The present disclosure relates to methods and apparatuses for manufacturing absorbent articles, and more particularly, to apparatuses and methods for stretching, transferring, and bonding elastic parts to an advancing carrier during the assembly of absorbent articles.
Along an assembly line, various types of articles, such as for example, diapers and other absorbent articles, may be assembled by adding components to and/or otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. In some cases, individual components created from an advancing web or webs are combined with other individual components created from other advancing webs. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, leg cuffs, waist bands, absorbent core components, front and/or back ears, fastening components, and various types of elastic webs and parts such as leg elastics, barrier leg cuff elastics, stretch side panels, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles.
Some absorbent articles have components that include elastic parts, such as for example, waistbands. In some configurations, waistbands may be provided as a single layer of elastic material, such as an elastic film. In some configurations, the waistbands may be provided as an elastic laminate that may include elastic material bonded to one or more substrates such as nonwovens, wherein the elastic material may include an elastic film and/or elastic strands. In some assembly operations, the waistbands are joined to an advancing carrier web, such as a continuous topsheet or backsheet web, while the waistbands are in a stretched condition. As such, when the waistbands relax, the carrier web gathers to form corrugations. The resulting laminate is stretchable to the extent that the corrugations allow the waistband to elongate.
When manufacturing absorbent articles, the waistband may be provided as a continuous length of waistband material that may be stretched; cut into discrete waistbands; and bonded with the advancing carrier web while the waistband is in a stretched state. In addition, the carrier web may be advanced in a machine direction and the waistband may be applied to the carrier web such that direction of stretch of the waistband is oriented in a cross direction. For example, some manufacturers may stretch a continuous waistband material in a machine direction and cut the continuous waistband material into stretched discrete waistbands. The stretched discrete waistbands may be turned 90 degrees before placement on and bonding to the advancing carrier web such that direction of stretch is oriented in the cross direction with respect to the carrier web. However, such assembly operations involving the handling and bonding of discrete waistbands in a stretched state can present various challenges.
For example, with reference to a waistband and topsheet bonding operation as an example illustration, adhesive may be applied to either or both the discrete waistband and the topsheet. When applying adhesive to the discrete waistband prior to combining with the topsheet, applied adhesive may migrate from the waistband and contaminate material handling equipment, such as knives, drums, and conveyance devices utilized to place the waistband on the topsheet. Such contaminating adhesive may also migrate to other substrates and components of the assembled article. Instead of applying adhesive to the waistband, adhesive may be applied to the topsheet before combining with the waistband. As such, the adhesive may be applied to the topsheet in discrete patches that are sized to correlate or match with the size of the waistband. Such an operation requires very precise placement of the waistband on the discrete patches of adhesive. Misplacement of the waistbands on the adhesive may lead to portions of the waistbands being unbonded and may also lead to areas of exposed adhesive. In turn, exposed adhesive that remains tacky can act to unintentionally bond other components together. For example, in subsequent assembly operations, the combined waistband and topsheet may be combined with other advancing substrates and/or components to create discrete absorbent articles that are folded and packaged. As such, the absorbent article may become bonded to itself in the folded configuration.
In an attempt to avoid the above described negative affects resulting from exposed tacky adhesive in an assembled product, adhesives may be applied in areas that are smaller than the discrete part to be bonded. For example, adhesive may be applied to only central portions of discrete waistband before combining with a topsheet. In another scenario, adhesive may be applied to the topsheet in discrete patches that are relatively smaller than the size of the waistband. In turn, only the central region of a waistband may be bonded with the topsheet. As such, perimeter edges of the waistband may remain unbonded and loose. Such unbonded edges may be aesthetically unpleasing and may lead to undesired tearing and/or separation of the waistband during product use.
In addition, difficulties associated with precisely placing the discrete waistband in a desired location may be exacerbated in assembly processes that require turning the discrete waistbands 90 degrees before combining with an advancing topsheet. Manufacturers may also encounter various difficulties associated with close coupled handovers of stretched waistbands between conveyance devices while maintaining the stretched condition of the waistbands. Further, components of the apparatuses associated with waistband application processes may be relatively inflexible with respect to making absorbent articles of different sizes. For example, existing assembly operations may be configured to place waistbands at fixed pitch distances that cannot be altered without changing several apparatus components when needed to make articles of different sizes that require changes in pitch distances.
Consequently, it would be beneficial to provide methods and apparatuses for bonding waistbands to carrier webs while helping to increase the size of bonded areas and reducing the chances of having exposed adhesives during subsequent assembly operations; providing flexibility to accommodate desired speed and/or pitch changes; eliminating the need for 90 degree turn operations of stretched waistbands; and/or improving abilities to transfer stretched waistbands between close coupled conveyance devices while helping to maintain the stretched condition of the waistbands.
In one form, a method of assembling absorbent articles comprises steps of: advancing a carrier substrate at a first speed in a machine direction, the carrier substrate comprising a first longitudinal edge and a second longitudinal edge separated from the first longitudinal edge in a cross direction; advancing a continuous elastic substrate at a second speed in the machine direction, the continuous elastic substrate comprising a first longitudinal edge and a second longitudinal edge separated from the first longitudinal edge in the cross direction, wherein the continuous elastic substrate is stretchable in the cross direction; cutting an elastic part from the continuous elastic substrate, the elastic part comprising a first end region and a second end region separated from the first end region in the cross direction by a central region; changing a speed of the elastic part from the second speed to the first speed; stretching the central region of the discrete elastic part in the cross direction; positioning the elastic part on the carrier substrate such that the stretched central region extends in the cross direction between the first and second longitudinal edges of the carrier substrate; adhesively bonding the stretched central region of the elastic part with the carrier substrate; and mechanically bonding the first end region and the second end region of the elastic part with the carrier substrate.
In another form, a method of assembling absorbent articles comprises steps of: providing an elastic part comprising a first surface and an opposing second surface, the elastic part further comprising a first end region and a second end region separated from the first end region in a cross direction by a central region; providing a zone of adhesive positioned on the second surface of the elastic part; advancing the elastic part in a machine direction on a first roll, wherein the second surface is facing radially outward; transferring the first end region and the second end region of the elastic part from the first roll to a rotatable transfer device, wherein the second surface of the elastic part is facing radially inward; stretching the central region of the elastic part in the cross direction while rotating the transfer device; transferring the stretched elastic part to a second roll, wherein the second surface of the elastic part is facing radially outward; advancing a carrier substrate adjacent the second roll, the carrier substrate comprising a first longitudinal edge and a second longitudinal edge separated from the first longitudinal side in the cross direction; advancing the elastic part from the second roll to the carrier substrate such that the stretched central region extends in the cross direction between the first and second longitudinal edges of the carrier substrate; adhesively bonding the stretched central region of the elastic part with the carrier substrate; and mechanically bonding the first end region and the second end region of the elastic part with the carrier substrate.
In yet another form, a method of assembling absorbent articles comprises steps of: advancing a continuous elastic substrate in a machine direction between a rotating knife roll and anvil roll; cutting an elastic part from the continuous elastic substrate, the elastic part comprising a first end region and a second end region separated from the first end region in the cross direction by a central region; advancing the elastic part in a machine direction on the knife roll or the anvil roll; transferring the first end region of the elastic part onto a first canted disk and transferring the second end region of the elastic part onto a second canted disk; stretching the central region of the elastic part in the cross direction by rotating the first canted disk and the second canted disk; transferring the stretched elastic part from the first and second canted disks to a rotating pattern roll; and advancing a carrier substrate adjacent the pattern roll; and bonding the stretched elastic part with the carrier substrate while the stretched elastic part is positioned between the carrier substrate and the pattern roll.
In still another form, a method of assembling absorbent articles comprises steps of: advancing a continuous elastic substrate in a machine direction, the continuous elastic substrate comprising a first surface and an opposing second surface, the continuous elastic substrate comprising a first longitudinal edge and a second longitudinal edge separated from the first longitudinal edge in a cross direction to define a first width, wherein the continuous elastic substrate is stretchable in the cross direction and comprises corrugations oriented to define corrugation lines extending in the machine direction; applying adhesive to corrugations on the first surface of the continuous elastic substrate, wherein the adhesive extends in the cross direction for a second width, wherein the second width is less than the first width; cutting an elastic part from the continuous elastic substrate, the elastic part comprising a first end region and a second end region separated from the first end region in the cross direction by a central region, wherein a zone of adhesive is positioned on the central region and not the first and second end regions; separating the zone of adhesive into individual stripes of adhesive by stretching the central region of the elastic part in the cross direction; adhesively bonding the stretched central region of the elastic part to a carrier substrate with the stripes of adhesive; and mechanically bonding the first end region and the second end region of the elastic part with the carrier substrate.
In still another form, a method of assembling absorbent articles comprises steps of: advancing the elastic part in a machine direction on a first roll; providing a first disk and a second disk, wherein the first disk and the second disk are canted relative to each other, and wherein the first disk and the second disk each comprise an outer rim comprising a pick-up surface and a drop-off surface, wherein the pick-up surface is angularly offset from the drop-off surface; transferring the first end region of the elastic part from the first roll onto pick-up surface of the first disk and transferring the second end region of the elastic part from the second roll onto the pick-up surface of the second disk; stretching the central region of the elastic part in the cross direction by rotating the first disk and the second disk; transferring the first end region of the elastic part from the drop-off surface of the first disk to a second roll and transferring the second end region of the elastic part from the drop-off surface of the second disk to the second roll; and advancing a carrier substrate adjacent the second roll; and bonding the stretched elastic part with the carrier substrate while the stretched elastic part is positioned between the carrier substrate and the second roll.
