Fabrega-Sanchez | Feb 2007 | B2 |
7221327 | Toncich | May 2007 | B2 |
7298329 | Diament | Nov 2007 | B2 |
7299018 | Van Rumpt | Nov 2007 | B2 |
7312118 | Kiyotoshi | Dec 2007 | B2 |
7332980 | Zhu | Feb 2008 | B2 |
7332981 | Matsuno | Feb 2008 | B2 |
7339527 | Sager | Mar 2008 | B2 |
7426373 | Clingman | Sep 2008 | B2 |
7427949 | Channabasappa | Sep 2008 | B2 |
7453405 | Nishikido et al. | Nov 2008 | B2 |
7468638 | Tsai | Dec 2008 | B1 |
7469129 | Blaker et al. | Dec 2008 | B2 |
7528674 | Kato et al. | May 2009 | B2 |
7535080 | Zeng et al. | May 2009 | B2 |
7535312 | McKinzie | May 2009 | B2 |
7539527 | Jang | May 2009 | B2 |
7596357 | Nakamata | Sep 2009 | B2 |
7633355 | Matsuo | Dec 2009 | B2 |
7642879 | Matsuno | Jan 2010 | B2 |
7667663 | Hsiao | Feb 2010 | B2 |
7671693 | Brobston et al. | Mar 2010 | B2 |
7705692 | Fukamachi et al. | Apr 2010 | B2 |
7711337 | Mckinzie et al. | May 2010 | B2 |
7714676 | McKinzie | May 2010 | B2 |
7714678 | du Toit et al. | May 2010 | B2 |
7728693 | du Toit et al. | Jun 2010 | B2 |
7760699 | Malik | Jul 2010 | B1 |
7768400 | Lawrence et al. | Aug 2010 | B2 |
7786819 | Ella | Aug 2010 | B2 |
7795990 | du Toit | Sep 2010 | B2 |
7830320 | Shamblin et al. | Nov 2010 | B2 |
7852170 | McKinzie | Dec 2010 | B2 |
7856228 | Lekutai et al. | Dec 2010 | B2 |
7865154 | Mendolia | Jan 2011 | B2 |
7907094 | Kakitsu et al. | Mar 2011 | B2 |
7917104 | Manssen et al. | Mar 2011 | B2 |
7949309 | Rofougaran | May 2011 | B2 |
7969257 | du Toit | Jun 2011 | B2 |
7983615 | Bryce et al. | Jul 2011 | B2 |
7991363 | Greene | Aug 2011 | B2 |
8112043 | Knudsen et al. | Feb 2012 | B2 |
8170510 | Knudsen et al. | May 2012 | B2 |
8190109 | Ali et al. | May 2012 | B2 |
8204446 | Scheer | Jun 2012 | B2 |
8213886 | Blin | Jul 2012 | B2 |
8217731 | McKinzie et al. | Jul 2012 | B2 |
8217732 | McKinzie | Jul 2012 | B2 |
8299867 | McKinzie | Oct 2012 | B2 |
8320850 | Khlat | Nov 2012 | B1 |
8325097 | McKinzie, III et al. | Dec 2012 | B2 |
8405563 | McKinzie et al. | Mar 2013 | B2 |
8421548 | Spears et al. | Apr 2013 | B2 |
8432234 | Manssen et al. | Apr 2013 | B2 |
8442457 | Harel et al. | May 2013 | B2 |
8457569 | Blin | Jun 2013 | B2 |
8472888 | Manssen et al. | Jun 2013 | B2 |
8543176 | Daniel et al. | Sep 2013 | B1 |
8558633 | McKinzie, III | Oct 2013 | B2 |
8564381 | McKinzie | Oct 2013 | B2 |
8594584 | Greene et al. | Nov 2013 | B2 |
8620236 | Manssen et al. | Dec 2013 | B2 |
8620246 | McKinzie et al. | Dec 2013 | B2 |
8620247 | McKinzie et al. | Dec 2013 | B2 |
8655286 | Mendolia | Feb 2014 | B2 |
8674783 | Spears et al. | Mar 2014 | B2 |
8680934 | McKinzie et al. | Mar 2014 | B2 |
8693963 | du Toit et al. | Apr 2014 | B2 |
8712340 | Hoirup et al. | Apr 2014 | B2 |
8787845 | Manssen et al. | Jul 2014 | B2 |
8957742 | Spears et al. | Feb 2015 | B2 |
9026062 | Greene et al. | May 2015 | B2 |
9119152 | Blin | Aug 2015 | B2 |
20020008672 | Gothard et al. | Jan 2002 | A1 |
20020030566 | Bozler | Mar 2002 | A1 |
