Method and apparatus for broadcast services in a communication system

Information

  • Patent Grant
  • 8971790
  • Patent Number
    8,971,790
  • Date Filed
    Friday, August 28, 2009
    14 years ago
  • Date Issued
    Tuesday, March 3, 2015
    9 years ago
Abstract
A method, apparatus and system provide for efficient use of communication resources for providing broadcast services in a communication system. A receiver receives a first broadcast controller identification from a first base station, and a second broadcast controller identification from a second base station. A controller coupled to the receiver determines whether the first and second broadcast controller identifications are associated with use of a common set of broadcast parameters. A transmitter transmits a request for transmission of a new set of broadcast parameters when the first and second broadcast controller identifications are not associated with use of the common set of broadcast parameters. After receiving the new set of broadcast parameters, the receiver uses the new set of broadcast parameters for receiving broadcast services.
Description
FIELD

The present invention relates generally to the field of communications, and more particularly, to communications of broadcast services in a communication system.


BACKGROUND

In a wireless communication system, unnecessary and excessive transmissions by a user may cause interference for other users in addition to reducing the system capacity. The unnecessary and excessive transmission may be caused by requesting transmission of unnecessary data in the communication system. A system for broadcast application may require use of specific broadcast parameters. At a time before receiving the broadcast services, a mobile station may request transmission of such broadcast parameters from a serving base station. Such broadcast parameters may include the broadcast modulation format information, data rate information, encryption key information, coding information, broadcast channel frequency information and other similar type information. Several base stations may be controlled by a common broadcast controller. Therefore, as long as the mobile station is within the coverage areas of these base stations, the mobile station does not need to request retransmission of the broadcast parameters. However, the mobile station may not have a reliable way of determining whether a new base station uses the same or different broadcast controller when the mobile station moves to the coverage area of the new base station. As such, the mobile station may request transmission of broadcast parameters every time it moves to the coverage area of a new base station. Requesting and receiving the transmission of the broadcast parameters may interrupt the broadcast services played at the mobile station, and cause unnecessary and excessive transmissions in the communication system.


Therefore, there is a need for a method, apparatus and system for updating a mobile station broadcast parameters for broadcast services in a communication system.


SUMMARY

A method, apparatus and system provide for efficient use of communication resources for providing broadcast services in a communication system. A receiver receives a first broadcast controller identification from a first base station, and a second broadcast controller identification from a second base station. A controller coupled to the receiver determines whether the first and second broadcast controller identifications are associated with use of a common set of broadcast parameters. A transmitter transmits a request for transmission of a new set of broadcast parameters when the first and second broadcast controller identifications are not associated with use of the common set of broadcast parameters. After receiving the new set of broadcast parameters, the receiver uses the new set of broadcast parameters for receiving broadcast services.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:



FIG. 1 depicts a communication system capable of providing broadcast services in accordance with various aspects of the invention;



FIG. 2 depicts a flow chart of various steps that may be used for obtaining and updating broadcast parameters of a mobile station for broadcast services in accordance with various aspects of the invention;



FIG. 3 depicts a transmitter capable of operating in accordance with various aspects of the invention for broadcast services;



FIG. 4 depicts a receiver capable of operating in accordance with various aspects of the invention for broadcast services;



FIG. 5 depicts a transceiver system capable of operating in accordance with various aspects of the invention for broadcast services; and



FIG. 6 depicts at least one configuration of a communication system subnets and broadcast controllers for broadcast services.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Generally stated, a novel and improved system, method and apparatus provide for efficient use of communication resources for broadcast services in a communication system. A set of broadcast parameters is associated with one or more broadcast controllers in accordance with various aspects of the invention. While using a first broadcast controller through a first base station, obtaining a second broadcast controller identification from a second base station triggers a process for determining whether the first and second broadcast controller identifications are associated with a common set of broadcast parameters. Requesting transmission of a new set of broadcast parameters is triggered when the first and second broadcast controller identifications are not associated with a common set of broadcast parameters in accordance with various aspects of the invention. One or more exemplary embodiments described herein are set forth in the context of a digital wireless data communication system. While use within this context is advantageous, different embodiments of the invention may be incorporated in different environments or configurations. In general, the various systems described herein may be formed using software-controlled processors, integrated circuits, or discrete logic. The data, instructions, commands, information, signals, symbols, and chips that may be referenced throughout the application are advantageously represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or a combination thereof. In addition, the blocks shown in each block diagram may represent hardware or method steps.


More specifically, various embodiments of the invention may be incorporated in a wireless communication system operating in accordance with the code division multiple access (CDMA) technique which has been disclosed and described in various standards published by the Telecommunication Industry Association (TIA) and other standards organizations. Such standards include the TIA/EIA-95 standard, TIA/EIA-IS-2000 standard, IMT-2000 standard, UMTS and WCDMA standard, all incorporated by reference herein. A system for communication of data is also detailed in the “TIA/EIA/IS-856 cdma2000 High Rate Packet Data Air Interface Specification,” incorporated by reference herein. A copy of the standards may be obtained by accessing the world wide web at the address: http://www.3gpp2.org, or by writing to TIA, Standards and Technology Department, 2500 Wilson Boulevard, Arlington, Va. 22201, United States of America. The standard generally identified as UMTS standard, incorporated by reference herein, may be obtained by contacting 3GPP Support Office, 650 Route des Lucioles-Sophia Antipolis, Valbonne-France.



FIG. 1 illustrates a general block diagram of a communication system 100 capable of operating in accordance with any of the code division multiple access (CDMA) communication system standards while incorporating various embodiments of the invention. Communication system 100 may be for communications of voice, data or both. Generally, communication system 100 includes a base station 101 that provides communication links between a number of mobile stations, such as mobile stations 102-104, and between the mobile stations 102-104 and a public switch telephone and data network 105. The mobile stations in FIG. 1 may be referred to as data access terminals (AT) and the base station as a data access network (AN) without departing from the main scope and various advantages of the invention. Base station 101 may include a number of components, such as a base station controller and a base transceiver system. For simplicity, such components are not shown. Base station 101 may be in communication with other base stations, for example base station 160. A mobile switching center (not shown) may control various operating aspects of the communication system 100 and in relation to a back-haul 199 between network 105 and base stations 101 and 160.


Base station 101 communicates with each mobile station that is in its coverage area via a forward link signal transmitted from base station 101. The forward link signals targeted for mobile stations 102-104 may be summed to form a forward link signal 106. The forward link may carry a number of different forward link channels. Each of the mobile stations 102-104 receiving forward link signal 106 decodes the forward link signal 106 to extract the information that is targeted for its user. Base station 160 may also communicate with the mobile stations that are in its coverage area via a forward link signal transmitted from base station 160. Mobile stations 102-104 communicate with base stations 101 and 160 via corresponding reverse links. Each reverse link is maintained by a reverse link signal, such as reverse link signals 107-109 for respectively mobile stations 102-104. The reverse link signals 107-109, although may be targeted for one base station, may be received at other base stations.


