1. Technical Field
The present disclosure relates generally to treating a wound with negative or reduced pressure. In particular, the disclosure relates to a dressing for transporting fluids from a wound site to a fluid port in a remote location, and also a method for applying the dressing.
2. Background of Related Art
Various techniques to promote healing of a wound involve providing suction to the wound. For example, a vacuum source may serve to carry wound exudates away from the wound, which may otherwise harbor bacteria that inhibit the body's natural healing process. One particular technique for promoting the body's natural healing process may be described as negative pressure wound therapy (NPWT). This technique involves the application of a reduced pressure, e.g. sub-atmospheric, to a localized reservoir over a wound. Sub-atmospheric pressure has been found to assist in closing the wound by promoting blood flow to the area, thereby stimulating the formation of granulation tissue and the migration of healthy tissue over the wound. This technique has proven effective for chronic or non-healing wounds, but has also been used for other purposes such as post-operative wound care.
The general NPWT protocol provides for covering the wound with a flexible cover layer such as a polymeric film, for example, to establish a vacuum reservoir over the wound where a reduced pressure may be applied by individual or cyclic evacuation procedures. To allow the reduced pressure to be maintained over time, the cover layer may include an adhesive periphery that forms a substantially fluid tight seal with the healthy skin surrounding the wound.
Although some procedures may employ a micro-pump contained within the vacuum reservoir, most NPWT treatments apply a reduced pressure using an external vacuum source. Fluid communication must therefore be established between the reservoir and the vacuum source. To this end, a fluid port is often coupled to the cover layer to provide an interface for a fluid conduit extending from the external vacuum source. The fluid port typically exhibits a degree of rigidity, which provides for a convenient reception of the fluid conduit. The fluid port also may project somewhat from the surrounding skin, and may thus tend to cause discomfort for patients as the fluid port is inadvertently pressed into the wound. This tendency is particularly evident when a fluid port is used on wounds on a patient's back, heel or other locations where pressure points develop as the patient reclines or sits. Accordingly, it may be advantageous to position the fluid port at a location remote from the wound, and to draw fluid from the wound to the remotely positioned fluid port.
A method of bridging from a wound dressing to a wound port for negative pressure wound therapy includes positioning an elongate wick between a wound and a remote location with respect to the wound wherein the elongate wick includes a three-dimensional spacer fabric. The three-dimensional spacer fabric defines an upper fabric layer and a lower fabric layer, wherein the upper fabric layer and the lower fabric layer are spaced from one another by an intermediate layer of pile threads. The elongate wick is covered with a flexible wick cover such that an enclosure is formed around the elongate wick. A substantially fluid-tight seal is established between a first end of the elongate wick cover and the wound dressing such that a reservoir is defined over the wound in which a negative pressure may be maintained. A substantially fluid-tight seal is established between a second end of the elongate wick cover and at least one of a fluid port, a fluid conduit and a source of negative pressure.
The method may also include positioning a skin covering between the wound and the remote location to substantially minimize contact of fluids with a skin surface adjacent the wound. The elongate skin covering may define a width of about 2 inches, the elongate wick may define a width of about 1 inch, and the wick cover may define a width of about 3 inches.
The method may also include the step of applying heat to the spacer fabric to conform the spacer fabric to a particular body contour. Also, the method may include the step of drawing fluids through the elongate wick.
According to another aspect of the disclosure, a composite wound dressing apparatus includes a cover layer for defining a reservoir over a wound in which a negative pressure may be maintained by forming a substantially fluid-tight seal around the wound. The cover layer includes an aperture therein through which fluids may be extracted from the reservoir. An elongate wick includes a first end in fluid communication with the reservoir through the aperture in the cover layer, and a second end disposed remotely with respect to the aperture in the cover layer. The elongate wick includes a three-dimensional spacer fabric. A flexible wick cover extends over the elongate wick. The wick cover has a first end configured for forming a substantially fluid tight seal over the aperture in the cover layer, and a second end including an aperture therein through which fluids may be extracted from the elongate wick. A fluid port is coupled to the wick cover and in fluid communication with the second end of the elongate wick through the aperture in the wick cover.
The apparatus may include a skin covering positioned beneath at least a portion of the elongate wick to substantially minimize contact of fluids with a skin surface adjacent the wound. The skin covering may define a first width, the wick cover may define a second width and the elongate wick may define a third width, wherein the third width of the wick cover is substantially greater than the first width of the skin covering. The first width may be about 2 inches, the second width may be about one inch, and the third width may be about 3 inches.