20020079982 | Lafleur et al. | Jun 2002 | A1 |
20020109642 | Gee et al. | Aug 2002 | A1 |
20020118075 | Ohwada | Aug 2002 | A1 |
20020145483 | Bouisse | Oct 2002 | A1 |
20020167963 | Joa-Ng | Nov 2002 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20020191703 | Ling | Dec 2002 | A1 |
20020193088 | Jung | Dec 2002 | A1 |
20030060227 | Sekine | Mar 2003 | A1 |
20030071300 | Yashima | Apr 2003 | A1 |
20030114124 | Higuchi | Jun 2003 | A1 |
20030142022 | Ollikainen | Jul 2003 | A1 |
20030193997 | Dent | Oct 2003 | A1 |
20030199286 | du Toit | Oct 2003 | A1 |
20030210206 | Phillips | Nov 2003 | A1 |
20030216150 | Ueda | Nov 2003 | A1 |
20030232607 | Le Bars | Dec 2003 | A1 |
20040009754 | Smith, Jr. et al. | Jan 2004 | A1 |
20040090372 | Nallo | May 2004 | A1 |
20040100341 | Luetzelschwab | May 2004 | A1 |
20040127178 | Kuffner | Jul 2004 | A1 |
20040137950 | Bolin | Jul 2004 | A1 |
20040202399 | Kochergin | Oct 2004 | A1 |
20040227176 | York | Nov 2004 | A1 |
20040232982 | Ichitsubo et al. | Nov 2004 | A1 |
20040257293 | Friedrich | Dec 2004 | A1 |
20040263411 | Fabrega-Sanchez et al. | Dec 2004 | A1 |
20050007291 | Fabrega-Sanchez | Jan 2005 | A1 |
20050032488 | Pehlke | Feb 2005 | A1 |
20050032541 | Wang | Feb 2005 | A1 |
20050042994 | Otaka | Feb 2005 | A1 |
20050059362 | Kalajo et al. | Mar 2005 | A1 |
20050082636 | Yashima | Apr 2005 | A1 |
20050085204 | Poilasne et al. | Apr 2005 | A1 |
20050093624 | Forrester et al. | May 2005 | A1 |
20050130608 | Forse | Jun 2005 | A1 |
20050130699 | Kim | Jun 2005 | A1 |
20050208960 | Hassan | Sep 2005 | A1 |
20050215204 | Wallace | Sep 2005 | A1 |
20050227627 | Cyr et al. | Oct 2005 | A1 |
20050227633 | Dunko | Oct 2005 | A1 |
20050259011 | Vance | Nov 2005 | A1 |
20050260962 | Nazrul et al. | Nov 2005 | A1 |
20050264455 | Talvitie | Dec 2005 | A1 |
20050280588 | Fujikawa et al. | Dec 2005 | A1 |
20050282503 | Onno | Dec 2005 | A1 |
20060003537 | Sinha | Jan 2006 | A1 |
20060009165 | Alles | Jan 2006 | A1 |
20060030277 | Cyr et al. | Feb 2006 | A1 |
20060077082 | Shanks et al. | Apr 2006 | A1 |
20060099915 | Laroia et al. | May 2006 | A1 |
20060119511 | Collinson | Jun 2006 | A1 |
20060148415 | Hamalainen et al. | Jul 2006 | A1 |
20060160501 | Mendolia | Jul 2006 | A1 |
20060183431 | Chang et al. | Aug 2006 | A1 |
20060183433 | Mori et al. | Aug 2006 | A1 |
20060183442 | Chang et al. | Aug 2006 | A1 |
20060195161 | Li et al. | Aug 2006 | A1 |
20060205368 | Bustamante | Sep 2006 | A1 |
20060281423 | Caimi | Dec 2006 | A1 |
20070001924 | Hirabayashi et al. | Jan 2007 | A1 |
20070013483 | Stewart | Jan 2007 | A1 |
20070035458 | Ohba et al. | Feb 2007 | A1 |
20070042725 | Poilasne | Feb 2007 | A1 |
20070042734 | Ryu | Feb 2007 | A1 |
20070063788 | Zhu | Mar 2007 | A1 |
20070077956 | Julian et al. | Apr 2007 | A1 |
20070080888 | Mohamadi | Apr 2007 | A1 |
20070082611 | Terranova et al. | Apr 2007 | A1 |
20070085609 | Itkin et al. | Apr 2007 | A1 |