Base stations 101 and 160 may be simultaneously communicating to a common mobile station. For example, mobile station 102 may be in close proximity of base stations 101 and 160, which can maintain communications with both base stations 101 and 160. On the forward link, base station 101 transmits on forward link signal 106, and base station 160 on the forward link signal 161. On the reverse link, mobile station 102 transmits on reverse link signal 107 to be received by both base stations 101 and 160. For transmitting a packet of data to mobile station 102, one of the base stations 101 and 160 may be selected to transmit the packet of data to mobile station 102. On the reverse link, both base stations 101 and 160 may attempt to decode the traffic data transmission from the mobile station 102. The data rate and power level of the reverse and forward links may be maintained in accordance with the channel condition between the base station and the mobile station.


The communication system 100 may also provide broadcast services to the mobile stations. Broadcast services may include receiving video or audio broadcast through base stations 101 and 160. In another example, the weather or traffic information may be broadcasted for the mobile stations. In a broadcast system, the same signal may be sent simultaneously to a large number of mobile stations. The broadcast signal may be encrypted. Therefore, the mobile stations may need to sign up for such services. The mobile station may need to obtain encryption information from the base station, before receiving the services. In addition, the mobile station may need to receive other broadcast parameters in order to receive the broadcast services. The broadcast parameters may include the broadcast channel identifier, broadcast modulation format information, data rate information, encryption key information, coding information, broadcast channel frequency information, encryption and decryption keys information, header compression information, and other similar type information. The broadcast services may be controlled by a broadcast controller. The broadcast controller provides the broadcast programming, transmission and control of the broadcast services. The broadcast controller also provides the aforementioned broadcast parameters to the authorized mobile stations. The broadcast controller may verify that the mobile station has signed up for the requested broadcast service before providing the broadcast parameters.


The communication system 100 may have one or more broadcast controllers. For example, in one embodiment, the base stations 101 and 160 may use a common broadcast controller 153. A common set of broadcast parameters is provided to base stations 101 and 160, and to the mobile stations within the coverage area of base stations 101 and 160. In accordance with various aspects of the invention, the base stations 101 and 160 transmit a broadcast controller identification. When a mobile station roams into the coverage area of a base station, the mobile station receives the broadcast controller identification. The broadcast controller identification may be transmitted by the base station periodically or transmitted based on a request by a mobile station. In another embodiment, the broadcast controller identification may be included with other information that a mobile station normally acquires from a base station when it roams into the coverage area of the new base station. Various interoperability standards, incorporated herein, provide one or more methods for exchange of information when a mobile station roams into a new coverage area.


In another embodiment, in communication system 100, the base station 101 may use broadcast controller 151, and the base station 160 may use a different broadcast controller 152. The broadcast parameters used by the broadcast controllers 151 and 152 may be different. The broadcast controller identifications received from base stations 101 and 160, therefore, are not associated with a common set of broadcast parameters. As such, when a mobile station roams into the coverage area of base station 160 from coverage area of base station 101, the mobile station needs to receive a new set of broadcast parameters associated with the broadcast controller 1152.


Referring to FIG. 2, a flow chart 270 outlines several steps that may be performed by a mobile station roaming from coverage area of a first base station to coverage area of a second base station to efficiently receive and change the broadcast parameters in order to receive broadcast services in communication system 100, in accordance with various aspects of the invention. At step 271, the mobile station, for example mobile station 102 roaming from coverage areas of base station 101 to base station 160, has received a first broadcast controller identification from a first base station, for example base station 101. At step 272, the mobile station receives a second broadcast controller identification from a second base station, for example base station 160. The first broadcast controller identification may be associated with the broadcast controller 151, and the second broadcast controller identification may be associated with the broadcast controller 152. At step 273, the mobile station may determine whether the first and the second broadcast controller identifications are associated with a common broadcast parameters. In one embodiment, the broadcast controllers 151 and 152 may be using the same parameters. In another embodiment, the first and second broadcast controller identifications may be associated to a common broadcast controller 153 that may be used for both the base stations 101 and 160. As such, at step 274, the mobile station continues to use the same broadcast parameters for receiving the broadcast services. At step 275, if the first and the second broadcast controller identifications are not associated with a common broadcast parameters, the mobile station requests transmission of a new set of broadcast parameters from the second broadcast controller, for example broadcast controller 152. The transmission of the parameters may take place by the second base station, for example base station 160. At step 276, the mobile station receives the new set of broadcast parameters and continues to receive broadcast services using the new set of broadcast parameters.



FIG. 3 illustrates a block diagram of a transmitter 300 for transmitting the reverse and forward link signals. The transmitter 300 may be used for transmission of fundamental channels, control channels, supplemental channels, and broadcast channels. The broadcast channel data for transmission are input to a modulator 301 for modulation. The modulation may be according to any of the commonly known modulation techniques such as QAM, PSK or BPSK. Before modulation, the broadcast channel data for transmission may pass through one or more layers of coding. The modulation data rate may be selected by a data rate and power level selector 303. The data rate selection may be based on feedback information received from a destination or may be fixed for the broadcast channel. In case of a feedback, the data rate very often is based on the channel condition, among other considered factors. The data rate and power level selector 303 accordingly selects the data rate in modulator 301. The output of modulator 301 passes through a signal spreading operation and amplified in a block 302 for transmission from an antenna 304. The data rate and power level selector 303 also selects a power level for the amplification level of the transmitted signal. The combination of the selected data rate and the power level allows proper decoding of the transmitted data at the receiving destination. A pilot signal is also generated in a block 307. The pilot signal is amplified to an appropriate level in block 307. The pilot signal power level may be in accordance with the channel condition at the receiving destination. The pilot signal may be combined with the channel signal in a combiner 308. The combined signal may be amplified in an amplifier 309 and transmitted from antenna 304. The antenna 304 may be in any number of combinations including antenna arrays and multiple input multiple output configurations. The selected modulation, data rate and the coding technique for transmission of broadcast channel data may be in accordance with the broadcast parameters set forth by the broadcast controller. For example, if the base station 101, incorporating transmitter 300, is transmitting the broadcast channel and the broadcast controller 151 is controlling the broadcast information, the broadcast parameters of the broadcast controller 151 are used in transmitter 300 for transmission of broadcast channel. Therefore, the selected modulation, data rate and the coding technique may be three of the broadcast parameters that need to be communicated to the mobile station in the set of broadcast parameters.