The fluid port may be configured to receive a fluid conduit, and may include a flange coupled to an underside of the wick cover. The elongate wick may be treated with an antimicrobial agent, and the antimicrobial agent may be polyhexamethylene biguanide.
According to another aspect of the disclosure, a negative pressure wound therapy apparatus includes a cover layer for defining a reservoir over a wound in which a negative pressure may be maintained by forming a substantially fluid-tight seal around the wound. The cover layer includes an aperture therein through which fluids may be extracted from the reservoir. The apparatus also includes an elongate wick having a first end and a second end, wherein the first end is in fluid communication with the reservoir through the aperture in the cover layer, and the second end is disposed remotely with respect to the aperture in the cover layer. The elongate wick includes a three-dimensional spacer fabric. Also, a flexible wick cover extends over the elongate wick and has a first end and a second end. The first end of the wick cover is configured for forming a substantially fluid tight seal over the aperture in the cover layer, and the second end includes an aperture through which fluids may be extracted from the elongate wick. A vacuum source is in fluid communication with the reservoir, and is suitable for generating the negative pressure in the reservoir.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
Referring initially to
Wound dressing 12 includes a contact layer 18 positioned in direct contact with the bed of wound “w” and may be formed from perforated film material. An appropriate perforated material permits the negative pressure applied to the reservoir to penetrate into the wound “w,” and also permits exudates to be drawn through the contact layer 18. Passage of wound fluid through the contact layer 18 is preferably unidirectional such that exudates do not flow back into the wound bed. Unidirectional flow may be encouraged by conical or directional apertures formed in the contact layer 18, or a lamination of materials having absorption properties differing from those of contact layer 18. A non-adherent material may be selected such that contact layer 18 does not tend to cling to the wound “w” or surrounding tissue when it is removed. One exemplary material that may be used as a contact layer 18 is sold under the trademark XEROFORM®, CURITY®, and VENTEX® by Tyco Healthcare Group LP (d/b/a Covidien).
Wound filler 20 is positioned in the wound “w” over the contact layer 18 and is intended to allow wound dressing 12 to absorb, capture and/or wick wound exudates. Wound filler 20 is cut to a shape that is conformable to the shape of wound “w,” and may be packed up to the level of healthy skin “s,” or alternatively, wound filler 20 may overfill the wound “w.” An absorbent material such as non-woven gauze, reticulated foam, or alginate fibers may be used for filler 20 to transfer any exudate that migrates through contact layer 18 away from the wound “w”. An antimicrobial dressing sold under the trademark KERLIX® AMD by Tyco Healthcare Group LP (d/b/a Covidien), may be suitable for use as filler 20.
Wound dressing 12 also includes a cover layer 22. Cover layer 22 may be positioned over the wound “w” to form a substantially fluid-tight seal with the surrounding skin “s.” Thus, cover layer 22 may act as both a microbial barrier to prevent contaminants from entering the wound “w,” and also a fluid barrier maintaining the integrity of vacuum reservoir 14. Cover layer 22 is preferably formed from a moisture vapor permeable membrane to promote the exchange of oxygen and moisture between the wound “w” and the atmosphere, and is preferably transparent permit a visual assessment of wound conditions without requiring removal of the cover layer 22. A membrane that provides a sufficient moisture vapor transmission rate (MVTR) is a transparent membrane sold under the trade name POLYSKIN® II by Tyco Healthcare Group LP (d/b/a Covidien). Cover layer 22 includes an aperture 24 therein, through which wound fluids and atmospheric gasses may be removed from the dressing 12 under the influence of a reduced pressure.
A fluid port 30 having a flange 34 may also be included in wound dressing 12 to facilitate connection of the wound dressing 12 to fluid conduit 36. The fluid port 30 may be configured as a rigid or flexible, low-profile component, and may be adapted to receive a fluid conduit 36 in a releasable and fluid-tight manner. An adhesive on the underside of flange 34 may provide a mechanism for affixing the fluid port 30 to the dressing 12, or alternatively the flange 34 may be positioned within reservoir 14 (
Fluid conduit 36 extends from the fluid port 30 to provide fluid communication between the reservoir 14 and collection canister 40. Any suitable conduit may be used for fluid conduit 36 including those fabricated from flexible elastomeric or polymeric materials. Fluid conduit 36 may connect components of the NPWT apparatus by conventional air-tight means such as friction fit, bayonet coupling, or barbed connectors. The conduit connections may be made permanent, or alternatively a quick-disconnect or other releasable means may be used to provide some adjustment flexibility to the apparatus 10.
