Brazed aluminum heat exchangers of the type having spaced header tanks (or manifolds), flat elongated tubes corrugated air fins or centers have been a commonplace in automotive applications, where they are of a relatively small face area and installed flat, such as air conditioning condensers. It is known to bend such automotive heat exchangers into a V or U shape, as shown in U.S. Pat. No. 4,876,778, but this is a relatively simple and straighforward bend in which the tubes and fins (core face) themselves are bent, perpendicular to the tubes, not the heavier manifolds themselves, which remain straight
That same U or V shaped bend of the core face can be applied to stationary air conditioning applications as well (residential heat pump, for example), but such applications often require a more difficult bending operation in which the tubes are left unbent, straight, and vertical, while the manifolds are bent into a rectangular perimeter. The vertical tubes drain condensation better, but the manifolds are heavier and more difficult to bend. Several different bending apparatuses and methods are known. A typical apparatus consists of a cylindrical solid mandrel that engages the core face, between the manifolds, and opposed flat clamps engaging the outer core face and/or manifolds, one of which is held stationary and the other of which is swung in to bend the core around the cylindrical mandrel. Another issue is the behavior of the tubes and fins at the “corners” where the manifolds are bent. These can buckle and deform, presenting at least an aesthetic objection, if not a dimunition in performance. Fins may also pull away from the tubes in the bend area, decreasing performance. This limits how tight or small a bend radius can be achieved.
Published Japanese application JP-2005090806 shows the basic bend configuration described above, and discloses some prior approaches to the bending problem. The most basic approach is to simply remove (leave out) the tubes and fins at the corners, and to cover the resulting open windows with a screen of some sort in the final installation. This has the obvious drawback of removing a considerable amount of heat exchange area out of the core face, besides necessitating the addition of some sort of screen at the corners to “fill in” the missing area and avoid disturbance of the forced air flow at the paths of least resistance. Alternate approaches proposed by JP-200509086 include removing only the fins at the bend corners, and placing the tubes more closely together in that area, and also brazing the corrugated fins to only one side of the tubes in the areas of the bend. All of these represent major changes to the way in which the basic core is stacked and brazed, and are therefore very undesirable in terms of cost and productivity.
Other methods shown in published US patent applications assigned to the assignee of the present application may be seen US2007227695 and US2008202733. The former discloses an air center of greater height that is located at the center of the bend, and which is more accommodating of the crush that occurs. The latter shows a dedicated bend spacer located in the same spot, which is designed only to act as a crush accommodater, and not as an air fin. While both systems improve the bend by accommodating or absorbing the crush, neither serves to actively control the behavior and alignment of the tubes in the area of the bend.
It is desirable to have an improved design of a heat exchanger and a method of manufacturing the improved heat exchanger that does actively control the tube alignment in the area of the bend, and so allows for easier, tighter bending without damage, and without significant change to the structure and manufacture of the basic core.
The heat exchanger design and the method of manufacturing and apparatus disclosed control and minimize the crushing of the air centers and buckling of the refrigerant tubes when the core is bent. A portion of the tube edges on the inside of the core bend is exposed by narrowing or offsetting the corrugated fins in the bend area. The tube edge offset provides room for a corresponding set of grooved vertical braces, one for each tube edge, to engage the clear portions of the tube edges. The vertical braces are fixed in the proper orientation by a flexible backing that allows them to bend from an initial flat shape on the core face into a bend radius, matching the typical cylindrical mandrel that controls the inner radius of the bend. The improved design allows a tighter radius than a conventional bend through the refrigerant tubes and centers.
This invention will be further described with reference to the accompanying drawings in which:
Referring next to
Referring next to
Alternate embodiments of the core disclosed could be used, so long as edge clearance to accommodate the braces 26 was provided. will work, since all provide the clearance for the placement of the braces 26. A narrower fin could be placed offset from the inner core face all the way to the core back face, rather than centered as show. Or, a conventional width fin could be offset from the inner core face and left to overhang the outer core face to an extent. The narrower, centered fin 18 shown may be best adapted in as well as providing a core 10 with no preferred orientation as to which face will accept the braces 26, has no fin to tube attachment near the outer edges of those tubes 12 in the bend area. Consequently, as those outer tube edges fan out, there will be less tendency of the tube to fin braze joints to tear. This also enables tighter bend radii.
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. Variations possible would include the complete absence of air centers in the bend area, which can be conceptualized as the air centers becoming vanishingly narrow, in effect, providing the ultimate tube edge clearance in the bend area to accommodate braces. In that event, with the extra and in fact complete clearance, the braces could support more than just the inner core face edges of the those tubes encompassed by the bend area, and could consist potentially of something like full width rubber blocks under compression that would support the entire profile of those tubes during bending, going into further compression on the inside of the neutral axis of the bend and going into less compression on the outside of the neutral axis. Fins of some sort in the bend area are preferred, however, as they add performance and prevent path of least resistance air flow out of the corners in operation. The braces 26 could, conceivably, be placed one at a time on the tube edges, especially if the core lay horizontal the inner face up, and the mandrel could keep them in place throughout the bend. It is advantageous to hold the braces together as a unit by some sort of flexible medium, however.
The invention relates to a bent micro-channel heat exchanger and a method to manufacture the same. Priority is claimed to U.S. provisional application 61/188,439, filed Aug. 8, 2008.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/052801 | 8/5/2009 | WO | 00 | 8/3/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/017269 | 2/11/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2775433 | Matheny | Dec 1956 | A |
2855018 | Stikelleather | Oct 1958 | A |
4744233 | Trudell | May 1988 | A |
4876778 | Hagihara et al. | Oct 1989 | A |
20070169922 | Pautler | Jul 2007 | A1 |
20070175034 | Pan | Aug 2007 | A1 |
20070227695 | Beamer et al. | Oct 2007 | A1 |
20080202733 | Samuelson et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
668114 | Aug 1995 | EP |
59130630 | Jul 1984 | JP |
10202334 | Aug 1998 | JP |
2005090806 | Apr 2005 | JP |
Entry |
---|
Machine Translation of SUGIO (JP 2005 090806 A) Ret. Jun. 20, 2014 from AIPN. |
Japanese First Office Action, JP Application No. 200980130888.8. |
Number | Date | Country | |
---|---|---|---|
20110289775 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61188439 | Aug 2008 | US |