FIG. 4 illustrates a block diagram of a receiver 200 used for processing and demodulating the received CDMA signal while operating in accordance with various aspects of the invention. Receiver 200 may be used for decoding the information on the reverse and forward links signals. Receiver 200 may be used for decoding information on the fundamental channel, control channel, supplemental channels, and the broadcast channels. Received (Rx) samples may be stored in RAM 204. Receive samples are generated by a radio frequency/intermediate frequency (RF/IF) system 290 and an antenna system 292. The RF/IF system 290 and antenna system 292 may include one or more components for receiving multiple signals and RF/IF processing of the received signals for taking advantage of the receive diversity gain. Multiple received signals propagated through different propagation paths may be from a common source. Antenna system 292 receives the RF signals, and passes the RF signals to RF/IF system 290. RF/IF system 290 may be any conventional RF/IF receiver. The received RF signals are filtered, down-converted and digitized to form RX samples at base band frequencies. The samples are supplied to a multiplexer (mux) 252. The output of mux 252 is supplied to a searcher unit 206 and finger elements 208. A control system 210 is coupled thereto. A combiner 212 couples a decoder 214 to finger elements 208. Control system 210 may be a microprocessor controlled by software, and may be located on the same integrated circuit or on a separate integrated circuit. The decoding function in decoder 214 may be in accordance with a turbo decoder or any other suitable decoding algorithms. The signal transmitted from a source may be encoded with several layers of codes. As such, the decoder 214 decodes the received samples in accordance with such codes. The decoder 214 may perform decoding function in accordance with the coding information received in the broadcast parameters.


During operation, received samples are supplied to mux 252. Mux 252 supplies the samples to searcher unit 206 and finger elements 208. Control unit 210 configures finger elements 208 to perform demodulation and despreading of the received signal at different time offsets based on search results from searcher unit 206. The results of the demodulation are combined and passed to decoder 214. The demodulation function may be performed in accordance with the modulation information received in the broadcast parameters. Decoder 214 decodes the data and outputs the decoded data. Despreading of the channels is performed by multiplying the received samples with the complex conjugate of the PN sequence and assigned Walsh function at a single timing hypothesis and digitally filtering the resulting samples, often with an integrate and dump accumulator circuit (not shown). Such a technique is commonly known in the art. Receiver 200 may be used in a receiver portion of base stations 101 and 160 for processing the received reverse link signals from the mobile stations, and in a receiver portion of any of the mobile stations for processing the received forward link signals.



FIG. 5 depicts a general diagram of a transceiver system 500 for incorporating receiver 200 and transmitter 300 for maintaining a communication link with a destination, including receiving broadcast channels. The transceiver 500 may be incorporated in a mobile station or a base station. A processor 401 may be coupled to receiver 200 and transmitter 300 to process the received and transmitted data. Various aspects of the receiver 200 and transmitter 300 may be common, even though receiver 200 and transmitter 300 are shown separately. In one aspect, receiver 200 and transmitter 300 may share a common local oscillator and a common antenna system for RF/IF receiving and transmitting. Transmitter 300 receives the data for transmission on input 405. Transmit data processing block 403 prepares the data for transmission on a transmit channel. If the transmit channel is a broadcast channel, the processing of data is in accordance with the broadcast parameters used by the transceiver 500. Received data, after being decoded in decoder 214, are received at processor 401 at an input 404. Received data are processed in received data processing block 402 in processor 401. If the received channel is a broadcast channel, the processing of the received broadcast data is in accordance with the broadcast parameters used by the transmitter for transmitting the broadcast channel. Various operations of processor 401 may be integrated in a single or multiple processing units. The transceiver 500 may be connected to another device. The transceiver 500 may be an integral part of the device. The device may be a computer or operates similar to a computer. The device may be connected to a data network, such as Internet. In case of incorporating the transceiver 500 in a base station, the base station through several connections may be connected to a network, such as Internet.


The processing of the received data generally includes checking for error in the received packets of data. For example, if a received packet of data has error at an unacceptable level, the received data processing block 402 sends an instruction to transmit data processing block 403 for making a request for retransmission of the packet of data. The request is transmitted on a transmit channel. However, for the broadcast channel, the receiver operation may not include a request for retransmission. The broadcast service may include sending video from the base station and playing the same video at the mobile station. The broadcast channel data may be transmitted in a block of data at a time. As such, the receive data storage block 480 may accumulate data received in each frame of data to reconstruct the block of data for the playing the video of the broadcast services at the mobile station.


A broadcast controller, such as any of the broadcast controllers 151, 152 and 153, may control broadcast services of a large number of base stations in a communication system. A set of base stations may form a subnet of base stations. The base station may transmit a subnet identifier to the mobile stations. The subnet identifier identifies the subnet. All base stations in a subnet may be served by the same broadcast controller. The subnet identification sent from each base station in a subnet may indicate that they belong to a common subnet in accordance with various aspects of the invention. As such, when the mobile station is roaming among the base stations of a subnet, the mobile station uses the same broadcast parameters for broadcast services. In accordance with various aspects of the invention, the mobile station determines, while referring to FIG. 2, at step 273, whether the first and second base stations belong to a common subnet having a common broadcast controller, and hence a common broadcast controller identification and common broadcast parameters. As such, when the first and second base stations belong to a common subnet, the mobile station uses the same broadcast parameters for broadcast services. When the first and second base stations belong to different subnets, at steps 275 and 296, the mobile station may request and receive a new set of broadcast parameters.


Moreover, several subnets may be controlled by a common broadcast controller, in another exemplary embodiment. Referring to FIG. 6, an exemplary communication system subnets configuration 600 is shown. The broadcast controller 610 may control the broadcast services of all the base stations in the subnet 601 and subnet 602. The broadcast controller 620 may control the broadcast services of all the base stations in the subnet 603. As such, when the mobile station determines that the base station belongs to different subnets, the mobile station and/or base station determines whether the mobile station needs a new set of broadcast parameters. The communication for determining whether a new set of broadcast parameters are necessary may be via communications of several messages. For example, the base station may determine whether the subnet of the previous base station and the subnet of the current base station are served by the same broadcast controller. The base station may perform this function by maintaining a list of other subnets served by the broadcast controller that serves this base station. In another embodiment, either the base station or the broadcast controller sends to the mobile station a list of subnets controlled by a common broadcast controller. The list may also be the identifiers for identifying the base station members of each subnet. This list of subnets may be sent to the mobile station along with the broadcast parameters. When the mobile station enters the coverage area of a base station belonging to a different subnet, the mobile stations checks whether the new subnet is included in the list of subnets controlled by the current broadcast controller. If so, the mobile station continues to use the current broadcast parameters. Otherwise, the mobile station requests from the new broadcast controller for a new set of broadcast parameters. Since the list of subnets may be very large, the broadcast controller may provide the mobile station only a partial list of subnets controlled by the broadcast controller. This list may be updated as the mobile station moves to the edge of the subnets included in the current list. In another embodiment, the information may be encoded by indicating a series of consecutive subnet identification numbers. The message, therefore, may include the first and last subnet identification (or base station identification numbers) of the series of consecutive subnets (or base stations) identification numbers. In another embodiment, the base stations bordering the coverage areas may transmit a message indicating a need for requesting a new set of broadcast parameters because the mobile station may be entering the coverage area of a base station in a subnet controlled by a different broadcast controller. In such a case, when the mobile station roams from a base station of a first subnet controlled by a first broadcast controller to another base station of a second subnet controlled by a second broadcast controller, the mobile station sends a request to the second base station for transmission of the broadcast parameters associated with the second broadcast controller.