Collection canister 40 may comprise any container suitable for containing wound fluids. For example, a rigid bottle may be used as shown or alternatively a flexible polymeric pouch may be appropriate. Collection canister 40 may contain an absorbent material to consolidate or contain the wound drainage or debris. For example, super absorbent polymers (SAP), silica gel, sodium polyacrylate, potassium polyacrylamide or related compounds may be provided within canister 40. At least a portion of canister 40 may be transparent to assist in evaluating the color, quality or quantity of wound exudates. A transparent canister may thus assist in determining the remaining capacity of the canister or when the canister should be replaced.
Leading from collection canister 40 is another section of fluid conduit 36 providing fluid communication with vacuum source 50. Vacuum source 50 generates or otherwise provides a negative pressure to the NPWT apparatus 10. Vacuum source 50 may comprise a peristaltic pump, a diaphragmatic pump or other mechanism that draws fluids, e.g. atmospheric gasses and wound exudates, from the reservoir 14 appropriate to stimulate healing of the wound “w.” Preferably, the vacuum source 50 is adapted to produce a sub-atmospheric pressure in the reservoir 14 ranging between about 20 mmHg and about 500 mm Hg, about 75 mm Hg to about 125 mm Hg, or, more preferably, between about 40 mm HG and 80 mm Hg.
Referring now to
To provide fluid communication, or a “bridge,” between aperture 24 and the remote location “r,” a bridging dressing 102 is positioned partially over the cover layer 22 and partially over the healthy skin “s” to span the distance between the wound “w” and the remote location “r.” The remote location “r” may be an area of the healthy skin “s” where the fluid port 30 or the associated fluid conduit 36 will tend not to irritate the wound “w” or to cause discomfort for the patient. If the wound “w” is located on the back of a patient, the remote location “r” may be, for example, at the chest or shoulder of the patient. This permits the patient to lie comfortably without placing undue pressure on the fluid port 30. To provide this functionality, a bridging dressing 102 may exhibit a length in the range from about 4 inches to about 12 inches, or more.
The bridging dressing 102 includes a skin covering such as film or lining 103, an elongate wick 104, a wick cover 106, and the fluid port 30. The film or lining 103 will be placed in contact with skin, typically, the healthy skin along a portion of the “bridge.” The lining or film 103 may be any suitable film adapted for patient contact, and may or may not have an adhesive backing for securement to the skin. The film or lining 103 may overlap a peripheral portion of the cover 22. The film or lining 103 may or may not be adhesively coated, and, in some embodiments is a thin, transparent, polymeric membrane such as polyurethane, elastomeric polyester or polyethylene.
The film or lining 103 may serve to impede direct contact between the elongate wick 104 and the healthy skin “s.” The film or lining 103 may exhibit a first width “w1” between two elongate edges that is substantially greater than a second width “w2” defined by the elongate wick 104. For instance, a lining 103 having a first width “w1” of about 2 inches may provide a sufficient area to permit an elongate wick 104 having a second width “w2” of about 1 inch to rest entirely within the confines of the lining 103. The film or lining 103 may be applied to the skin “s” either prior to the application of the elongate wick 104 and the wick cover 106, or concurrently therewith.
The elongate wick 104 defines a longitudinal direction therealong between a first end 110 positioned near the aperture 24 in the cover layer 22, and a second end 112 near the remote location “r.” The elongate wick 104 is adapted for longitudinal transport of fluids therethrough. The elongate wick 104 may promote capillary action in a longitudinal direction to provide for the longitudinal transport of fluids. A cross section of individual fibers, or an arrangement of fibers may serve to transport fluids longitudinally. The elongate wick 104 may be constructed from materials suitable for use as wound filler 20. The elongate wick 104 may, for example, be constructed of hydrophobic fibers, such as continuous synthetic fibers, arranged as an elongate rope or cord. The fibers may be crimped, bulked or lofted to influence the absorptive, wicking or comfort characteristics of the elongate wick 104. U.S. Provisional Application No. 61/188,370, filed Aug. 8, 2008, the entire content of which is hereby incorporated by reference, describes various such processes and arrangements for fibers, which may be employed to construct the elongate wick 104 or the filler 20.
The elongate wick 104 may also be constructed from a three-dimensional spacer fabric. As depicted in
This multi-layer arrangement offers a structural versatility, which permits the elongate wick 104 to conform to the needs of a particular patient or wound. The upright pile threads may exhibit a variety of different constructions in terms of surface structure, elasticity, diameter, length, position, number and orientation. For example, the upright pile threads may be arranged at a steep angle to provide cushioning in the event the upper and lower layers 104u and 104l are compressed together. Also, the upper and lower layers 104u and 104i may assume any particular weave or knit pattern. A ribbed knit pattern may provide flexibility in an appropriate direction to permit the wick to conform to highly contoured body areas. A variety of thicknesses, densities, compression, air permeability and softness characteristics may be provided by selecting an appropriate material and arrangement of the individual layers 104u, 104i and 104u.