FIG. 4A1 is a view of the continuous elastic substrate taken along section 4A1-4A1 in
FIG. 6A1 is a view of the discrete elastic part taken along section 6A1-6A1 in
FIG. 10A1 is a view of the stretched discrete elastic part taken along section 10A1-10A1 in
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. Absorbent articles can comprise sanitary napkins, tampons, panty liners, interlabial devices, wound dressings, wipes, disposable diapers including taped diapers and diaper pants, inserts for diapers with a reusable outer cover, adult incontinent diapers, adult incontinent pads, and adult incontinent pants. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
The term “feminine hygiene articles” refers to disposable absorbent articles used by women for catamenial protection. Such feminine hygiene articles may include sanitary napkins, tampons, interlabial products, incontinence devices, and pantiliners. Non-limiting examples of panty liners and sanitary napkins include those disclosed in U.S. Pat. Nos. 4,324,246; 4,463,045; 4,342,314; 4,556,146; 4,589,876; 4,687,478; 4,950,264; 5,009,653; 5,267,992; and 6,004,893, which are all incorporated by reference herein.
An “elastic,” “elastomer” or “elastomeric” refers to materials exhibiting elastic properties, which include any material that upon application of a force to its relaxed, initial length can stretch or elongate to an elongated length more than 10% greater than its initial length and will substantially recover back to about its initial length upon release of the applied force.
“Consolidation,” “consolidating,” and “consolidated” refers to a material undergoing a reduction in elongation from a first stretched length to a second stretched length that is less than the first stretched length and greater than zero.
“Relaxed state” defines a length of material when not stretched by an applied force.
In the context of the present description, an elongation of 0% refers to a material in relaxed state having a relaxed length of L, and elongation of 150% represents 2.5× the relaxed length, L, of the material. For example, an elastic film having a relaxed length of 100 millimeters would have a length of 250 millimeters at 150% elongation. And an elastic film having a relaxed length of 100 millimeters would have a length of 180 millimeters at 80% elongation.
As used herein, the term “joined” encompasses configurations whereby an element is directly secured to another element by affixing the element directly to the other element, and configurations whereby an element is indirectly secured to another element by affixing the element to intermediate member(s) which in turn are affixed to the other element.
The term “substrate” is used herein to describe a material which is primarily two-dimensional (i.e. in an XY plane) and whose thickness (in a Z direction) is relatively small (i.e. 1/10 or less) in comparison to its length (in an X direction) and width (in a Y direction). Non-limiting examples of substrates include a web, layer or layers or fibrous materials, nonwovens, films and foils such as polymeric films or metallic foils. These materials may be used alone or may comprise two or more layers laminated together. As such, a web is a substrate.
The term “nonwoven” refers herein to a material made from continuous (long) filaments (fibers) and/or discontinuous (short) filaments (fibers) by processes such as spunbonding, meltblowing, carding, and the like. In some configurations, a nonwoven may comprise a polyolefin based nonwoven, including but not limited to nonwovens having polypropylene fibers and/or polyethylene fibers and/or bicomponent fibers comprising a polyolefin. Nonlimiting examples of suitable fibers include spunbond, spunlaid, meltblown, spunmelt, solvent-spun, electrospun, carded, film fibrillated, melt-film fibrillated, air-laid, dry-laid, wet-laid staple fibers, and other nonwoven web materials formed in part or in whole of polymer fibers as known in the art, and workable combinations thereof. Nonwovens do not have a woven or knitted filament pattern. It is to be appreciated that nonwovens having various basis weights can be used in accordance with the methods herein. For example, some nonwovens may have a basis weight of at least about 8 gsm, 12 gsm, 16 gsm, 20 gsm, 25 gsm, 30 gsm, 40 gsm, or 65 gsm. Some nonwovens may have basis weight of about 8 gsm to about 65 gsm, specifically reciting all 1 gsm increments within the above-recited ranges and all ranges formed therein or thereby.
It is to be appreciated that films having various basis weights can be used in accordance with the methods herein. For example, some films may have a basis weight of at least about 8 gsm, 12 gsm, 16 gsm, 20 gsm, 25 gsm, 30 gsm, 40 gsm, or 60 gsm. Some films may have basis weight of about 5 gsm to about 150 gsm, specifically reciting all 1 gsm increments within the above-recited ranges and all ranges formed therein or thereby.
It is to be appreciated that elastic films discussed herein may comprise various materials and/or components. Some elastomeric compositions may comprise thermoplastic elastomers selected from the group consisting of Styrenic block copolymers, poly-esters, polyurethanes, polyether amides, and combinations thereof. Suitable styrenic block copolymers may be diblock, triblock, tetrablock, or other multi-block copolymers having at least one styrenic block. Exemplary styrenic block copolymers include styrene-butadiene-styrene, styrene-isoprene-styrene, styrene-ethylene/butylenes-styrene, styrene-ethylene/propylene-styrene, and the like. Commercially available styrenic block copolymers include KRATON (styrenic block copolymer; available from the Kraton Chemical Company, Houston, TX), SEPTON (styrenic block copolymer; available from Kuraray America, Inc., New York, NY), VECTOR (styrenic block copolymer; available from TSRC Dexco Chemical Company, Houston, TX) can be used. Additinal commercially available elastomers include ESTANE (polyurethane; available from Lubrizol, Inc., Ohio), PEBAX (polyether block amide; available from Arkema Chemicals, Philadelphia, PA), and HYTREL (polyester; available from DuPont, Wilmington, DE).
Semi-crystalline, or metallocene polyolefins may be used in disposable absorbent products. The polyolefin elastomer materials herein may include, but are not limited to, any polymers or copolymers of polyolefins such as polyethylene and polypropylene. Examples of elastomeric polypropylenes include an elastic random poly(propylene/olefin) copolymer, an isotactic polypropylene containing stereo-irregularity, an isotactic/atactic polypropylene block copolymer, an isotactic polypropylene/random poly(propylene/olefin) copolymer block copolymer, a stereoblock elastomeric polypropylene, a syndiotactic polypropylene block poly(ethylene-co-propylene) block syndiotactic polypropylene triblock copolymer, an isotactic polypropylene block regioirregular polypropylene block isotactic polypropylene triblock copolymer, a polyethylene random (ethylene/olefin) copolymer block copolymer, a reactor blend polypropylene, a very low density polypropylene (or, equivalently, ultra low density polypropylene), a metallocene polypropylene, and blends or combinations thereof. Some homopolyolefins and random copolymers, as well as blends of such random copolymers, known by tradenames Vistamaxx™ available from ExxonMobil and VERSIFY™ from Dow, tend to show elastic performance. In some embodiments, two or more elastomers may be blended to achieve the desired elastic performance. For example, Styrenic block copolymer can be blended with polyolefin based elastomers, or polypropylene based elastomer can be blended with other polyolefin based elastomers.
Components of the disposable absorbent articles (i.e., diaper, disposable pant, adult incontinence article, sanitary napkin, pantiliner, etc.) described in this specification can at least partially be comprised of bio-sourced content as described in U.S. 2007/0219521A1 Hird et al published on Sep. 20, 2007, U.S. 2011/0139658A1 Hird et al published on Jun. 16, 2011, U.S. 2011/0139657A1 Hird et al published on Jun. 16, 2011, U.S. 2011/0152812A1 Hird et al published on Jun. 23, 2011, U.S. 2011/0139662A1 Hird et al published on Jun. 16, 2011, and U.S. 2011/0139659A1 Hird et al published on Jun. 16, 2011. These components include, but are not limited to, topsheet nonwovens, backsheet films, backsheet nonwovens, side panel nonwovens, barrier leg cuff nonwovens, super absorbent, nonwoven acquisition layers, core wrap nonwovens, adhesives, fastener hooks, and fastener landing zone nonwovens and film bases. In at least one embodiment, a disposable absorbent article component comprises a bio-based content value from about 10% to about 100% using ASTM D6866-10, method B, in another embodiment, from about 25% to about 75%, and in yet another embodiment, from about 50% to about 60% using ASTM D6866-10, method B. In order to apply the methodology of ASTM D6866-10 to determine the bio-based content of any disposable absorbent article component, a representative sample of the disposable absorbent article component must be obtained for testing. In at least one embodiment, the disposable absorbent article component can be ground into particulates less than about 20 mesh using known grinding methods (e.g., Wiley® mill), and a representative sample of suitable mass taken from the randomly mixed particles.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material can be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The term “cross direction” (CD) is used herein to refer to a direction that is generally perpendicular to the machine direction.
Aspects of the present disclosure relate to methods and apparatuses for bonding substrates used in absorbent articles, and in particular, methods and apparatuses for stretching, transferring, and bonding elastic parts under tension to an advancing carrier substrate during the assembly of absorbent articles. With regard to the assembly processes described herein, a continuous carrier substrate may be advanced in a machine direction at a first speed, the carrier substrate comprising a first longitudinal edge and a second longitudinal edge separated from the first longitudinal side in a cross direction. A continuous elastic substrate may also be advanced in the machine direction at a second speed with at least one direction of stretch extending in the cross direction, wherein the second speed is slower than the first speed. A discrete elastic part is separated from the continuous elastic substrate, wherein the discrete elastic part comprises a first end region and a second end region separated from the first end region in the cross direction by a central region. The speed of the discrete elastic part is changed from the second speed to the first speed, and the central region of the discrete elastic part is stretched in the cross direction. The discrete elastic part is bonded with the continuous carrier substrate such that the stretched central region extends in the cross direction between the first and second longitudinal edges of the continuous carrier substrate.