The broadcast channel may transmit encrypted data to prevent unauthorized users from using the broadcast services. A user identity module (UIM) 499 shown in FIG. 5 may contain user specific information including an encryption key. Two patent applications filed with assigned Ser. Nos. 09/933,972 and 10/233,188, with the title: Method and Apparatus for Security in a Data Processing System, assigned to the assignee of the present application, details various embodiments for encrypted communications, incorporated by reference herein. The UIM 499 is associated with a particular user and is used primarily to verify that a mobile station incorporating transceiver 500 is entitled to the privileges afforded to the user, such as access to the mobile phone network. Therefore, a user is associated with the UIM 499 rather than a mobile station. The same user may be associated with multiple UIM 499.


The broadcast service faces a problem in determining how to distribute keys to subscribed users. To decrypt the broadcast content at a particular time, the mobile station must know the current decryption key that is valid in the current subnet. To avoid theft-of-service, the decryption key should be changed frequently, for example, every minute. These decryption keys are called Short-term Keys (SK). The SK is used to decrypt the broadcast content for a short-amount of time. The SK is derived from a Broadcast Access Key that may be stored in the UIM. The list of subnets controlled by a broadcast controller may be stored in the UIM along with the Broadcast Access Key. The mobile station may need to obtain the Broadcast Access Key from the broadcast controller in the set of broadcast parameters. The UIM receives an identifier for the current subnet along with a request to compute the SK. The UIM may check if the Broadcast Access Key is valid in the current subnet. If the Broadcast Access Key is not valid in the current subnet, the UIM may send an indication to initiate a process to obtain a new key from the new broadcast controller to continue the reception of broadcast services.


Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.


The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims
  • 1. A method for providing broadcast services, comprising: receiving a first identification from a first base station;receiving a second identification from a second base station;determining whether the first and second identifications are associated with use of a common set of broadcast parameters; andrequesting transmission of a new set of broadcast parameters from the second base station if the first and second identifications are not associated with use of the common set of broadcast parameters.
  • 2. The method as recited in claim 1, further comprising: continuing to use the common set of broadcast parameters if the first and second identifications are associated with use of the common set of broadcast parameters.
  • 3. The method as recited in claim 1, further comprising: receiving said new set of broadcast parameters.
  • 4. The method as recited in claim 3, further comprising: using said new set of broadcast parameters for receiving broadcast services.
  • 5. An apparatus for providing broadcast services, comprising: a receiver for receiving a first identification from a first base station, and for receiving a second identification from a second base station;a controller for determining whether the first and second identifications are associated with use of a common set of broadcast parameters;a transmitter for requesting transmission of a new set of broadcast parameters from the second base station if the first and second identifications are not associated with use of the common set of broadcast parameters.
  • 6. The apparatus as recited in claim 5, wherein said receiver continues to use the common set of broadcast parameters; if the first and second identifications are associated with use of the common set of broadcast parameters.
  • 7. The apparatus as recited in claim 6, wherein said controller and receiver are further for using said new set of broadcast parameters for receiving broadcast services.
  • 8. An apparatus for providing broadcast services, comprising: means for receiving a first identification from a first base station;means for receiving a second identification from a second base station;means for determining whether the first and second identifications are associated with use of a common set of broadcast parameters; andmeans for requesting transmission of a new set of broadcast parameters from the second base station if the first and second broadcast controller identifications are not associated with use of the common set of broadcast parameters.
  • 9. The apparatus as recited in claim 8, further comprising: means for continuing to use the common set of broadcast parameters if the first and second identifications are associated with use of the common set of broadcast parameters.
  • 10. The apparatus as recited in claim 8, further comprising: means for receiving said new set of broadcast parameters.
  • 11. The apparatus as recited in claim 10, further comprising: means for using said new set of broadcast parameters for receiving broadcast services.
  • 12. A processor-readable medium including processor-executable instructions encoded thereon for performing a method for providing broadcast services, the method comprising: receiving a first identification from a first base station;receiving a second identification from a second base station;determining whether the first and second identifications are associated with use of a common set of broadcast parameters; andrequesting transmission of a new set of broadcast parameters from the second base station if the first and second broadcast controller identifications are not associated with use of the common set of broadcast parameters.
  • 13. The processor-readable medium as recited in claim 12, wherein the method further comprises: continuing to use the common set of broadcast parameters if the first and second identifications are associated with use of the common set of broadcast parameters.
  • 14. The processor-readable medium as recited in claim 12, wherein the method further comprises: receiving said new set of broadcast parameters.
  • 15. The processor-readable medium as recited in claim 14, wherein the method further comprises: using said new set of broadcast parameters for receiving broadcast services.
  • 16. A mobile station, comprising: a receiver for receiving a first identification from a first base station, and for receiving a second identification from a second base station;a controller for determining whether the first and second identifications are associated with use of a common set of broadcast parameters;a transmitter for requesting transmission of a new set of broadcast parameters from the second base station if the first and second identifications are not associated with use of the common set of broadcast parameters; andan antenna coupled to the receiver to receive the first and second identifications, the antenna further coupled to the transmitter to request the transmission of the new set of broadcast parameters.
CLAIM OF PRIORITY UNDER 35 U.S.C. §120

The present application for patent is a continuation of patent application Ser. No. 10/335,626 entitled “Method and Apparatus for Broadcast Services in a Communication System” filed Jan. 2, 2003, pending, and assigned to the assignee hereof and hereby expressly incorporated by reference herein