An appropriate three-dimensional spacer fabric for use in elongate wick 104 is marketed under the trade name AirX—Comfort, by Tytex, Inc. of Woonsocket, R.I. In addition to offering a high MVTR and friction resistance, this product may be constructed to include a visco-elastic plastic yielding a heat-moldable structure. A heat-moldable wick 104 may be subjected to heat prior to positioning the wick 104 over lining 103 or healthy skin “s” to pre-conform the wick 104 to a particular body contour. Alternatively, visco-elastic plastics may be provided that are responsive to body heat to provide a conformable wick 104.
Alternatively, elongate wick 104 may be constructed from staple fibers, and may be arranged as woven or kitted fabrics. The fibers may be treated with antibacterial agents such as polyhexamethylene biguanide (PHMB) to decrease the incidence of infection, or other medicaments to promote healing of the wound “w.” The fibers may also include combinations of materials or chemicals to tailor the wick for specific fluid transport, comfort or other specific requirements.
The wick cover 106 has a first end 114 positioned near the aperture 24 in the cover layer and beyond the first end 110 of the elongate wick 104. A second end 116 of the wick cover 106 is positioned near the remote location “r.” The first end 114 of wick cover 106 forms a substantially fluid-tight seal with the cover layer 22, and the second end 116 of the wick cover 106 forms a substantially fluid tight seal with the lining 103 or the skin in the absence of the lining 103. The second end 114 of wick cover 106 may contact or be secured to lining 103 thereby assisting in securement of the lining relative to the subject and optionally forming an enclosure 105 between the wick cover 106 and the lining 103 substantially enclosing the a portion of the elongated wick 103 preventing exudate from contacting the skin. In the absence of a lining 103, an enclosure may be formed between the wick cover 106 and the skin “s.”
Wick cover 106 may be constructed from any of the materials used to fabricate cover layer 22. For example, wick cover 106 may be constructed of an adhesively coated, thin, transparent, polymeric membrane such as polyurethane, elastomeric polyester or polyethylene. The thickness of the wick cover 106 may, for example, be in the range of about 0.8 mils to about 1.2 mils. Thicknesses in this range may permit wick cover 106 to conform comfortably to the contours of a patient's skin surrounding the elongate wick 104, and accommodate evacuation cycles associated with an NPWT procedure. The adhesive coating should provide firm, continuous adhesion to the lining 103, the skin “s” and/or the cover layer 22 such that leak paths are not readily formed as reservoir 14 is subjected to the evacuation cycles of an NPWT treatment. As seen in
An aperture 118 in the wick cover 106 facilitates fluid communication between fluid port 30 and the elongate wick 104. The fluid port 30 forms a substantially fluid tight seal with the wick cover 106 near the aperture 118 and receives fluid conduit 36. Fluid conduit 36 may be coupled to a vacuum source 50 as described above with reference to
In this manner, fluids such as wound exudates and atmospheric gasses may be drawn from the reservoir 14, through the aperture 24 in the cover layer 22, and into the first end 110 of the elongate wick 104. The fluids are transported longitudinally through the wick 104 under the influence of the reduced pressure and the fluid transport properties of the wick 104 to the second end 112 of the wick 104 near the remote location “r.” The fluids may then be removed from the bridging dressing 102 through the fluid port 30. Since the wick 104 and the wick cover 106 are generally more flexible and conformable to the contours of the patient's body, and also to the movements of the patient than fluid port 30, these components of bridging dressing 102 are typically more comfortable positioned adjacent to the wound “w.”