As discussed in more detail below, the discrete elastic parts are cut from a continuous elastic substrate having a direction of stretch in the cross direction, which eliminates the necessity of a 90 degree turn operations of stretched elastic parts before bonding with the carrier substrate. The methods and apparatuses herein also provide the ability to bond the discrete elastic part with the carrier substrate with adhesive and/or mechanical bonds. In some configurations, adhesive may be applied so as to help maximize bonded areas between the elastic part and the carrier substrate while mechanical bonds may also be used to help reduce perimeter edges of the elastic part that may otherwise remain unbonded and loose. Consecutively arranged conveying components of the apparatus may also be configured with intermeshing nubs and bonding elements and/or contoured outer rims that help improve abilities to transfer of discrete elastic parts while maintaining the elastic parts in a stretched condition. In addition, conveying components may also be configured with variable rotational velocities that help provide operational flexibility by reducing the necessity to change components to accommodate desired changes in speeds and/or pitching in manufacturing operations.
It is to be appreciated that the systems and methods disclosed herein are applicable to work with various types of converting processes and/or machines, such as for example, absorbent article manufacturing and assembly processes. The methods and apparatuses are discussed below in the context of manufacturing diapers that may be configured as taped diapers or pant diapers.
The term “taped diaper” (also referred to as “open diaper”) refers to disposable absorbent articles having an initial front waist region and an initial back waist region that are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. A taped diaper may be folded about the lateral centerline with the interior of one waist region in surface to surface contact with the interior of the opposing waist region without fastening or joining the waist regions together. Example taped diapers are disclosed in various suitable configurations U.S. Pat. Nos. 5,167,897, 5,360,420, 5,599,335, 5,643,588, 5,674,216, 5,702,551, 5,968,025, 6,107,537, 6,118,041, 6,153,209, 6,410,129, 6,426,444, 6,586,652, 6,627,787, 6,617,016, 6,825,393, and 6,861,571; and U.S. Patent Publication Nos. 2013/0072887 A1; 2013/0211356 A1; and 2013/0306226 A1, which are all incorporated by reference herein.
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer. A pant can be preformed or pre-fastened by various techniques including, but not limited to, joining together portions of the article using any refastenable and/or permanent closure member (e.g., seams, heat bonds, pressure welds, adhesives, cohesive bonds, mechanical fasteners, etc.). A pant can be preformed anywhere along the circumference of the article in the waist region (e.g., side fastened or seamed, front waist fastened or seamed, rear waist fastened or seamed). Example diaper pants in various configurations are disclosed in U.S. Pat. Nos. 4,940,464; 5,092,861; 5,246,433; 5,569,234; 5,897,545; 5,957,908; 6,120,487; 6,120,489; 7,569,039 and U.S. Patent Publication Nos. 2003/0233082 A1; 2005/0107764 A1, 2012/0061016 A1, 2012/0061015 A1; 2013/0255861 A1; 2013/0255862 A1; 2013/0255863 A1; 2013/0255864 A1; and 2013/0255865 A1, all of which are incorporated by reference herein.
For the purposes of a specific illustration,
As shown in
As shown in
As shown in
It is to also be appreciated that a portion or the whole of the diaper 100 may also be made laterally extensible. The additional extensibility may help allow the diaper 100 to conform to the body of a wearer during movement by the wearer. The additional extensibility may also help, for example, the user of the diaper 100, including a chassis 102 having a particular size before extension, to extend the front waist region 116, the back waist region 118, or both waist regions of the diaper 100 and/or chassis 102 to provide additional body coverage for wearers of differing size, i.e., to tailor the diaper to an individual wearer. Such extension of the waist region or regions may give the absorbent article a generally hourglass shape, so long as the crotch region is extended to a relatively lesser degree than the waist region or regions, and may impart a tailored appearance to the article when it is worn.
As previously mentioned, the diaper 100 may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may be impervious to fluids (e.g., menses, urine, and/or runny feces) and may be manufactured in part from a thin plastic film, although other flexible liquid impervious materials may also be used. The backsheet 136 may prevent the exudates absorbed and contained in the absorbent core from wetting articles which contact the diaper 100, such as bedsheets, pajamas and undergarments. The backsheet 136 may also comprise a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material (e.g., having an inner film layer and an outer nonwoven layer). The backsheet may also comprise an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Exemplary polyethylene films are manufactured by Clopay Corporation of Cincinnati, Ohio, under the designation BR-120 and BR-121 and by Tredegar Film Products of Terre Haute, Ind., under the designation XP-39385. The backsheet 136 may also be embossed and/or matte-finished to provide a more clothlike appearance. Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136. The size of the backsheet 136 may be dictated by the size of the absorbent core 142 and/or particular configuration or size of the diaper 100.
Also described above, the diaper 100 may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be compliant, soft feeling, and non-irritating to the wearer's skin. It may be elastically stretchable in one or two directions. Further, the topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art.
Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Apertured film topsheets may be pervious to bodily exudates, yet substantially non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539, which are all incorporated by reference herein.
As mentioned above, the diaper 100 may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprise primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 A1 and 2004/0097895 A1.
As previously mentioned, the diaper 100 may also include elasticized leg cuffs 156 and an elasticized waistband 158. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; and U.S. Patent Publication No. 2009/0312730 A1, which are all incorporated by reference herein.
As shown in
The elasticized waistband 158 may provide improved fit and containment and may be a portion or zone of the diaper 100 that may elastically expand and contract to dynamically fit a wearer's waist. It is to be appreciated that the elasticized waistband 158 may be located in various positions relative to various diaper components. For example, the elasticized waistband 158 may be positioned longitudinally inwardly from the waist edges 120, 122 of the diaper and/or toward the lateral edges 148, 150 of the absorbent core 142. In some configurations, the elasticized waistband 158 may be positioned with a lateral edge that is coterminous with the waist edges 120, 122. In some configurations, the elasticized waistband 158 may be positioned such that laterally opposing end regions of the waistband 158 are located laterally inward from the leg cuffs 156. In some configurations, the elasticized waistband 158 may be positioned such that laterally opposing end regions of the waistband 158 overlap the leg cuffs 156. In some configurations, the elasticized waistband 158 may be positioned on the wearer facing surface 132 of the topsheet 138. In some configurations, the waistband 158 may be positioned on the wearer facing surfaces 132 of the topsheet 138 and the leg cuffs 156. In some configurations, the waistband 158 may be positioned on the wearer facing surfaces 132 of the topsheet 138 and laterally opposing end regions of the waistband 158 may be positioned between the leg cuffs 156 and the topsheet 138. In some configurations, the elasticized waistband 158 may be positioned between the garment facing surface 132 of the topsheet 138 and the wearer facing surface 132 of the backsheet 136. And in some configurations, the elasticized waistband 158 may be positioned on the garment facing surface 134 of the backsheet 136. The diaper 100 may also include more than one elasticized waistband 158, for example, having one waistband 158 positioned in the back waist region 118 and one waistband 158 positioned in the front wait region 116, although other embodiments may be constructed with a single elasticized waistband 158. The elasticized waistband 158 may be constructed in a number of different configurations including those described in U.S. Pat. Nos. 4,515,595 and 5,151,092.
Taped diapers may be manufactured and provided to consumers in a configuration wherein the front waist region and the back waist region are not fastened, pre-fastened, or connected to each other as packaged, prior to being applied to the wearer. For example, the taped diaper 100 may be folded about a lateral centerline with the interior surface 132 of the first waist region 116 in surface to surface contact with the interior surface 132 of the second waist region 118 without fastening or joining the waist regions together. The rear side panels 104 and 106 and/or the front side panels 108 and 110 may also be folded laterally inward toward the inner surfaces 132 of the waist regions 116 and 118.
The diaper 100 may also include various configurations of fastening elements to enable fastening of the front waist region 116 and the back waist region 118 together to form a closed waist circumference and leg openings once the diaper is positioned on a wearer. For example, as shown in
With continued reference to
Referring now to
As previously mentioned, the fastening members 162 and 164 may be constructed from various materials and may be constructed as a laminate structure. The fastening members 162 and 164 may also be adapted to releasably and/or refastenably engage or connect with another portion of the diaper 100. For example, as shown in
As previously mentioned, absorbent articles may be assembled with various components that may constructed with the substrates described herein. Thus, in the context of the previous discussion, the apparatuses and methods herein may be used to bond discrete elastic parts under tension to an advancing carrier substrate during the assembly of an absorbent article 100. For example, the apparatuses and methods herein may be utilized to bond elastic parts that may be configured as waistbands 158 to carrier substrates that may be configured as topsheets 138 or backsheets 136 during the manufacture of absorbent articles 100. It is to be appreciated that the systems and methods disclosed herein are applicable to work with various types of converting processes and/or machines. For example,
As shown in
In the context of components of absorbent articles 100 discussed above and assembly processes thereof, the elastic parts 200 may be configured as waistbands 158 and the carrier substrate 202 may be configured as a continuous topsheet 138, backsheet 136, or continuous laminate of a combined topsheet 138 and backsheet 136. As such, the first surface 210 of the carrier substrate 202 may correspond with the wearer facing surface 132 or the garment facing surface 134 of the topsheet 138 or backsheet 136. In some configurations, the elastic part 200 may be bonded between a topsheet 138 and a backsheet 136. For example, the elastic part 200 may be bonded with the wearer facing surface 132 of the backsheet 136, which is subsequently bonded with a topsheet 138. In another example, the elastic part 200 may be bonded with the garment facing surface 134 of the topsheet 138, which is subsequently bonded with a backsheet 136. In yet another example, the elastic part 200 may be bonded with the garment facing surface 134 of the backsheet 136, wherein the wearer facing surface 132 of the backsheet 136 may have been previously bonded with a topsheet 138 or may be subsequently bonded with a topsheet 138. In another example, the elastic part 200 may be bonded with the wear facing surface 132 of the topsheet 136, wherein the garment facing surface 134 of the topsheet 138 may have been previously bonded with a backsheet 136 or may be subsequently bonded with a backsheet 136.