US Referenced Citations (393)
Number Name Date Kind
4163255 Pires Jul 1979 A
4323921 Guillou Apr 1982 A
4336612 Inoue et al. Jun 1982 A
4750167 Meyer Jun 1988 A
4870408 Zdunek et al. Sep 1989 A
4881263 Herbison et al. Nov 1989 A
4901307 Gilhousen et al. Feb 1990 A
RE33189 Lee et al. Mar 1990 E
4924513 Herbison et al. May 1990 A
5052000 Wang et al. Sep 1991 A
5056109 Gilhousen et al. Oct 1991 A
5101501 Gilhousen et al. Mar 1992 A
5103459 Gilhousen et al. Apr 1992 A
5117457 Comerford et al. May 1992 A
5136586 Greenblatt Aug 1992 A
5150412 Maru Sep 1992 A
5159447 Haskell et al. Oct 1992 A
5164988 Matyas et al. Nov 1992 A
5235631 Grube et al. Aug 1993 A
5237612 Raith Aug 1993 A
5239584 Hershey et al. Aug 1993 A
5241598 Raith Aug 1993 A
5253294 Maurer Oct 1993 A
5257396 Auld, Jr. et al. Oct 1993 A
5325357 Kimoto et al. Jun 1994 A
5351087 Christopher et al. Sep 1994 A
5353332 Raith et al. Oct 1994 A
5363379 Eckenrode et al. Nov 1994 A
5365572 Saegusa et al. Nov 1994 A
5369784 Nelson Nov 1994 A
5371794 Diffie et al. Dec 1994 A
5404563 Green et al. Apr 1995 A
5410602 Finkelstein et al. Apr 1995 A
5412655 Yamada et al. May 1995 A
5421006 Jablon et al. May 1995 A
5442626 Wei Aug 1995 A
5448568 Delpuch et al. Sep 1995 A
5467398 Pierce et al. Nov 1995 A
5473609 Chaney Dec 1995 A
5473642 Osawa et al. Dec 1995 A
5481613 Ford et al. Jan 1996 A
5485577 Eyer et al. Jan 1996 A
5504773 Padovani et al. Apr 1996 A
5513245 Mizikovsky et al. Apr 1996 A
5515441 Faucher May 1996 A
5537474 Brown et al. Jul 1996 A
5565909 Thibadeau et al. Oct 1996 A
5579393 Conner et al. Nov 1996 A
5592470 Rudrapatna et al. Jan 1997 A
5659556 Denissen et al. Aug 1997 A
5673259 Quick, Jr. Sep 1997 A
5686963 Uz et al. Nov 1997 A
5708961 Hylton et al. Jan 1998 A
5729540 Wegrzyn Mar 1998 A
5740246 Saito Apr 1998 A
5748736 Mittra May 1998 A
5751707 Voit et al. May 1998 A
5751725 Chen May 1998 A
5758068 Brandt et al. May 1998 A
5758291 Grube et al. May 1998 A
5768276 Diachina et al. Jun 1998 A
5774496 Butler et al. Jun 1998 A
5778059 Loghmani et al. Jul 1998 A
5778069 Thomlinson et al. Jul 1998 A
5778187 Monteiro et al. Jul 1998 A
5787172 Arnold Jul 1998 A
5787347 Yu et al. Jul 1998 A
5796829 Newby et al. Aug 1998 A
5835730 Grossman et al. Nov 1998 A
5850444 Rune Dec 1998 A
5850445 Chan et al. Dec 1998 A
5870474 Wasilewski et al. Feb 1999 A
5878141 Daly et al. Mar 1999 A
5881368 Grob et al. Mar 1999 A
5884196 Lekven et al. Mar 1999 A
5887252 Noneman Mar 1999 A
5909491 Luo Jun 1999 A
5915024 Kitaori et al. Jun 1999 A
5923649 Raith Jul 1999 A
5936965 Doshi et al. Aug 1999 A
5940507 Cane et al. Aug 1999 A
5946316 Chen et al. Aug 1999 A
5956404 Schneier et al. Sep 1999 A
5956681 Yamakita Sep 1999 A
5970072 Gammenthaler et al. Oct 1999 A
5970417 Toyryla et al. Oct 1999 A
5978386 Hamalainen et al. Nov 1999 A
5983099 Yao et al. Nov 1999 A
5983388 Friedman et al. Nov 1999 A
5990928 Sklar et al. Nov 1999 A
5991400 Kamperman Nov 1999 A
5991407 Murto Nov 1999 A
6006073 Glauner et al. Dec 1999 A
6014765 Maeda et al. Jan 2000 A
6018360 Stewart et al. Jan 2000 A
6021124 Haartsen Feb 2000 A
6026165 Marino et al. Feb 2000 A
6032197 Birdwell et al. Feb 2000 A
6044154 Kelly Mar 2000 A
6047071 Shah Apr 2000 A
6047395 Zook Apr 2000 A
6052812 Chen et al. Apr 2000 A
6055236 Nessett et al. Apr 2000 A
6055314 Spies et al. Apr 2000 A
6058289 Gardner et al. May 2000 A
6065061 Blahut et al. May 2000 A
6067290 Paulraj et al. May 2000 A
6073122 Wool Jun 2000 A
6081907 Witty et al. Jun 2000 A
6097817 Bilgic et al. Aug 2000 A
6098878 Dent et al. Aug 2000 A
6108424 Pitiot Aug 2000 A
6108706 Birdwell et al. Aug 2000 A
6111866 Kweon et al. Aug 2000 A
6122763 Pyndiah et al. Sep 2000 A
6128389 Chan et al. Oct 2000 A
6128490 Shaheen et al. Oct 2000 A
6128735 Goldstein et al. Oct 2000 A
6148010 Sutton et al. Nov 2000 A
6148400 Arnold Nov 2000 A
6157719 Wasilewski et al. Dec 2000 A
6172972 Birdwell et al. Jan 2001 B1
6185430 Yee et al. Feb 2001 B1
6195546 Leung et al. Feb 2001 B1
6199161 Ahvenainen Mar 2001 B1
6201961 Schindall et al. Mar 2001 B1
6208634 Boulos et al. Mar 2001 B1
6230024 Wang et al. May 2001 B1
6233234 Curry et al. May 2001 B1
6233341 Riggins May 2001 B1
6240091 Ginzboorg et al. May 2001 B1
6253069 Mankovitz Jun 2001 B1
6253326 Lincke et al. Jun 2001 B1
6256509 Tanaka et al. Jul 2001 B1
6266420 Langford et al. Jul 2001 B1
6272632 Carman et al. Aug 2001 B1
6295361 Kadansky et al. Sep 2001 B1