Referring now to
Referring now to
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3367332 | Groves | Feb 1968 | A |
3486504 | Austin, Jr. | Dec 1969 | A |
3568675 | Harvey | Mar 1971 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3712298 | Snowdon et al. | Jan 1973 | A |
3809086 | Schachet et al. | May 1974 | A |
3874387 | Barbieri | Apr 1975 | A |
4080970 | Miller | Mar 1978 | A |
4112947 | Nehring | Sep 1978 | A |
4112949 | Rosenthal et al. | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4266545 | Moss | May 1981 | A |
4382441 | Svedman | May 1983 | A |
4524064 | Nambu | Jun 1985 | A |
4605399 | Weston et al. | Aug 1986 | A |
4743232 | Kruger | May 1988 | A |
4921492 | Schultz et al. | May 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4990137 | Graham | Feb 1991 | A |
4997438 | Nipper | Mar 1991 | A |
5071409 | Rosenberg | Dec 1991 | A |
5100395 | Rosenberg | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5106629 | Cartmell et al. | Apr 1992 | A |
5141503 | Sewell, Jr. | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5160322 | Scheremet et al. | Nov 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5178157 | Fanlo | Jan 1993 | A |
5180375 | Feibus | Jan 1993 | A |
5195977 | Pollitt | Mar 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5263922 | Sova et al. | Nov 1993 | A |
5437683 | Neumann et al. | Aug 1995 | A |
D364679 | Heaton et al. | Nov 1995 | S |
5484427 | Gibbons | Jan 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5536233 | Khouri | Jul 1996 | A |
5549584 | Gross | Aug 1996 | A |
5588958 | Cunningham et al. | Dec 1996 | A |
5599289 | Castellana | Feb 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5678564 | Lawrence et al. | Oct 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5733305 | Fleischmann | Mar 1998 | A |
5795584 | Totakura et al. | Aug 1998 | A |
5840049 | Tumey et al. | Nov 1998 | A |
5911222 | Lawrence et al. | Jun 1999 | A |
5944703 | Dixon et al. | Aug 1999 | A |
6010524 | Fleischmann | Jan 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6117111 | Fleischmann | Sep 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey et al. | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6203563 | Fernandez | Mar 2001 | B1 |
6261276 | Reitsma | Jul 2001 | B1 |
6325788 | McKay | Dec 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6348423 | Griffiths et al. | Feb 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6406447 | Thrash et al. | Jun 2002 | B1 |
6420622 | Johnston et al. | Jul 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6500112 | Khouri | Dec 2002 | B1 |
D469175 | Hall et al. | Jan 2003 | S |
D469176 | Hall et al. | Jan 2003 | S |
6520982 | Boynton et al. | Feb 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
D475134 | Randolph | May 2003 | S |
6557704 | Randolph | May 2003 | B1 |
D478659 | Hall et al. | Aug 2003 | S |
6607495 | Skalak et al. | Aug 2003 | B1 |
6626891 | Ohmstede | Sep 2003 | B2 |
6648862 | Watson | Nov 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
D488558 | Hall | Apr 2004 | S |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk, Jr. et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6800074 | Henley et al. | Oct 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6887228 | McKay | May 2005 | B2 |
6887263 | Bleam et al. | May 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6942633 | Odland | Sep 2005 | B2 |
6942634 | Odland | Sep 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6960181 | Stevens | Nov 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
D515701 | Horhota et al. | Feb 2006 | S |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7037254 | O'Connor et al. | May 2006 | B2 |
7052167 | Vanderschuit | May 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7117869 | Heaton et al. | Oct 2006 | B2 |
7128719 | Rosenberg | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7144390 | Hannigan et al. | Dec 2006 | B1 |
7169151 | Lytinas | Jan 2007 | B1 |
7182758 | McCraw | Feb 2007 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7198046 | Argenta et al. | Apr 2007 | B1 |
7214202 | Vogel et al. | May 2007 | B1 |
7216651 | Argenta et al. | May 2007 | B2 |