As shown in
Referring now to
With continued reference to
It is to be appreciated that the adhesive 222 may be applied to the continuous elastic substrate 200a to define regions of adhesive 222 on the second surface 220 having various shapes and sizes relative to the continuous elastic substrate 200a. For example, as shown in
As shown in
As shown in
As shown in
In some configurations, the third speed S3 may be equal to the first speed S1 of the advancing carrier substrate 202. In some configurations, the third speed S3 may be less than or greater than the first speed S1 of the advancing carrier substrate 202, and as such, the discrete elastic part may be accelerated or decelerated downstream of the anvil roll 308 from the third speed S3 to the first speed S1 before being combined with the carrier substrate 202. Because the first speed S1 of the carrier substrate is greater than the second speed S2, the discrete elastic parts 200 are accelerated from the second speed S2 to the first speed S1 before bonding with the carrier substrate 202. By accelerating discrete elastic parts 200 from the second speed S2 to the first speed S1, trailing edges 232 (or leading edges 230) of consecutively cut discrete elastic parts 200 may be separated from each other in the machine direction MD by a pitch distance PD, such as shown in
It is to be appreciated that the cutting device 304 may be configured in various ways. For example, in some configurations, the blade 314 may be configured such that resulting cut lines and corresponding leading edges 230 and trailing edges 232 of the discrete elastic parts 200 may be straight and/or curved. The cutting device 304 may also be adapted to cut the discrete elastic parts 200 such that material along the cut line adjacent leading edges 230 and trailing edges 232 is fused and/or pressure bonded together. It is also to be appreciated that the positions of the knife roll 306 and anvil roll 308 may be opposite to that which is illustrated in
With reference to
As shown in
As shown in
With reference to
As previously discussed with reference to
It is to be appreciated that the transfer device 322 may be configured in various ways to help ensure a relatively smooth and consistent transfer of the discrete elastic parts 200 from the cutting device 304 to the transfer device 322 as well as a relatively smooth and consistent transfer of the discrete elastic parts 200 from the transfer device 322 to the bonding device 324. For example, as discussed above, the transfer device 322 may include a first disk 330 and a second disk 332 that are canted relative to each other. Thus, as discussed below with reference to
As shown in
With continued reference to
Φ=[180°−2×(canting angle θ)].
In operation, the discrete elastic part 200 may be transferred from the anvil roll 308 at the nip 328 to position the first end region 234 of the discrete elastic part 200 on the pick-up surface 368 of the first disk 330 and to position the second end region 236 of the discrete elastic part 200 on the pick-up surface 368 of the second disk 332. As the disks 330, 332 rotate, the first end region 234 of the discrete elastic part 200 will become positioned on the drop-off surface 370 of the first disk 330 and the second end region 236 of the discrete elastic part 200 will become positioned on the drop-off surface 370 of the second disk 332 due to the canted orientations of the disks 330, 332. Thus, the discrete elastic part 200 is transferred from the drop-off surfaces 370 of the disks 330, 332 to the outer circumferential surface 346 of the pattern roll 340 at the nip 338.
It is to be appreciated that the contoured features of the rims 330b, 332b of the disks 330, 332 described above may be incorporated as integrated features of the disks 330, 332 or may be incorporated into discrete parts, such as shoes, that may be connected with disks 330, 332. In addition, it is to be appreciated that the rims 330b, 332b and/or shoes may be constructed from compliant materials, such as polyurethane or silicone. In some configurations, the rims 330b, 332b and/or shoes may, and may also include holding pins and/or may be constructed from materials with a relatively high coefficient of friction relative the discrete elastic parts 200.
It is also to be appreciated that aspects of the spreader mechanism 326 may be configured to be independently controlled. For example, the cross direction CD position of the spreader mechanism 326 relative to cutting device 304 and/or the bonding device 324. In addition, the cross direction CD positions of the disks 330, 332 of the spreader mechanism 326 may be adjustable relative to each other. In addition, canting angles of the disks 330, 332 of the spreader mechanism 326 may be adjustable. In some configurations, radial clearances between components of the cutting device 304 and/or the bonding device 324 and the outer rims of the first and second disks 330b, 332b of the spreader mechanism 326 may be adjustable, wherein the positions of the disks 330, 332 may be configured to be independently or collectively adjustable.
It is to be appreciated that various drives may be used to control the rotation of the disks 330, 332 of the spreader mechanism 326. For example, the disks 330, 332 of the spreader mechanism 326 may be driven by one or more motors, such as a servo motor. In some configurations, motors may be directly connected with the disks 330, 332, and in some configurations, motors may be indirectly connected with the disks 330, 332, such as through belts, pulleys, and/or gears. The disks 330, 332 may be driven as a pair through the use of a common driveshaft with a coupling between the disks. In some configurations, a common jackshaft may be used to drive both disks 330, 332 together with a single motor. In some configurations, drives of components of the cutting device 304 and/or the bonding device 324 and spreader mechanism 326 may be operatively connected, and may be configured with a single motor.
As discussed above, the cut discrete elastic parts 200 accelerate from the second speed S2 to the third speed S3 on the outer circumferential surface 318 of the anvil roll 308, and in some configurations, the third speed S3 may be less than or greater than the first speed S1 of the advancing carrier substrate 202. Thus, the transfer device 322 may be configured to rotate at a variable angular velocity to accelerate or decelerate the discrete elastic parts 200 to the first speed S1. For example, if the third speed S3 is less than the first speed S1, the transfer device 322 may be configured to receive the discrete elastic part 200 from the anvil roll 308 while the rims 330b, 332b of the first and second disks 330, 332 are moving through the nip 328 at the third speed S3. The angular velocity of the disks 330, 332 may then be changed to accelerate the discrete elastic part 200 to the first speed S1 before transferring the discrete elastic part 200 to the bonding device 324. In another example, if the third speed S3 is greater than the first speed S1, the angular velocity of the disks 330, 332 may be changed to decelerate the discrete elastic part 200 to the first speed S1 before transferring the discrete elastic part 200 to the bonding device 324. In situations where the third speed S3 is equal to the first speed S1, the disks 330, 332 may rotate at a constant angular velocity. It is to be appreciated that the spreader mechanism 326 may be configured in various ways to accommodate a need to rotate at variable angular velocities, such as, for example, disclosed in European Patent Publication No. EP 2260813 B1, which is incorporated by reference herein. The ability to rotate at the transfer device 326 at variable angular velocities may help reduce the need to replace components of the apparatus 300 when assembling absorbent articles 100 of smaller or larger sizes, which in turn, may require a reduction or increase in the pitch distances between consecutively cut discrete elastic parts 200.
As previously mentioned, the rotatable transfer device 322 may be configured to transfer the discrete elastic parts 200 from the cutting device 304 to a bonding device 324. As shown in
It is to be appreciated that the bonding device 324 may be configured in various ways. For example, as shown in
For example, as shown in
Thus, as the laminate 204 advances through the nip 344, the carrier substrate 202 and the discrete elastic part 200 are mechanically bonded or welded together. It is to be appreciated that the bonding device 324 herein may be configured in various ways with various features described herein to bond the discrete elastic parts 200 with the carrier substrate 202. As such, the pattern roll 340 and/or anvil roll 350 may be configured to apply heat and pressure in various ways to perform mechanical bonding, such as for example, the mechanical bonding devices and methods disclosed in in U.S. Pat. Nos. 4,854,984; 6,248,195; 8,778,127; 9,005,392; 9,962,297; and 10,052,237. It is also to be appreciated that the positions of the pattern roll 340 and anvil roll 350 may be opposite to that which is illustrated in
In some configurations, the carrier substrate 202 may be partially wrapped around the outer circumferential surface 346 of the pattern roll 340. As such, the bonding device 324 may include one or more rolls that help guide the carrier substrate 202 to and/or from the pattern roll 340. For example, as shown in
It is to be appreciated that the bonding device 324 may be configured in various ways, such as with heated or unheated pattern rolls, anvil rolls and/or ultrasonic bonding devices. For example, the bonding device 324 schematically shown in
It is to be appreciated that aspects of the ultrasonic bonding device 364 may be configured in various ways, such as for example linear or rotary type configurations, and such as disclosed for example in U.S. Pat. Nos. 3,113,225; 3,562,041; 3,733,238; 5,110,403; 6,036,796; 6,508,641; and 6,645,330. In some configurations, the ultrasonic bonding device 364 may be configured as a linear oscillating type sonotrode, such as for example, available from Herrmann Ultrasonic, Inc. In some configurations, the sonotrode may include a plurality of sonotrodes nested together in the cross direction CD. It is also to be appreciated that rotary horns may also be configured to rotate at constant and/or variable angular velocities.