20070091006 | Thober et al. | Apr 2007 | A1 |
20070111681 | Alberth et al. | May 2007 | A1 |
20070142011 | Shatara | Jun 2007 | A1 |
20070142014 | Wilcox | Jun 2007 | A1 |
20070149146 | Hwang | Jun 2007 | A1 |
20070171879 | Bourque | Jul 2007 | A1 |
20070182636 | Carlson | Aug 2007 | A1 |
20070184825 | Lim et al. | Aug 2007 | A1 |
20070194859 | Brobston | Aug 2007 | A1 |
20070197180 | McKinzie et al. | Aug 2007 | A1 |
20070200766 | McKinzie | Aug 2007 | A1 |
20070200773 | Dou et al. | Aug 2007 | A1 |
20070210899 | Kato et al. | Sep 2007 | A1 |
20070248238 | Abreu | Oct 2007 | A1 |
20070285326 | McKinzie | Dec 2007 | A1 |
20070293176 | Yu | Dec 2007 | A1 |
20080007478 | Jung | Jan 2008 | A1 |
20080018541 | Pang | Jan 2008 | A1 |
20080030165 | Lisac et al. | Feb 2008 | A1 |
20080055016 | Morris | Mar 2008 | A1 |
20080055168 | Massey et al. | Mar 2008 | A1 |
20080081670 | Rofougaran | Apr 2008 | A1 |
20080090539 | Thompson | Apr 2008 | A1 |
20080094149 | Brobston | Apr 2008 | A1 |
20080106350 | McKinzie | May 2008 | A1 |
20080122553 | McKinzie | May 2008 | A1 |
20080122723 | Rofougaran | May 2008 | A1 |
20080129612 | Wang | Jun 2008 | A1 |
20080158076 | Walley | Jul 2008 | A1 |
20080174508 | Iwai et al. | Jul 2008 | A1 |
20080261544 | Blin | Oct 2008 | A1 |
20080274706 | Blin et al. | Nov 2008 | A1 |
20080285729 | Glasgow et al. | Nov 2008 | A1 |
20080294718 | Okano | Nov 2008 | A1 |
20080300027 | Dou et al. | Dec 2008 | A1 |
20080305749 | Ben-Bassat | Dec 2008 | A1 |
20080305750 | Alon et al. | Dec 2008 | A1 |
20080309617 | Kong et al. | Dec 2008 | A1 |
20090002077 | Rohani et al. | Jan 2009 | A1 |
20090027286 | Ohishi | Jan 2009 | A1 |
20090039976 | McKinzie, III | Feb 2009 | A1 |
20090082017 | Chang et al. | Mar 2009 | A1 |
20090109880 | Kim et al. | Apr 2009 | A1 |
20090121963 | Greene | May 2009 | A1 |
20090149136 | Rofougaran | Jun 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090184879 | Derneryd | Jul 2009 | A1 |
20090196192 | Lim et al. | Aug 2009 | A1 |
20090215446 | Hapsari et al. | Aug 2009 | A1 |
20090231220 | Zhang et al. | Sep 2009 | A1 |
20090253385 | Dent et al. | Oct 2009 | A1 |
20090264065 | Song | Oct 2009 | A1 |
20090278685 | Potyrailo | Nov 2009 | A1 |
20090295651 | Dou et al. | Dec 2009 | A1 |
20090323572 | Shi et al. | Dec 2009 | A1 |
20090323582 | Proctor et al. | Dec 2009 | A1 |
20100041348 | Wilcox et al. | Feb 2010 | A1 |
20100053009 | Rofougaran | Mar 2010 | A1 |
20100060531 | Rappaport | Mar 2010 | A1 |
20100073103 | Spears et al. | Mar 2010 | A1 |
20100085260 | McKinzie | Apr 2010 | A1 |
20100085884 | Srinivasan et al. | Apr 2010 | A1 |
20100105425 | Asokan | Apr 2010 | A1 |
20100107067 | Vaisanen et al. | Apr 2010 | A1 |
20100134215 | Lee et al. | Jun 2010 | A1 |
20100156552 | McKinzie | Jun 2010 | A1 |
20100214189 | Kanazawa | Aug 2010 | A1 |
20100232474 | Rofougaran et al. | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100285836 | Horihata et al. | Nov 2010 | A1 |