D544092 | Lewis | Jun 2007 | S |
7273054 | Heaton et al. | Sep 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7279612 | Heaton et al. | Oct 2007 | B1 |
7316672 | Hunt et al. | Jan 2008 | B1 |
D565177 | Locke et al. | Mar 2008 | S |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7351250 | Zamierowski | Apr 2008 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381211 | Zamierowski | Jun 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7396345 | Knighton et al. | Jul 2008 | B2 |
7410495 | Zamierowski | Aug 2008 | B2 |
7413570 | Zamierowski | Aug 2008 | B2 |
7413571 | Zamierowski | Aug 2008 | B2 |
7422576 | Boynton et al. | Sep 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7485112 | Karpowicz et al. | Feb 2009 | B2 |
7503910 | Adahan | Mar 2009 | B2 |
7531711 | Sigurjonsson et al. | May 2009 | B2 |
7534927 | Lockwood et al. | May 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7625362 | Boehringer et al. | Dec 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7651484 | Heaton et al. | Jan 2010 | B2 |
7670323 | Hunt et al. | Mar 2010 | B2 |
7678102 | Heaton | Mar 2010 | B1 |
7686785 | Boehringer et al. | Mar 2010 | B2 |
7794438 | Henley et al. | Sep 2010 | B2 |
7838717 | Haggstrom et al. | Nov 2010 | B2 |
7862718 | Doyen et al. | Jan 2011 | B2 |
7880050 | Robinson et al. | Feb 2011 | B2 |
7942866 | Radl et al. | May 2011 | B2 |
8021347 | Vitaris et al. | Sep 2011 | B2 |
8083712 | Biggie et al. | Dec 2011 | B2 |
8133211 | Cavanaugh, II et al. | Mar 2012 | B2 |
8142419 | Heaton et al. | Mar 2012 | B2 |
8147468 | Barta et al. | Apr 2012 | B2 |
8148595 | Robinson et al. | Apr 2012 | B2 |
8152785 | Vitaris | Apr 2012 | B2 |
8158844 | McNeil | Apr 2012 | B2 |
8162907 | Heagle | Apr 2012 | B2 |
8168848 | Lockwood et al. | May 2012 | B2 |
8188331 | Barta et al. | May 2012 | B2 |
8202261 | Kazala, Jr. et al. | Jun 2012 | B2 |
8241261 | Randolph et al. | Aug 2012 | B2 |
8246606 | Stevenson et al. | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8267908 | Coulthard | Sep 2012 | B2 |
8298200 | Vess et al. | Oct 2012 | B2 |
8376972 | Fleischmann | Feb 2013 | B2 |
8382731 | Johannison | Feb 2013 | B2 |
8469915 | Johannison et al. | Jun 2013 | B2 |
8506554 | Adahan | Aug 2013 | B2 |
8545466 | Andresen et al. | Oct 2013 | B2 |
8734410 | Hall et al. | May 2014 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9033942 | Vess | May 2015 | B2 |
9227000 | Fink et al. | Jan 2016 | B2 |
9474654 | Heagle et al. | Oct 2016 | B2 |
20010020145 | Satterfield et al. | Sep 2001 | A1 |
20010031943 | Urie | Oct 2001 | A1 |
20010043943 | Coffey | Nov 2001 | A1 |
20020016577 | Ohmstede | Feb 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020151836 | Burden | Oct 2002 | A1 |
20030093041 | Risk, Jr. et al. | May 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212359 | Butler | Nov 2003 | A1 |
20030219469 | Johnson et al. | Nov 2003 | A1 |
20040006319 | Lina et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039415 | Zamierowski | Feb 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040093026 | Weidenhagen et al. | May 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040193218 | Butler | Sep 2004 | A1 |
20040241213 | Bray | Dec 2004 | A1 |
20040243073 | Lockwood et al. | Dec 2004 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050020955 | Sanders et al. | Jan 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050070858 | Lockwood et al. | Mar 2005 | A1 |
20050085795 | Lockwood et al. | Apr 2005 | A1 |
20050101940 | Radl et al. | May 2005 | A1 |
20050177190 | Zamierowski | Aug 2005 | A1 |
20050182445 | Zamierowski | Aug 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060015087 | Risk, Jr. et al. | Jan 2006 | A1 |
20060025727 | Boehringer et al. | Feb 2006 | A1 |
20060039742 | Cable, Jr. et al. | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20060100586 | Karpowicz et al. | May 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20070014837 | Johnson et al. | Jan 2007 | A1 |
20070021697 | Ginther et al. | Jan 2007 | A1 |
20070027414 | Hoffman et al. | Feb 2007 | A1 |
20070032754 | Walsh | Feb 2007 | A1 |
20070032755 | Walsh | Feb 2007 | A1 |