As discussed above, the pattern roll 340 includes bonding elements 358 that extend radially outward to define bonding surfaces 356. In turn, the bonds and/or bond regions 242 between the discrete elastic part 200 and the carrier substrate 202 may have shapes that correspond with and may mirror shape of the bonding surfaces 356. It is to be appreciated that the pattern roll 340 may have various quantities and/or shapes of bonding surfaces 356 and that such bonding surfaces 356 may be positioned in various locations on the pattern roll 340. For example, as shown in
The pattern roll 340 may also be configured to apply vacuum pressure to the discrete elastic parts 200 to help hold the discrete elastic parts 200 on the outer circumferential surface 346 as the pattern roll 340 rotates. The vacuum pressure may also help hold the discrete elastic parts 200 in the stretched state while positioned on the pattern roll 340. In addition, the bonding elements 358 and bonding surfaces 356 may also help grip the elastic parts 200 and help hold the elastic parts 200 in the stretched state. In addition, the pattern roll 340 may be configured such to also apply vacuum pressure through the bonding surfaces 356 of the bonding elements 358. Further, the pattern roll 340 may be configured to interface with the first and second disks 330, 332 of the spreader mechanism 326 to help maintain the stretched state of the discrete elastic part 200 during the transfer to the pattern roll 340 at the nip 338. For example, as discussed above, the disks 330, 332 of the spreader mechanism 326 may include various quantities of nubs 336 that protrude radially outward from the rims 330b, 332b, wherein the nubs 336 may help prevent the first and second end regions 234, 236 of the elastic parts 200 from sliding toward each other along the rims 330b, 332b while stretching the discrete elastic parts 200. It is to be appreciated that the nubs 336 may be configured in various shapes and sizes, spacing, and may be constructed from various types of materials. In some configurations, the bonding elements 358 on the pattern roll 340 may be configured to intermesh with the nubs 336 protruding from the rims 330b, 332b of the first and second disks 330, 332. The intermeshing between the nubs 336 and the bonding elements 358 may help the apparatus 300 maintain the stretched state of the discrete elastic part 200 when transferring from the transfer device 322 to the bonding device 324.
As shown in
As discussed above, the discrete elastic parts may be combined with the carrier substrate with adhesive and/or mechanical bonds. It is to be appreciated that the adhesive and mechanical bonds may be configured in various ways. For example, as discussed above with reference to
It is also to be appreciated that the zone 240 of adhesive 222 may be applied to define various different shapes and sizes with respect to the discrete elastic part 200 and/or the carrier substrate 202. For example, as shown in
In some examples, the zone 240 of adhesive 222 may not extend to either the leading edge 230 or the trailing edge 232 of the elastic part 200. In some configurations, more than one zone 240 of adhesive 222 may bond the elastic part 200 with the carrier substrate 202. For example, as shown in
It is to be appreciated that the elastic part 200, carrier substrate 202, the zone 240 of adhesive 222, and the mechanical bonds and/or bond regions 242 may define various features with various sizes relative to each other. For example, as shown in
As previously mentioned, the bonding device 340 may operate to mechanically bond the first and second end regions 234, 236 of the elastic part 200 with the carrier substrate 202. As such, the mechanical bonds 242 may define bond zones wherein the laminate 204 of the elastic part 200 and carrier substrate 202 may or may not be elastic. For example, as shown in
In some configurations, the first bond zone BZ1 and/or the second bond zone BZ2 may be separated in the cross direction CD from the zone 240 of adhesive 222. For example, as shown in
As discussed above with reference to
In accordance with the above discussion with regard to the various shapes and sizes of the zones 240 of adhesive 222, it is to be appreciated that adhesive 222 may be applied to the continuous elastic substrate 200a and/or the carrier substrate 202 in various ways to define the zones 240 of adhesive 222. For example, as discussed above with reference to
It is to be appreciated that the continuous elastic substrate 200a and the discrete elastic parts 200 herein may be configured in various ways and may include one or more elastic materials, such as for example, elastic film and/or strands. For example, the continuous elastic substrate 200a and the discrete elastic parts 200 may be configured as a single layer of elastic film. In some configurations, the continuous elastic substrate 200a and the discrete elastic parts 200 may be configured as a laminate of two more substrates. For example, the continuous elastic substrate 200a and the discrete elastic parts 200 may be configured as an elastic film bonded in between two or more nonwoven substrates and/or may be bonded with one or more nonwoven substrates. For example, the continuous elastic substrate 200a and the discrete elastic parts 200 may be configured as a bi-laminate with an elastic film bonded with a single nonwoven substrate. In another example, the continuous elastic substrate 200a and the discrete elastic parts 200 may be configured as an elastic film bonded between two or more substrates, wherein the substrates may comprise nonwovens. It is also to be appreciated that nonwoven substrates of the elastic substrate 200a and discrete elastic parts 200 may be of the same or different material and/or basis weights. In some configurations, one more nonwoven substrates of the elastic substrate 200a and discrete elastic parts 200 may be of the same or different material and/or basis weights as one more nonwoven substrates of the carrier substrate 202.
It is also to be appreciated that the continuous elastic substrate 200a and the discrete elastic parts 200 may be assembled in various ways, such as for example, as disclosed in U.S. Pat. Nos. 6,572,595; 6,830,800; 7,087,287; and 7,803,244; and U.S. Patent Publication Nos. 2018/0042778 A1; 2018/0042787 A1; 2018/0042779 A1; and 2018/0042780 A1, which are all incorporated by reference herein. For example,
As shown in
With continued reference to
As shown in
During the ultrasonic bonding process, it is to be appreciated that bonds imparted into the elastic substrate 200a from the ultrasonic horn 532 may correspond with patterns and/or shapes defined by a plurality of pattern elements extending radially outward from the outer circumferential surface 504 of the anvil 502. It is to be appreciated that the elastic substrate 200a may include various portions of components bonded together in various ways and with differing or identical bond patterns. For example, the elastic film 408 may be bonded together with the first and/or second substrates 402, 410, and the first substrate 402 may be bonded directly to the second substrate 410 in areas of the elastic substrate 200a. In some configurations, the first and second substrates 402, 410 may be bonded directly to each other through apertures in the elastic film, wherein such apertures may be formed during the bonding process. In some configurations, the elastic film 408 can be involved, or participate, in the bonding between the first and second substrates 402, 410, wherein “involved” can mean that the elastic film can, to some extent, be in intimate contact with, and possibly partially merged with, one or both the first and second substrates 402, 410. The involvement may be due to actual melt bonding about the perimeter of a bond site or may be due to mechanical interaction, such as by entanglement of a fibrous elastic layer between fibrous nonwoven layers also about the perimeter of bond site. It is to be appreciated that the apparatus 500 may be adapted to create various types of bond configurations, such as disclosed, for example, in U.S. Pat. Nos. 6,572,595; 6,830,800; 7,087,287; and 7,803,244; and U.S. Patent Publication Nos. 2018/0042778 A1; 2018/0042787 A1; 2018/0042779 A1; and 2018/0042780 A1, which are all incorporated by reference herein.
As previously mentioned, the spreader mechanism 512 stretches the elastic film 408 to a first elongation E1 in the cross direction CD. With particular reference to
As shown in
With continued reference to
It is to be appreciated that the apparatuses 500 herein may be configurated to operate with various extensions of elastic film. In some configurations, the difference between the first elongation E1 and the second elongation E2 may be about 25%. In some configurations, E1−E2=25%. In some configurations, when the spreader mechanism includes canted disks, the first and second edge regions 408a, 408b of the elastic film 408 may be held in position on the outer rims 516b, 518b of the disks 516, 518. And as such, some portions of the first and second edge regions 408a, 408b may remain unstretched in the cross direction CD as the first and second disks 516, 518 rotate. Thus, as the first disk 516 and the second disk 518 of the first spreader mechanism 512 rotate, the central region 408c of the elastic film 408 is stretched in the cross direction CD.
As shown in
With continued reference to
It is also to be appreciated that aspects of the spreader mechanisms 512 may be configured in various ways. For example, the cross direction CD positions of the disks 516, 518 of the spreader mechanism 512 may be adjustable relative to each other. In addition, canting angles of the disks 516, 518 of the spreader mechanism 512 may be adjustable. The canting angle of the first disk 516 may be defined as an angular offset between the axis of rotation 516a of the first disk 516 and the axis of rotation 506 of the anvil 502, and the canting angle of the second disk 518 may be defined as an angular offset between the axis of rotation 518a of the second disk 518 and the axis of rotation 506 of the anvil 502. In some configurations, radial clearances between the outer circumferential surface 504 of the anvil 502 and the outer rims 516b, 518b of the first and second disks 516, 518 of the spreader mechanisms 512 may be adjustable, wherein the positions of the disks 516, 518 may be configured to be independently or collectively adjustable. In some configurations, the radial clearance between the outer circumferential surface 504 of the anvil 502 and the outer rims 516b, 518b may be zero or greater than zero.