6310661 Arsenault Oct 2001 B1
6314095 Loa Nov 2001 B1
6343280 Clark Jan 2002 B2
6345307 Booth Feb 2002 B1
6353614 Borella et al. Mar 2002 B1
6363242 Brown, Jr. et al. Mar 2002 B1
6363480 Perlman Mar 2002 B1
6366776 Wright et al. Apr 2002 B1
6373829 Vilmur Apr 2002 B1
6374103 Kamel et al. Apr 2002 B1
6377810 Geiger et al. Apr 2002 B1
6385200 Erami et al. May 2002 B1
6385461 Raith May 2002 B1
6408001 Chuah et al. Jun 2002 B1
6415312 Boivie Jul 2002 B1
6424717 Pinder et al. Jul 2002 B1
6424947 Tsuria et al. Jul 2002 B1
6434367 Kumar et al. Aug 2002 B1
6438612 Ylonen et al. Aug 2002 B1
6449491 Dailey Sep 2002 B1
6456716 Arnold Sep 2002 B1
6460156 Laukkanen et al. Oct 2002 B1
6463155 Akiyama et al. Oct 2002 B1
6473419 Gray et al. Oct 2002 B1
6473858 Shimomura et al. Oct 2002 B1
6477377 Backstrom et al. Nov 2002 B2
6490259 Agrawal et al. Dec 2002 B1
6493761 Baker et al. Dec 2002 B1
6502140 Boivie Dec 2002 B1
6507590 Terho et al. Jan 2003 B1
6510515 Raith Jan 2003 B1
RE38007 Tsukamoto et al. Feb 2003 E
6519266 Manning et al. Feb 2003 B1
6523069 Luczycki et al. Feb 2003 B1
6529740 Ganucheau, Jr. et al. Mar 2003 B1
6536041 Knudson et al. Mar 2003 B1
6538996 West et al. Mar 2003 B1
6539242 Bayley Mar 2003 B1
6542490 Ahmadvand et al. Apr 2003 B1
6542504 Mahler et al. Apr 2003 B1
6549771 Chang et al. Apr 2003 B2
6560206 Naden et al. May 2003 B1
6564211 Andreev et al. May 2003 B1
6567914 Just et al. May 2003 B1
6571109 Kim May 2003 B1
6574211 Padovani et al. Jun 2003 B2
6577734 Etzel et al. Jun 2003 B1
6577848 Gregg et al. Jun 2003 B1
6580756 Matsui et al. Jun 2003 B1
6598203 Tang Jul 2003 B1
6600745 Chopping Jul 2003 B1
6601068 Park Jul 2003 B1
6603857 Batten-Carew et al. Aug 2003 B1
6606706 Li Aug 2003 B1
6608841 Koodli Aug 2003 B1
6614804 McFadden et al. Sep 2003 B1
6633979 Smeets Oct 2003 B1
6640094 Tabeta Oct 2003 B1
6647000 Persson et al. Nov 2003 B1
6654384 Reza et al. Nov 2003 B1
6658463 Dillon et al. Dec 2003 B1
6658605 Yoshida et al. Dec 2003 B1
6665718 Chuah et al. Dec 2003 B1
6678856 Jordan et al. Jan 2004 B1
6680920 Wan Jan 2004 B1
6690795 Richards Feb 2004 B1
6704368 Nefedov Mar 2004 B1
6704369 Kawasaki et al. Mar 2004 B1
6707801 Hsu Mar 2004 B2
6711182 Gibbs et al. Mar 2004 B1
6714650 Maillard et al. Mar 2004 B1
6714784 Forssell et al. Mar 2004 B1
6721805 Bhagwat et al. Apr 2004 B1
6725459 Bacon Apr 2004 B2
6728226 Naito Apr 2004 B1
6731936 Chen et al. May 2004 B2
6735177 Suzuki May 2004 B1
6735190 Chuah et al. May 2004 B1
6738942 Sridharan et al. May 2004 B1
6751218 Hagirahim et al. Jun 2004 B1
6760602 Tangorra et al. Jul 2004 B2
6760752 Liu et al. Jul 2004 B1
6763025 Leatherbury et al. Jul 2004 B2
6765909 Sen et al. Jul 2004 B1
6766024 Rix Jul 2004 B1
6775303 Rustad et al. Aug 2004 B1
6781999 Eyuboglu et al. Aug 2004 B2
6788681 Hurren et al. Sep 2004 B1
6792048 Lee et al. Sep 2004 B1
6798791 Riazi et al. Sep 2004 B1
6801508 Lim Oct 2004 B1
6804520 Johansson et al. Oct 2004 B1
6810499 Sridharan et al. Oct 2004 B2
6819930 Laroia et al. Nov 2004 B1
6826406 Vialen et al. Nov 2004 B1
6829741 Khansari et al. Dec 2004 B1
6831910 Moon et al. Dec 2004 B1
6832314 Irvin Dec 2004 B1
6856800 Henry et al. Feb 2005 B1
6862684 Digiorgio Mar 2005 B1
6870923 Yi Mar 2005 B2
6879573 Huo Apr 2005 B1
6879690 Faccin et al. Apr 2005 B2
6882850 McConnell et al. Apr 2005 B2
6882860 Kim Apr 2005 B1
6885874 Grube et al. Apr 2005 B2
6888899 Raleigh et al. May 2005 B2
6895216 Sato et al. May 2005 B2
6895546 Ivry May 2005 B2
6898285 Hutchings et al. May 2005 B1
6898640 Kurita et al. May 2005 B1
6909702 Leung et al. Jun 2005 B2
6915272 Zilliacus et al. Jul 2005 B1
6918035 Patel Jul 2005 B1
6920119 Rinchiuso Jul 2005 B2
6925285 Kim Aug 2005 B2
6944763 Asano et al. Sep 2005 B1
6952454 Jalali et al. Oct 2005 B1
6956833 Yukie et al. Oct 2005 B1
6959384 Serret-Avila Oct 2005 B1
6963544 Balachandran et al. Nov 2005 B1
6970689 Khorram Nov 2005 B2
6978143 Vialen Dec 2005 B1
6983410 Chen et al. Jan 2006 B2
6987982 Willenegger et al. Jan 2006 B2
6990680 Wugofski Jan 2006 B1
7016351 Farinacci et al. Mar 2006 B1
7024616 Ohira et al. Apr 2006 B2
7031666 Hsu Apr 2006 B2
7036023 Fries et al. Apr 2006 B2
7039180 Issaa et al. May 2006 B1
7046672 Liao et al. May 2006 B2
7056609 Reiser et al. Jun 2006 B2
7069436 Akachi Jun 2006 B1
7072865 Akiyama Jul 2006 B2
7079502 Yamano et al. Jul 2006 B2
7079523 Nelson, Jr. et al. Jul 2006 B2
7096355 Marvit et al. Aug 2006 B1