20070032778 | Heaton et al. | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070066946 | Haggstrom et al. | Mar 2007 | A1 |
20070078366 | Haggstrom et al. | Apr 2007 | A1 |
20080082035 | Evans | Apr 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080195017 | Robinson et al. | Aug 2008 | A1 |
20090012501 | Boehringer et al. | Jan 2009 | A1 |
20090124988 | Coulthard | May 2009 | A1 |
20090126103 | Dietrich et al. | May 2009 | A1 |
20090131892 | Karpowicz et al. | May 2009 | A1 |
20090157016 | Carmeli | Jun 2009 | A1 |
20090227968 | Vess | Sep 2009 | A1 |
20090227969 | Jaeb | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090264837 | Adahan | Oct 2009 | A1 |
20090293887 | Wilkes et al. | Dec 2009 | A1 |
20090299249 | Wilkes et al. | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299256 | Barta et al. | Dec 2009 | A1 |
20090299257 | Long et al. | Dec 2009 | A1 |
20090299303 | Seegert | Dec 2009 | A1 |
20090299307 | Barta et al. | Dec 2009 | A1 |
20090299308 | Kazala et al. | Dec 2009 | A1 |
20090299340 | Kazala et al. | Dec 2009 | A1 |
20090299341 | Kazala et al. | Dec 2009 | A1 |
20090299342 | Cavanaugh, II et al. | Dec 2009 | A1 |
20090312728 | Randolph et al. | Dec 2009 | A1 |
20100069850 | Fabo | Mar 2010 | A1 |
20100069885 | Stevenson et al. | Mar 2010 | A1 |
20100160901 | Hu et al. | Jun 2010 | A1 |
20110125113 | Adahan | May 2011 | A1 |
20110130712 | Topaz | Jun 2011 | A1 |
20120302976 | Locke et al. | Nov 2012 | A1 |
20150073358 | Jaeb et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
674837 | Jan 1997 | AU |
41 11 122 | Apr 1993 | DE |
295 04 378 | Oct 1995 | DE |
43 06 478 | Dec 2008 | DE |
0 020 662 | Jul 1984 | EP |
0 358 302 | Mar 1990 | EP |
0 392 640 | Jun 1995 | EP |
0 441 418 | Jul 1995 | EP |
0 777 504 | Oct 1998 | EP |
1 169 071 | Jan 2002 | EP |
0 751 757 | Feb 2002 | EP |
0 853 950 | Oct 2002 | EP |
1 487 389 | Dec 2004 | EP |
0 982 015 | Aug 2006 | EP |
1 905 465 | Jan 2010 | EP |
2 319 550 | May 2011 | EP |
1 578 477 | Sep 2011 | EP |
2 413 858 | Feb 2012 | EP |
1 660 000 | Oct 2012 | EP |
2 545 946 | Mar 2013 | EP |
2 490 637 | Jan 2014 | EP |
2 051 675 | Jun 2014 | EP |
1 549 756 | Mar 1977 | GB |
2 195 255 | Apr 1988 | GB |
2 235 877 | Mar 1991 | GB |
2 307 180 | Jun 2000 | GB |
2 336 546 | Jun 2000 | GB |
2 344 531 | Jun 2000 | GB |
1762940 | Jan 1989 | SU |
WO 8001139 | Jun 1980 | WO |
WO 8002182 | Oct 1980 | WO |
WO 8401904 | May 1984 | WO |
WO 8905133 | Jun 1989 | WO |
WO 9011795 | Oct 1991 | WO |
WO 9219313 | Nov 1992 | WO |
WO 9605873 | Feb 1996 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03101508 | Dec 2003 | WO |
WO 2005009488 | Feb 2005 | WO |
WO 2005016179 | Feb 2005 | WO |
WO 2005061025 | Jul 2005 | WO |
WO 2006015599 | Feb 2006 | WO |
WO 2007006306 | Jan 2007 | WO |
WO 2007016590 | Feb 2007 | WO |
WO 2007019038 | Feb 2007 | WO |
WO 2007041642 | Apr 2007 | WO |
WO 2007085396 | Aug 2007 | WO |
WO 2007092397 | Aug 2007 | WO |
WO 2007095180 | Aug 2007 | WO |
WO 2007106590 | Sep 2007 | WO |
WO 2007106591 | Sep 2007 | WO |
WO 2008008032 | Jan 2008 | WO |
WO 2008012278 | Jan 2008 | WO |
WO 2008027449 | Mar 2008 | WO |
WO 2008043067 | Apr 2008 | WO |
WO 2008100440 | Aug 2008 | WO |
WO 2008100446 | Aug 2008 | WO |
WO 2008131895 | Nov 2008 | WO |
WO 2008135997 | Nov 2008 | WO |
WO 2008141470 | Nov 2008 | WO |
WO 2009068665 | Jun 2009 | WO |
WO 2009086580 | Jul 2009 | WO |
WO 2009088925 | Jul 2009 | WO |
WO 2009111655 | Sep 2009 | WO |
WO 2009137194 | Nov 2009 | WO |
WO 2009140376 | Nov 2009 | WO |
WO 2009141820 | Nov 2009 | WO |
WO 2009145894 | Dec 2009 | WO |
WO 2010014177 | Feb 2010 | WO |
WO 2010033769 | Mar 2010 | WO |
WO 2010042240 | Apr 2010 | WO |
WO 2010051073 | May 2010 | WO |
WO 2010059730 | May 2010 | WO |
WO 2010078166 | Jul 2010 | WO |
Entry |
---|
US 6,216,701, 04/2001, Heaton et al. (withdrawn) |
US 7,186,244, 03/2007, Hunt et al. (withdrawn) |
B. M. Kostiuchenok, et al., “The Vacuum Effect in the Surgical Treatment of Purulent Wounds,” Russian Journal: Vestnik Khirurgii, Sep. 1986 (18-21). |
Y.N. Usupov, et al., “Active Wound Drainage,” Russian Journal: Vestnik Khirugii, Apr. 1987 (42-45). |