20100302106 | Knudsen et al. | Dec 2010 | A1 |
20100304688 | Knudsen | Dec 2010 | A1 |
20110002080 | Ranta | Jan 2011 | A1 |
20110012790 | Badaruzzaman | Jan 2011 | A1 |
20110014879 | Alberth et al. | Jan 2011 | A1 |
20110043328 | Bassali | Feb 2011 | A1 |
20110086600 | Muhammad | Apr 2011 | A1 |
20110086630 | Manssen et al. | Apr 2011 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110105023 | Scheer et al. | May 2011 | A1 |
20110116423 | Rousu et al. | May 2011 | A1 |
20110117863 | Camp, Jr. et al. | May 2011 | A1 |
20110117973 | Asrani et al. | May 2011 | A1 |
20110121079 | Lawrence et al. | May 2011 | A1 |
20110122040 | Wakabayashi et al. | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110140982 | Ozden et al. | Jun 2011 | A1 |
20110183628 | Baker | Jul 2011 | A1 |
20110183633 | Ohba et al. | Jul 2011 | A1 |
20110195679 | Lee et al. | Aug 2011 | A1 |
20110237207 | Bauder | Sep 2011 | A1 |
20110249760 | Chrisikos et al. | Oct 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110281532 | Shin et al. | Nov 2011 | A1 |
20110299438 | Mikhemar et al. | Dec 2011 | A1 |
20110306310 | Bai | Dec 2011 | A1 |
20110309980 | Ali et al. | Dec 2011 | A1 |
20120051409 | Brobston et al. | Mar 2012 | A1 |
20120062431 | Tikka et al. | Mar 2012 | A1 |
20120075159 | Chang | Mar 2012 | A1 |
20120084537 | Indukuru et al. | Apr 2012 | A1 |
20120094708 | Park | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120112851 | Manssen | May 2012 | A1 |
20120112852 | Manssen et al. | May 2012 | A1 |
20120119843 | du Toit et al. | May 2012 | A1 |
20120119844 | du Toit et al. | May 2012 | A1 |
20120214421 | Hoirup | Aug 2012 | A1 |
20120220243 | Mendolia | Aug 2012 | A1 |
20120243579 | Premakanthan et al. | Sep 2012 | A1 |
20120286586 | Balm | Nov 2012 | A1 |
20120293384 | Knudsen et al. | Nov 2012 | A1 |
20120295554 | Greene et al. | Nov 2012 | A1 |
20120295555 | Greene et al. | Nov 2012 | A1 |
20130005277 | Klomsdorf et al. | Jan 2013 | A1 |
20130052967 | Black et al. | Feb 2013 | A1 |
20130056841 | Hsieh et al. | Mar 2013 | A1 |
20130076579 | Zhang et al. | Mar 2013 | A1 |
20130076580 | Zhang et al. | Mar 2013 | A1 |
20130106332 | Williams et al. | May 2013 | A1 |
20130122829 | Hyvonen et al. | May 2013 | A1 |
20130137384 | Desclos et al. | May 2013 | A1 |
20130154897 | Sorensen et al. | Jun 2013 | A1 |
20130215846 | Yerrabommanahalli et al. | Aug 2013 | A1 |
20130293425 | Zhu et al. | Nov 2013 | A1 |
20130315285 | Black et al. | Nov 2013 | A1 |
20140002323 | Ali et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
101640949 | Feb 2010 | CN |
19614655 | Oct 1997 | DE |
102008050743 | Apr 2010 | DE |
102009018648 | Oct 2010 | DE |
0685936 | Jun 1995 | EP |
090902 | Apr 1999 | EP |
0909024 | Apr 1999 | EP |
1079296 | Feb 2001 | EP |
1137192 | Sep 2001 | EP |
1298810 | Apr 2006 | EP |
2214085 | Aug 2010 | EP |
2328233 | Jun 2011 | EP |
2388925 | Nov 2011 | EP |
2424119 | Feb 2012 | EP |
03276901 | Mar 1990 | JP |
9321526 | Dec 1997 | JP |