7114175 Lahteenmaki Sep 2006 B2
7116892 Wajs Oct 2006 B2
7133353 Sourour et al. Nov 2006 B2
7134019 Shelest et al. Nov 2006 B2
7146130 Hsu et al. Dec 2006 B2
7177424 Furuya et al. Feb 2007 B1
7181620 Hur Feb 2007 B1
7184789 Leung et al. Feb 2007 B2
7185362 Hawkes et al. Feb 2007 B2
7197072 Hsu et al. Mar 2007 B1
7200230 Knauft Apr 2007 B2
7203314 Kahn et al. Apr 2007 B1
7209459 Kangas Apr 2007 B2
7215775 Noguchi et al. May 2007 B2
7219291 Adde et al. May 2007 B2
7237108 Medvinsky et al. Jun 2007 B2
7239704 Maillard et al. Jul 2007 B1
7266687 Sowa et al. Sep 2007 B2
7278164 Raiz et al. Oct 2007 B2
7280660 Salo et al. Oct 2007 B2
7290063 Kalliokulju et al. Oct 2007 B2
7301946 Meier et al. Nov 2007 B2
7301968 Haran et al. Nov 2007 B2
7308100 Bender et al. Dec 2007 B2
7321968 Capellaro et al. Jan 2008 B1
7349425 Leung et al. Mar 2008 B2
7352868 Hawkes et al. Apr 2008 B2
7376963 Kato et al. May 2008 B2
7391866 Fukami et al. Jun 2008 B2
7428512 Nozaki et al. Sep 2008 B2
7599655 Agashe et al. Oct 2009 B2
7649829 Chen et al. Jan 2010 B2
7669104 Uchida et al. Feb 2010 B2
7693508 Leung et al. Apr 2010 B2
7697523 Leung et al. Apr 2010 B2
7742781 Chen et al. Jun 2010 B2
7792074 Chen et al. Sep 2010 B2
7944925 Meier et al. May 2011 B2
8077679 Leung Dec 2011 B2
8098818 Grilli et al. Jan 2012 B2
8121296 Hawkes et al. Feb 2012 B2
8713400 Chen et al. Apr 2014 B2
20010004761 Zehavi Jun 2001 A1
20010034254 Ranta et al. Oct 2001 A1
20010036200 Nelson et al. Nov 2001 A1
20010036834 Das et al. Nov 2001 A1
20010055298 Baker et al. Dec 2001 A1
20020002541 Williams Jan 2002 A1
20020002674 Grimes et al. Jan 2002 A1
20020010681 Hillegass et al. Jan 2002 A1
20020014159 Tatsumi et al. Feb 2002 A1
20020023165 Lahr Feb 2002 A1
20020071558 Patel Jun 2002 A1
20020076195 Nakajima et al. Jun 2002 A1
20020080887 Jeong et al. Jun 2002 A1
20020091931 Quick, Jr. et al. Jul 2002 A1
20020102964 Park Aug 2002 A1
20020114469 Faccin et al. Aug 2002 A1
20020141371 Hsu Oct 2002 A1
20020141591 Hawkes et al. Oct 2002 A1
20020169724 Moroney et al. Nov 2002 A1
20020181423 Chen et al. Dec 2002 A1
20030014685 Chong et al. Jan 2003 A1
20030018891 Hall et al. Jan 2003 A1
20030028805 Lahteenmaki Feb 2003 A1
20030030581 Roy Feb 2003 A1
20030031322 Beckmann et al. Feb 2003 A1
20030035389 Chen et al. Feb 2003 A1
20030039237 Forslow Feb 2003 A1
20030054807 Hsu et al. Mar 2003 A1
20030072384 Chen et al. Apr 2003 A1
20030087653 Leung et al. May 2003 A1
20030101401 Salvi et al. May 2003 A1
20030123669 Koukoulidis et al. Jul 2003 A1
20030126440 Go et al. Jul 2003 A1
20030134655 Chen et al. Jul 2003 A1
20030135748 Yamada et al. Jul 2003 A1
20030157952 Sarkkinen et al. Aug 2003 A1
20030159029 Brown et al. Aug 2003 A1
20030217057 Kuroiwa et al. Nov 2003 A1
20040019787 Shibata Jan 2004 A1
20040022216 Shi Feb 2004 A1
20040095515 Tajima May 2004 A1
20040101138 Revital et al. May 2004 A1
20040107350 Wasilewski et al. Jun 2004 A1
20040120527 Hawkes et al. Jun 2004 A1
20040131185 Kakumer Jul 2004 A1
20040132402 Agashe et al. Jul 2004 A1
20040151317 Hyyppa et al. Aug 2004 A1
20040199474 Ritter Oct 2004 A1
20040202329 Jung et al. Oct 2004 A1
20040243808 Ishiguro et al. Dec 2004 A1
20040266391 Hafren Dec 2004 A1
20050008159 Grilli et al. Jan 2005 A1
20050010774 Rose et al. Jan 2005 A1
20050048963 Kubler et al. Mar 2005 A1
20050055551 Becker et al. Mar 2005 A1
20050063544 Uusitalo et al. Mar 2005 A1
20050108563 Becker et al. May 2005 A1
20050138379 Semple et al. Jun 2005 A1
20050144550 Jeon et al. Jun 2005 A1
20050165711 Hamatsu Jul 2005 A1
20050216731 Saito et al. Sep 2005 A1
20050238315 Kataoka Oct 2005 A1
20050271210 Soppera Dec 2005 A1
20060078000 Rinne et al. Apr 2006 A1
20060168446 Ahonen et al. Jul 2006 A1
20060171540 Lee et al. Aug 2006 A1
20060242412 Jung et al. Oct 2006 A1
20070038610 Omoigui Feb 2007 A1
20070116282 Hawkes et al. May 2007 A1
20070214482 Nguyen Sep 2007 A1
20070280169 Cam Winget Dec 2007 A1
20080226073 Hawkes et al. Sep 2008 A1
20100107041 Chen et al. Apr 2010 A1
20100142432 Leung et al. Jun 2010 A1
20100272124 Chen et al. Oct 2010 A1
20110045864 Chen et al. Feb 2011 A1
Foreign Referenced Citations (238)
Number Date Country
2308405 Nov 2000 CA
1240317 Jan 2000 CN
1256599 Jun 2000 CN
1281561 Jan 2001 CN
1299497 Jun 2001 CN
0636963 Feb 1995 EP
0702477 Mar 1996 EP
0717566 Jun 1996 EP
0748058 Dec 1996 EP
0813309 Dec 1997 EP
0854618 Jul 1998 EP