N.A. Bagautdinov (Kazan), “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” UDC 616-002.36 (94-96). |
Yu A. Davydov, et al., “Bacteriological and Cytological Assessment of Vacuum Therapy of Purulent Wounds”, Vestnik Khirurgii, Oct. 1988 (48-52). |
Göran Sandén, M.D., et al., “Staphylococcal Wound Infection in the Pig: Part II. Innoculation, Quantification of Bacteria, and Reproducibility,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989, (219-223). |
Arnljots, et al., “Irrigation Treatment in Split-thickness Skin Grafting of Intractable Leg Ulcers,” Scand J Plast Reconstr Surg 19: 211-213, 1985. |
Bagautdinov, N.A., “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” in Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye. Volkov et al. (Chuvashia State University, Cheboksary, USSR 1986) pp. 94-96 (with English translation). |
European Examination Report, re EPO Application No. 09839009.9, dated Oct. 12, 2016. |
Meyer, MD., et al., “In Surgery, Medicine and the Specialties A Manual of its Practical Application”, Bier's Hyperemic Treatment, Second Revised Edition, W.B. Saunders Company, 1909. |
Sandén, Göran MD., et al., “Staphylococcal Wound Infection in the Pig: Part II. Innoculation, Quantification of Bacteria, and Reproducibility,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989, (219-223). |
Jeter, Katherine F., et al., “Managing Draining Wounds and Fistulae: New and Established Methods”, Chronic Wound Care, 1990, pp. 240-246. |
Chariker, M. E. et al. (eds), “Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage,” Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Yu A. Davydov, et al., “Concepts for Clinical Biological Management of the Wound Process in the Treatment of Purulent Wounds Using Vacuum Therapy,” Vestnik Khirugii, Feb. 1991, 132-135). |
Chardack, et al., “Experimental studies on Synthetic Substitutes for Skin and Their Use in the Treatment of Burns,” vol. 155, No. 1 (128-136). |
Gorica Zivadinovic, et al., “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Conference Papers of the 5th Timok Medical Days, Majdanpek, 1986 (161-164). |
Ryosuke Fujimoro, M.D., et al., “Sponge Fixation Method for Treatment of Early Scars,” From the Department of Dermatology in the Faculty Medicine, Kyoto University, vol. 42, No. 4, Oct. 1968 (323-326). |
W. Fleischmann, et al., Vacuum Sealing: Indication, Technique and Results, Emr J Orthop Surg Tramatol (1995) 5:37-40. |
Sherry Stoll, “Energetic Remedies—Cupping: Healing Within a Vacuum,” https://www.suite101.com/article.cfm/energetic)remedies/74531, Apr. 13, 2005. |
Mulder, G.D, et al., “Clinicians' Pocket Guide to Chronic Wound Repair,” Wound Healing Publications Second Edition, 1991. |
Yu A. Davydov, et al., “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis,” Russian Journal: Vesnik Khirurgii, Sep. 1986 (66-70). |
W. Fleischmann, “Vacuum Sealing for Treatment of Problematical Wounds”, University Surgical Clinic and Polyclinic—Accident Surgery Department, WundForum Spezial—IHW 94. |
Björn, et al., “Irrigation Treatment in Split-thickness Skin Grafting of Intractable Leg Ulcers,” Scand J Plast Reconstr Surg 19: 211-213, 1985. |
Paul Svedman, et al., “Staphylococcal Wound Infection in the Pig: Part I. Course,” Annals of Plastic Surgery, vol. 23, No. 3, Sep. 1989 (212-218). |
Paul Svedman, “A Dressing Allowing Continuous Treatment of a Biosurface,” IRCS Medical Science: Biomedical Technology; Clinical Medicine; Surgery and Transplantation, 7, 221 (1979). |
Paul Svedman, “Irrigation Treatment of Leg Ulcers,” The Lancet, Sep. 3, 1983 (532-534). |
H. Teder, et al., “Continuous Wound Irrigation in the Pig,” Journal of Investigative Surgery, vol. 3 (399-407). |
P. Svedman, “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation,” Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986 (125-133). |
Yu A. Davydov, et al., “Vacuum Therapy in treatment of Acute Purulent Diseases of Soft Tissues and Purulent Wounds,” Vestnik Khirurgii, (Surgeon's Herald), Medicine Publishers, 1986. |
International Search Report Application No. PCT/US09/046987 dated Aug. 6, 2009. |
Number | Date | Country | |
---|---|---|---|
Parent | 12356246 | Jan 2009 | US |
Child | 14261296 | US |