It is to be appreciated that various drives may be used to control the rotation of the disks 516, 518 of the spreader mechanism 512. For example, the disks 516, 518 of the spreader mechanism 512 may be driven by one or more motors, such as a servo motor. In some configurations, motors may be directly connected with the disks 516, 518, and in some configurations, motors may be indirectly connected with the disks 516, 518, such as through belts, pulleys, and/or gears. The disks 516, 518 may be driven as a pair through the use of a common driveshaft with a coupling between the disks. In some configurations, a common jackshaft may be used to drive both disks 516, 518 together with a single motor. In some configurations, drives of the anvil 502 and spreader mechanism 512 may be operatively connected, and may be configured with a single motor. In some configurations, the disks 516, 518 of the spreader mechanism 512 may be driven only by the advancement of the elastic film 408. In some configurations, the disks 516, 518 of the spreader mechanism 512 may be driven by rotation of the anvil 502 or an infeed idler. Other drives may include surface driving through a jackshaft with a friction material in operative contact with disks 516, 518.
It is to be appreciated that elastic substrates may be characterized by the force for a given extension when used in a disposable absorbent article. The magnitude of the force required to extend the elastic substrate may vary between the first extension and subsequent extensions. In some configurations, the elastic substrate may include an elastic film that may comprise a base elastic film, such as a styrenic-block copolymer, and surface layers also known as skins. Such skins may help prevent interlayer adhesion when the elastic film is wound into a roll format for shipping and handling. In some configurations, the skins may be a polyolefin, which may be 0.5-5 microns thick. However, the polyolefin skins on the surface of the elastic film may cause the higher initial extension forces for an elastic substrate. As such, some manufacturers of films may apply processes to help reduce the initial extension force for a given displacement relative to subsequent extensions. For example, some manufactures of elastic films may apply a process, sometimes referred to as “activation,” wherein the films are extended or stretched to create a plurality of cracks and tears in the skins at a microscopic scale. In turn, these cracks and tears may help reduce the skin contribution to the extension forces. In some configurations, activation operations are performed separate to the assembly process, such as for example, activating the films offline wherein the films may be stored until needed for production. For example, activation operations may be accomplished during the manufacture of the films, separately from converting lines that are dedicated to manufacturing elastic substrates that may be used in disposable absorbent articles. After manufacturing and activating the films, the films are delivered to the converting lines, such as in a form of continuous films wound onto a roll. As such, it is to be appreciated that the elastic film 408 may be supplied to a laminating process, such as discussed above with reference to
As mentioned above, some portions of the first and second edge regions 408a, 408b of the elastic film 408 may remain unstretched in the cross direction CD when assembling the elastic substrate 200a. Thus, as shown in
As shown in
It is to be appreciated the elastic substrate 200a, and elastic parts 200 cut therefrom, may be configured such that the width WDZ1 of the first dead zone DZ1 may be equal to or different from the width WDZ2 of the second zone DZ2. In some configurations, the width WDZ1 of the first dead zone DZ1 may be equal to, less than, or greater than width WBZ1 of the first bond zone BZ1 discussed above with reference to
As mentioned above, the elastic substrate 200a and elastic parts 200 may include nonwoven substrates that may be of the same or different material and/or basis weights. For example, the first substrate 402 and the second substrate 410 referred to above with reference to
It is also to be appreciated that the processes and/or apparatuses herein may be configured with additional features, such as splicing operations, to help avoid having to stop assembly process operations in order to replenish material supplies. In some configurations, the apparatuses 300 discussed herein may be configured to operate with apparatuses that are configured to provide an uninterrupted supply of continuous elastic substrate 200a. For example, during operation, a replacement supply of a continuous elastic substrate 200a may be spliced to a current supply of continuous elastic substrate 200a being used in assembly operations before the current supply is completely depleted.
It is to be appreciated that various types of splicing operations may be used to replenish the supply of a continuous elastic substrate 200a. For example, some splicing operations may be configured to apply a strip of splicing tape to connect a replacement continuous elastic substrate 200a to a nearly depleted elastic substrate 200a to help avoid supply interruptions. As discussed above, the continuous elastic substrate 200a may advance through a cutting device 304 that separates the continuous elastic substrate 200a into discrete elastic parts 200. In addition, a transfer device 322 and/or bonding device 324 may further subject the discrete elastic parts 200 to cross directional stretching and/or bonding operations. However, some splicing tape material may not be stretchable and/or may not be conducive to bonding operations. In turn, discrete elastic parts 200 connected with splicing tape may undesirably disrupt operations of stretching and/or bonding processes. As such, some apparatuses 300 may be configured to remove discrete elastic parts 200 with splicing tape attached thereto from assembly operations before such undesired process disruptions may occur. In some examples, splicing operations may be configured to utilize stretchable splicing tape and/or other materials more conducive to various assembly operations to help prevent unintended assembly process disruptions and/or eliminate the need to remove elastic parts 200 with splicing tape attached thereto.
Some splicing operations may be configured to weld or otherwise bond a replacement supply of a continuous elastic substrate 200a to a current supply of continuous elastic substrate 200a being used in assembly operations without the need to use splicing tape. Such welding operations may utilize hot-wire or ultrasonic apparatuses to create a thermal splice. The thermal splice process may both cut and weld the materials together. In some configurations, thermal splices may be applied so as to maintain some stretch properties, which may allow discrete elastic parts 200 with such thermal splices to advance through cross directional stretching and/or bonding operations without disrupting such operations.