102097 | Aug 1998 | JP |
10209722 | Aug 1998 | JP |
2005-130441 | May 2005 | JP |
100645526 | Nov 2006 | KR |
10-0740177 | Jul 2007 | KR |
0171846 | Sep 2001 | WO |
2006031170 | Mar 2006 | WO |
2008030165 | Mar 2008 | WO |
WO-2009064968 | May 2009 | WO |
2009108391 | Sep 2009 | WO |
2009155966 | Dec 2009 | WO |
2010028521 | Mar 2010 | WO |
2010121914 | Oct 2010 | WO |
WO-2011044592 | Apr 2011 | WO |
2011084716 | Jul 2011 | WO |
2011084716 | Jul 2011 | WO |
2011102143 | Aug 2011 | WO |
WO-2011133657 | Oct 2011 | WO |
WO-2011028453 | Oct 2011 | WO |
2012067622 | May 2012 | WO |
2012085932 | Jun 2012 | WO |
Entry |
---|
Payandehjoo, Kasra et al., “Investigation of Parasitic Elements for Coupling Reduction in MultiAntenna Hand-Set Devices”, Published online Jan. 22, 2013 in Wiley Online Library (wileyonlinelibrary.com). |
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268. |
Du Toit, , “Tunable Microwave Devices With Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011. |
Du Toit, “Tunable Microwave Devices With Auto—Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011. |
Hoirup, , “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011. |
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, Sep. 7, 205, 13-17. |
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, 2004 American Institute of Physics. |
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547. |
Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication No. 03-276901, Date of publication of application: Sep. 12, 1991. |
Manssen, , “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011. |
McKinzie, , “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011. |
Mendolia, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011. |
Paratek Microwave, Inc., , “Method and Apparatus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620, filed Nov. 7, 2011. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008. |
Payandehjoo, Kasra , “Novel Techniques for Coupling Reduction in Multi-Antenna Hand-held Devices”, IEEE Student Member, 1-8. |
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, 2004 American Institute of Physics. |
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631. |
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, 2005. |
Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004. |
Spears, “Methods for Tuning an Adaptive Impedance Matching Network With a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011. |
Stemmer, Susanne, “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, University of California Postprints 2006. |
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, 2002 American Institute of Physics. |
Tombak, Ali “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002. |
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005. |
Zuo, S. , “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, 2011, 11-20. |
Number | Date | Country | |
---|---|---|---|
20140022125 A1 | Jan 2014 | US |