As discussed above, it is to be appreciated that the continuous elastic substrate 200a and the discrete elastic parts 200 herein may be configured in various ways and may include one or more elastic materials, such as for example, elastic film and/or strands. In some configurations, the continuous elastic substrate 200a and the discrete elastic parts 200 may comprise a single layer of elastic film. In some configurations, the continuous elastic substrate 200a and the discrete elastic parts 200 may comprise a laminate of two more substrates, such as an elastic film bonded with one or more nonwoven substrates. When the continuous elastic substrate 200a is configured to comprise an elastic film bonded with one or more consolidated nonwovens, a thermal splice may be configured to melt the layers of both film and nonwoven to create a weld that traps consolidations of the nonwoven materials. In turn, the cross directional stretching process may stretch the elastic part 200 such that the weld may also extend in the cross direction by partially failing a part of the weld that has trapped the consolidated nonwoven, sometimes referred to as “popping the weld.” Depending on various splicing process parameters, such as for example weld time, dwell time, and quench time and various material properties, such as for example basis weight, fiber type, and plastic characteristics, the cross directional forces necessary to pop and stretch the weld may vary. In some examples, an ultrasonic splicing apparatus including a relatively sharp cutting anvil may be configured to produce a weld that has a relatively low cross directional force required to pop and stretch. In particular, a relatively smaller overall weld may be produced when a sharp angle of the anvil may penetrate through and burst fibers in the materials without causing a relatively large melt zone, while at the same time allowing the film to weld together, resulting in a splice that may be relatively easier to stretch in the cross direction CD with reduced and/or no popping required.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/930,181, filed on Nov. 4, 2019; U.S. Provisional Patent Application No. 62/855,001, filed on May 31, 2019; U.S. Provisional Patent Application No. 62/930,198, filed on Nov. 4, 2019; and U.S. Provisional Patent Application No. 62/930,808, filed on Nov. 5, 2019, which are all hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3091550 | Doying | May 1963 | A |
3113225 | Claus | Dec 1963 | A |
3562041 | Robertson | Feb 1971 | A |
3733238 | Long | May 1973 | A |
3848594 | Buell | Nov 1974 | A |
3881488 | Delanty et al. | May 1975 | A |
4116892 | Schwarz | Sep 1978 | A |
4324246 | Mullane et al. | Apr 1982 | A |
4342314 | Radel et al. | Aug 1982 | A |
4463045 | Ahr et al. | Jul 1984 | A |
4515595 | Kievit et al. | May 1985 | A |
4556146 | Swanson et al. | Dec 1985 | A |
4568344 | Suzuki et al. | Feb 1986 | A |
4589876 | Van Tilburg | May 1986 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4662875 | Hirotsu | May 1987 | A |
4673402 | Weisman | Jun 1987 | A |
4687478 | Van Tillburg | Aug 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4704115 | Buell | Nov 1987 | A |
4795454 | Dragoo | Jan 1989 | A |
4795510 | Wittrock et al. | Jan 1989 | A |
4824498 | Goodwin | Apr 1989 | A |
4834735 | Alemany | May 1989 | A |
4834741 | Sabee | May 1989 | A |
4846815 | Scripps | Jul 1989 | A |
4854984 | Ball | Aug 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4894060 | Nestegard | Jan 1990 | A |
4909803 | Aziz | Mar 1990 | A |
3860003 | Buell | Jun 1990 | A |
4940464 | Van Gompel et al. | Jul 1990 | A |
4946527 | Battrell | Aug 1990 | A |
4950264 | Osborn, III | Aug 1990 | A |
5009653 | Osborn, III | Apr 1991 | A |
5026364 | Robertson | Jun 1991 | A |
5092861 | Nomura | Mar 1992 | A |
5110403 | Ehlert | May 1992 | A |
5143679 | Weber | Sep 1992 | A |
5151092 | Buell | Sep 1992 | A |
5156793 | Buell et al. | Oct 1992 | A |
5167897 | Weber et al. | Dec 1992 | A |
5192606 | Proxmire | Mar 1993 | A |
5221274 | Buell | Jun 1993 | A |
5242436 | Weil | Sep 1993 | A |
5246433 | Hasse | Sep 1993 | A |
5267992 | Van Tilburg | Dec 1993 | A |
5308345 | Herrin | May 1994 | A |
5360420 | Cook et al. | Nov 1994 | A |
5407507 | Ball | Apr 1995 | A |
5422172 | Wu | Jun 1995 | A |
5518801 | Chappell et al. | May 1996 | A |
5540796 | Fries | Jul 1996 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5569234 | Buell | Oct 1996 | A |
5571096 | Dobrin | Nov 1996 | A |
5575783 | Clear | Nov 1996 | A |
5599335 | Goldman et al. | Feb 1997 | A |
5628097 | Benson et al. | May 1997 | A |
5643588 | Roe et al. | Jul 1997 | A |
5669894 | Goldman et al. | Sep 1997 | A |
5674216 | Buell et al. | Oct 1997 | A |
5693037 | Lee et al. | Dec 1997 | A |
5700255 | Curro | Dec 1997 | A |
5702551 | Huber et al. | Dec 1997 | A |
5735840 | Kline | Apr 1998 | A |
5827259 | Laux | Oct 1998 | A |
5897545 | Kline | Apr 1999 | A |
5904675 | Laux | May 1999 | A |
5916661 | Benson et al. | Jun 1999 | A |
5928212 | Kline | Jul 1999 | A |
5957908 | Kline | Sep 1999 | A |
5961997 | Swinehart | Oct 1999 | A |
5968025 | Roe et al. | Oct 1999 | A |
5993433 | St Louis | Nov 1999 | A |
6004893 | Van Tilburg | Dec 1999 | A |
6010491 | Roe et al. | Jan 2000 | A |
6036796 | Halbert | Mar 2000 | A |
6051094 | Melbye et al. | Apr 2000 | A |
6107537 | Elder et al. | Aug 2000 | A |
6107539 | Palumbo et al. | Aug 2000 | A |
6118041 | Roe et al. | Sep 2000 | A |
6120487 | Ashton | Sep 2000 | A |
6120489 | Johnson | Sep 2000 | A |
6149934 | Krzysik et al. | Nov 2000 | A |
6153209 | Vega et al. | Nov 2000 | A |
6156023 | Yoshioka | Dec 2000 | A |
6238683 | Burnett et al. | May 2001 | B1 |
6248097 | Beitz et al. | Jun 2001 | B1 |
6248195 | Schmitz | Jun 2001 | B1 |
6251097 | Kline | Jun 2001 | B1 |
6369290 | Glaug | Apr 2002 | B1 |
6409883 | Makolin | Jun 2002 | B1 |
6410129 | Zhang et al. | Jun 2002 | B2 |
6426444 | Roe et al. | Jul 2002 | B2 |
6432098 | Kline et al. | Aug 2002 | B1 |
6454095 | Brisebois | Sep 2002 | B1 |
6506185 | Sauer et al. | Jan 2003 | B1 |
6508641 | Kubik | Jan 2003 | B1 |
6545197 | Mueller et al. | Apr 2003 | B1 |
6568530 | Takahashi | May 2003 | B2 |
6572595 | Klemp | Jun 2003 | B1 |
6586652 | Roe et al. | Jul 2003 | B1 |
6601705 | Molina | Aug 2003 | B2 |
6617016 | Zhang et al. | Sep 2003 | B2 |
6627787 | Roe et al. | Sep 2003 | B1 |
6645330 | Pargass | Nov 2003 | B2 |
6648864 | Ronn | Nov 2003 | B2 |
6669618 | Reising | Dec 2003 | B2 |
6699228 | Chmielewski et al. | Mar 2004 | B1 |
6790798 | Suzuki et al. | Sep 2004 | B1 |
6825393 | Roe et al. | Nov 2004 | B2 |
6830800 | Curro | Dec 2004 | B2 |
6861571 | Roe et al. | Mar 2005 | B1 |
7087287 | Curro | Aug 2006 | B2 |
7371302 | Miyamoto et al. | May 2008 | B2 |
7569039 | Matsuda et al. | Aug 2009 | B2 |
7785309 | Van Gompel et al. | Aug 2010 | B2 |
7803244 | Siqueira | Sep 2010 | B2 |
7824594 | Qureshi | Nov 2010 | B2 |
7896641 | Qureshi | Mar 2011 | B2 |
8062572 | Qureshi | Nov 2011 | B2 |
8071990 | Bogner et al. | Dec 2011 | B2 |
8118801 | Macura | Feb 2012 | B2 |
8186296 | Brown et al. | May 2012 | B2 |
8257333 | Hancock-cooke et al. | Sep 2012 | B2 |
8395012 | Bacon et al. | Mar 2013 | B2 |
8496638 | Lord et al. | Jul 2013 | B2 |
8608720 | Erickson et al. | Dec 2013 | B2 |
8662706 | Komatsu | Mar 2014 | B2 |
8715464 | Young et al. | May 2014 | B2 |
8778127 | Schneider et al. | Jul 2014 | B2 |
8936697 | Scharpf et al. | Jan 2015 | B2 |
8950912 | Chen | Feb 2015 | B2 |
8956493 | Tenorio et al. | Feb 2015 | B2 |
9005392 | Schneider et al. | Apr 2015 | B2 |
9248054 | Brown et al. | Feb 2016 | B2 |
9265672 | Brown et al. | Feb 2016 | B2 |
9283124 | Hashimoto et al. | Mar 2016 | B2 |
9295590 | Brown et al. | Mar 2016 | B2 |
9429304 | Masuda et al. | Aug 2016 | B2 |
9464777 | Boyce | Oct 2016 | B2 |
9468569 | Hancock-cooke et al. | Oct 2016 | B2 |
9687580 | Schonbeck | Jun 2017 | B2 |
9913871 | Ellington et al. | Mar 2018 | B2 |
9962297 | Eckstein | May 2018 | B2 |
10052237 | Galie | Aug 2018 | B2 |
10159610 | Barnes | Dec 2018 | B2 |
10470943 | Jang | Nov 2019 | B2 |
11096836 | Bishop et al. | Aug 2021 | B2 |
11369526 | Matsui et al. | Jun 2022 | B2 |
11554055 | Bishop et al. | Jan 2023 | B2 |
20020064639 | Rearick et al. | May 2002 | A1 |
20020129740 | Kato et al. | Sep 2002 | A1 |
20020165170 | Wilson et al. | Nov 2002 | A1 |
20020173768 | Elsberg | Nov 2002 | A1 |
20030121380 | Cowell | Jul 2003 | A1 |
20030154904 | Klofta et al. | Aug 2003 | A1 |
20030187414 | Reiss et al. | Oct 2003 | A1 |
20030233082 | Kline | Dec 2003 | A1 |
20040097895 | Busam et al. | May 2004 | A1 |
20040122413 | Roessler | Jun 2004 | A1 |
20040158212 | Ponomarenko et al. | Aug 2004 | A1 |
20040196734 | Mehta et al. | Oct 2004 | A1 |
20050096616 | Arora et al. | May 2005 | A1 |
20050107764 | Matsuda et al. | May 2005 | A1 |
20050171498 | Reiss et al. | Aug 2005 | A1 |
20050217812 | Stoyanov et al. | Oct 2005 | A1 |
20060094320 | Chen et al. | May 2006 | A1 |
20060129115 | Visscher | Jun 2006 | A1 |
20060167434 | Ashton et al. | Jul 2006 | A1 |
20060196796 | Motsch et al. | Sep 2006 | A1 |
20060264862 | Yoshida et al. | Nov 2006 | A1 |
20060264863 | Blyth | Nov 2006 | A1 |
20060287637 | Lam | Dec 2006 | A1 |
20070032772 | Ehrnsperger | Feb 2007 | A1 |
20070078427 | Raycheck | Apr 2007 | A1 |
20070093769 | Kline | Apr 2007 | A1 |
20070149937 | Reiss et al. | Jun 2007 | A1 |
20070219521 | Hird | Sep 2007 | A1 |
20070287980 | Kline et al. | Dec 2007 | A1 |
20080099360 | Smith | May 2008 | A1 |
20080250681 | Jackson | Oct 2008 | A1 |
20080269704 | Hansson et al. | Oct 2008 | A1 |
20090149827 | Mlinar et al. | Jun 2009 | A1 |
20090155325 | Magin et al. | Jun 2009 | A1 |
20090157034 | Mattingly et al. | Jun 2009 | A1 |
20090204090 | Dennis et al. | Aug 2009 | A1 |
20090294044 | Gill | Dec 2009 | A1 |
20090312730 | LeVon et al. | Dec 2009 | A1 |
20100181223 | Warren | Jul 2010 | A1 |
20100221496 | De Jong | Sep 2010 | A1 |
20100230857 | Muhs et al. | Sep 2010 | A1 |
20100305532 | Ashton et al. | Dec 2010 | A1 |
20110040273 | Sablone | Feb 2011 | A1 |
20110046594 | Sablone | Feb 2011 | A1 |
20110073513 | Weisman et al. | Mar 2011 | A1 |
20110139657 | Hird | Jun 2011 | A1 |
20110139658 | Hird | Jun 2011 | A1 |
20110139659 | Hird | Jun 2011 | A1 |
20110139662 | Hird | Jun 2011 | A1 |
20110152812 | Hird | Jun 2011 | A1 |
20110215017 | Coulter et al. | Sep 2011 | A1 |
20110315585 | Meyer et al. | Dec 2011 | A1 |
20110319849 | Collias et al. | Dec 2011 | A1 |
20120061015 | LeVon et al. | Mar 2012 | A1 |
20120061016 | LeVon et al. | Mar 2012 | A1 |
20120143165 | Macura | Jun 2012 | A1 |
20120206265 | Solazzo et al. | Aug 2012 | A1 |
20120276341 | Lake | Nov 2012 | A1 |
20120277703 | Rhein | Nov 2012 | A1 |
20120277713 | Raycheck | Nov 2012 | A1 |
20130018339 | Kaiser et al. | Jan 2013 | A1 |
20130072887 | LeVon et al. | Mar 2013 | A1 |
20130126071 | Shin et al. | May 2013 | A1 |
20130211356 | Nishikawa et al. | Aug 2013 | A1 |
20130255861 | Schneider | Oct 2013 | A1 |
20130255862 | Schneider et al. | Oct 2013 | A1 |
20130255863 | LeVon et al. | Oct 2013 | A1 |
20130255864 | Schneider et al. | Oct 2013 | A1 |
20130255865 | Brown et al. | Oct 2013 | A1 |
20130274697 | Godlewski | Oct 2013 | A1 |
20130306226 | Zink | Nov 2013 | A1 |
20130313149 | Hird et al. | Nov 2013 | A1 |
20140005621 | Roe | Jan 2014 | A1 |
20140039422 | Scott | Feb 2014 | A1 |
20140079919 | Bunnelle | Mar 2014 | A1 |
20140093697 | Perry et al. | Apr 2014 | A1 |
20140148773 | Brown | May 2014 | A1 |
20140272370 | Broyles | Sep 2014 | A1 |
20140276512 | Cheng et al. | Sep 2014 | A1 |
20140352090 | Schuchter | Dec 2014 | A1 |
20140371700 | Patel et al. | Dec 2014 | A1 |
20150283003 | Rosati | Oct 2015 | A1 |
20150366724 | Fukuzawa et al. | Dec 2015 | A1 |
20150374561 | Hubbard, Jr. et al. | Dec 2015 | A1 |
20160101003 | Jennewein et al. | Apr 2016 | A1 |
20160206774 | Hird | Jul 2016 | A1 |
20160263760 | Schneider et al. | Sep 2016 | A1 |
20160270973 | Surushe et al. | Sep 2016 | A1 |
20160270979 | Raycheck et al. | Sep 2016 | A1 |
20160270980 | Raycheck et al. | Sep 2016 | A1 |
20160350828 | Schmidt et al. | Dec 2016 | A1 |
20170000658 | Chatterjee | Jan 2017 | A1 |
20170056253 | Chester et al. | Mar 2017 | A1 |
20170246052 | Ludwig | Aug 2017 | A1 |
20170252229 | Bonelli | Sep 2017 | A1 |
20170290712 | Findley | Oct 2017 | A1 |
20170296399 | Kline et al. | Oct 2017 | A1 |
20170313034 | Takeda et al. | Nov 2017 | A1 |
20170319399 | Desai et al. | Nov 2017 | A1 |
20170333261 | Chatterjee | Nov 2017 | A1 |
20170333262 | Chatterjee | Nov 2017 | A1 |
20180042777 | Dalal | Feb 2018 | A1 |
20180042778 | Lenser et al. | Feb 2018 | A1 |
20180042779 | Lenser et al. | Feb 2018 | A1 |
20180042780 | Sells | Feb 2018 | A1 |
20180042785 | Dalal | Feb 2018 | A1 |
20180042786 | Mueller et al. | Feb 2018 | A1 |
20180042787 | Lenser et al. | Feb 2018 | A1 |
20180055698 | Bishop et al. | Mar 2018 | A1 |
20180140469 | Kane et al. | May 2018 | A1 |
20180169964 | Schneider | Jun 2018 | A1 |
20180199743 | Kajak | Jul 2018 | A1 |
20180250171 | Bäck et al. | Sep 2018 | A1 |
20180256419 | Mcgilloway et al. | Sep 2018 | A1 |
20180271716 | Dalal | Sep 2018 | A1 |
20180360739 | Lorenz et al. | Dec 2018 | A1 |
20180369091 | Avshalomov | Dec 2018 | A1 |
20190010258 | Mitchell et al. | Jan 2019 | A1 |
20190070042 | Beck | Mar 2019 | A1 |
20190083325 | Mccormick | Mar 2019 | A1 |
20190083331 | Barnes | Mar 2019 | A1 |
20190175417 | Graham | Jun 2019 | A1 |
20200038256 | Jang et al. | Feb 2020 | A1 |
20200054496 | Mccormick et al. | Feb 2020 | A1 |
20200054497 | Mccormick et al. | Feb 2020 | A1 |
20200078230 | Mccormick et al. | Mar 2020 | A1 |
20200093652 | Mccormick et al. | Mar 2020 | A1 |
20200093653 | Mccormick et al. | Mar 2020 | A1 |
20200121519 | Mccormick et al. | Apr 2020 | A1 |
20200155372 | Kleuskens et al. | May 2020 | A1 |
20200163812 | Zuleger et al. | May 2020 | A1 |
20200197560 | Buchalter | Jun 2020 | A1 |
20200375815 | Raycheck et al. | Dec 2020 | A1 |
20200375816 | Mccormick et al. | Dec 2020 | A1 |
20210282981 | Matsui et al. | Sep 2021 | A1 |
20210346211 | Kilbacak et al. | Nov 2021 | A1 |
20210346213 | Kilbacak et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1144472 | Mar 1997 | CN |
1224606 | Aug 1999 | CN |
1328438 | Dec 2001 | CN |
101327156 | Dec 2008 | CN |
101389237 | Mar 2009 | CN |
106038076 | Oct 2016 | CN |
106456410 | Feb 2017 | CN |
107405227 | Nov 2017 | CN |
107809989 | Mar 2018 | CN |
107820419 | Mar 2018 | CN |
108472171 | Aug 2018 | CN |
109069313 | Dec 2018 | CN |
109069315 | Dec 2018 | CN |
109843242 | Jun 2019 | CN |
114025727 | Feb 2022 | CN |
2260813 | Jul 2015 | EP |
S63211303 | Sep 1988 | JP |
2001095838 | Apr 2001 | JP |
2002232009 | Aug 2002 | JP |
2002541918 | Dec 2002 | JP |
2008074327 | Apr 2008 | JP |
2008113684 | May 2008 | JP |
2008113685 | May 2008 | JP |
2010269029 | Dec 2010 | JP |
2011010822 | Jan 2011 | JP |
2011062226 | Mar 2011 | JP |
2012243462 | Dec 2012 | JP |
2013164937 | Aug 2013 | JP |
2013168434 | Aug 2013 | JP |
2013180171 | Sep 2013 | JP |
2016112341 | Jun 2016 | JP |
2016182169 | Oct 2016 | JP |
2017060635 | Mar 2017 | JP |
2020000531 | Jan 2020 | JP |
24771 | Aug 2002 | RU |
9511650 | May 1995 | WO |
9524173 | Sep 1995 | WO |
9720532 | Jun 1997 | WO |
2007106929 | Sep 2007 | WO |
2009012284 | Jan 2009 | WO |
2013002691 | Jan 2013 | WO |
2013173291 | Nov 2013 | WO |
2014103464 | Jul 2014 | WO |
2016023016 | Feb 2016 | WO |
2017118612 | Jul 2017 | WO |
2017124092 | Jul 2017 | WO |
2018089088 | May 2018 | WO |
2020004476 | Jan 2020 | WO |
2020004499 | Jan 2020 | WO |
2020115916 | Jun 2020 | WO |
2020116554 | Jun 2020 | WO |
2020116592 | Jun 2020 | WO |
2020116595 | Jun 2020 | WO |
Entry |
---|
All Office Actions; U.S. Appl. No. 17/242,376, filed Apr. 28, 2021. |
All Office Actions, U.S. Appl. No. 16/864,292. |
All Office Actions, U.S. Appl. No. 17/029,211. |
All Office Actions, U.S. Appl. No. 17/029,486. |
International Search Report and Written Opinion; Application Ser. No. PCT /US2020/030894; dated Jul. 30, 2020, 14 pages. |
International Search Report and Written Opinion; Application Ser. No. PCT/US2020/070568; dated Dec. 8, 2020, 14 pages. |
Unpublished U.S. Appl. No. 17/029,211, filed Sep. 23, 2020, to first inventor et. al. |
Unpublished U.S. Appl. No. 17/029,486, filed Sep. 23, 2020, to first inventor et. al. |
All Office Actions for U.S. Appl. No. 16/885,622. |
PCT International Search Report, dated Jul. 27, 2020, 13 pages. |
“Surround.” Merriam-Webster.com Dictionary, Merriam-Webster, https ://www .merriam-webster.com/dictionary/surround. Accessed Jun. 15, 2021, 8 Pages. |
Epsilon, Water Soluble Dyes/Solvent Green 7 and Corresponding Material Safety Data Sheet , Jul. 15, 2013, 5 pages. |
All Office Actions; U.S. Appl. No. 18/126,534, filed Mar. 27, 2023. |
Unpublished U.S. Appl. No. 18/126,534, filed Mar. 27, 2023, to Tanner Laurie Williams et. al. |
All Office Actions; U.S. Appl. No. 18/493,083, filed on Oct. 24, 2023. |
U.S. Appl. No. 18/493,083, filed on Oct. 24, 2023, to Jeromy Thomas Raycheck et al. |
EP Search Report and Opinion for 23199743.8 dated Dec. 20, 2023, 09 pages. |
Number | Date | Country | |
---|---|---|---|
20200375807 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62930808 | Nov 2019 | US | |
62930181 | Nov 2019 | US | |
62930198 | Nov 2019 | US | |
62855001 | May 2019 | US |