0924898 Jun 1999 EP
0928084 Jul 1999 EP
0951198 Oct 1999 EP
0993128 Apr 2000 EP
0999656 May 2000 EP
1001570 May 2000 EP
1024661 Aug 2000 EP
1030484 Aug 2000 EP
1032150 Aug 2000 EP
1071296 Jan 2001 EP
1075118 Feb 2001 EP
1075123 Feb 2001 EP
1098446 May 2001 EP
1117204 Jul 2001 EP
1134951 Sep 2001 EP
1143635 Oct 2001 EP
1185125 Mar 2002 EP
1190526 Mar 2002 EP
1213943 Jun 2002 EP
1248188 Oct 2002 EP
1374477 Oct 2002 EP
2204940 Jul 2010 EP
2346512 Aug 2000 GB
1101042 Apr 1989 JP
02090840 Mar 1990 JP
03179841 May 1991 JP
5216411 Aug 1993 JP
06125554 May 1994 JP
7115414 May 1995 JP
7193569 Jul 1995 JP
7288798 Oct 1995 JP
9135478 May 1997 JP
9331314 Dec 1997 JP
10023529 Jan 1998 JP
10051380 Feb 1998 JP
10063598 Mar 1998 JP
10093547 Apr 1998 JP
10093547 Apr 1998 JP
10191459 Jul 1998 JP
10200535 Jul 1998 JP
10214233 Aug 1998 JP
H10210029 Aug 1998 JP
10240826 Nov 1998 JP
10512428 Nov 1998 JP
11110401 Apr 1999 JP
11127468 May 1999 JP
11136669 May 1999 JP
11161167 Jun 1999 JP
11243569 Sep 1999 JP
11510668 Sep 1999 JP
1131070 Nov 1999 JP
11313059 Nov 1999 JP
11331150 Nov 1999 JP
11513853 Nov 1999 JP
11345179 Dec 1999 JP
11355460 Dec 1999 JP
11355858 Dec 1999 JP
2000040064 Feb 2000 JP
2000078555 Mar 2000 JP
2000115860 Apr 2000 JP
2000134193 May 2000 JP
2000137551 May 2000 JP
2000138632 May 2000 JP
200165258 Jun 2000 JP
2000183968 Jun 2000 JP
200196673 Jul 2000 JP
2000196546 Jul 2000 JP
2000224261 Aug 2000 JP
2000224648 Aug 2000 JP
2000244603 Sep 2000 JP
2000253065 Sep 2000 JP
2000253459 Sep 2000 JP
2000261374 Sep 2000 JP
2000269959 Sep 2000 JP
2000511733 Sep 2000 JP
000513519 Oct 2000 JP
2000287192 Oct 2000 JP
2000295541 Oct 2000 JP
2000324155 Nov 2000 JP
2000349755 Dec 2000 JP
2001007759 Jan 2001 JP
2001007800 Jan 2001 JP
2001016179 Jan 2001 JP
2001016253 Jan 2001 JP
2001500327 Jan 2001 JP
200136941 Feb 2001 JP
2001036466 Feb 2001 JP
2001045100 Feb 2001 JP
2001053675 Feb 2001 JP
2001077859 Mar 2001 JP
2001119340 Apr 2001 JP
2001134193 May 2001 JP
2001136507 May 2001 JP
2001177513 Jun 2001 JP
2001177523 Jun 2001 JP
2001177564 Jun 2001 JP
2001510970 Aug 2001 JP
2001512842 Aug 2001 JP
2001268535 Sep 2001 JP
2001513587 Sep 2001 JP
2001333032 Nov 2001 JP
2001522164 Nov 2001 JP
2002026835 Jan 2002 JP
2002027417 Jan 2002 JP
2002502204 Jan 2002 JP
2002064785 Feb 2002 JP
2002505458 Feb 2002 JP
2002506296 Feb 2002 JP
2002084470 Mar 2002 JP
2002152194 May 2002 JP
2002514024 May 2002 JP
2002175505 Jun 2002 JP
2002521879 Jul 2002 JP
2002216040 Aug 2002 JP
2002217894 Aug 2002 JP
2002232418 Aug 2002 JP
2002232962 Aug 2002 JP
2002524941 Aug 2002 JP
2002300152 Oct 2002 JP
2002319936 Oct 2002 JP
2002353951 Dec 2002 JP
2002541685 Dec 2002 JP
2003503896 Jan 2003 JP
200352029 Feb 2003 JP
200309932 Apr 2003 JP
2003115832 Apr 2003 JP
2003521843 Jul 2003 JP
2003259284 Sep 2003 JP
2003297015 Oct 2003 JP
2003529963 Oct 2003 JP
2003339000 Nov 2003 JP
2004048718 Feb 2004 JP
200480663 Mar 2004 JP
2004507175 Mar 2004 JP
2004532554 Oct 2004 JP
2004533174 Oct 2004 JP
2004343764 Dec 2004 JP
2005509367 Apr 2005 JP
2005512471 Apr 2005 JP
20000062153 Oct 2000 KR
200130725 Apr 2001 KR
20010030696 Apr 2001 KR
2073913 Feb 1997 RU
2077113 Apr 1997 RU
2091983 Sep 1997 RU
2115249 Jul 1998 RU
214779 Apr 2000 RU
2187205 Aug 2002 RU
353841 Mar 1999 TW
373372 Nov 1999 TW
388158 Apr 2000 TW
420910 Feb 2001 TW
448658 Aug 2001 TW
502190 Sep 2002 TW
508958 Nov 2002 TW
8301881 May 1983 WO
WO8607224 Dec 1986 WO
WO9611538 Apr 1996 WO
WO97015161 Apr 1997 WO
9716924 May 1997 WO
WO9716890 May 1997 WO
WO9717790 May 1997 WO
WO9748212 Dec 1997 WO
WO97047094 Dec 1997 WO
WO9810604 Mar 1998 WO
WO9825422 Jun 1998 WO
WO9857509 Dec 1998 WO
WO9904583 Jan 1999 WO
WO9922466 May 1999 WO
WO9922478 May 1999 WO
WO9930234 Jun 1999 WO
WO99039524 Aug 1999 WO
WO9944114 Sep 1999 WO
WO9949595 Sep 1999 WO
WO99049588 Sep 1999 WO
WO9959355 Nov 1999 WO
WO9962231 Dec 1999 WO
WO9966657 Dec 1999 WO
WO0002406 Jan 2000 WO
WO0004718 Jan 2000 WO
0008883 Feb 2000 WO
WO0013356 Mar 2000 WO
WO-0013436 Mar 2000 WO
WO0033535 Jun 2000 WO
WO0036804 Jun 2000 WO
WO 0041364 Jul 2000 WO
WO0048358 Aug 2000 WO
WO0051308 Aug 2000 WO
WO0052880 Sep 2000 WO
WO0056018 Sep 2000 WO
WO0057601 Sep 2000 WO
WO0062476 Oct 2000 WO
WO0062547 Oct 2000 WO
WO0072609 Nov 2000 WO
WO0074311 Dec 2000 WO
WO 0074425 Dec 2000 WO
WO0076125 Dec 2000 WO
WO0076234 Dec 2000 WO
WO0078008 Dec 2000 WO
WO0079734 Dec 2000 WO
WO0101630 Jan 2001 WO
WO0110146 Feb 2001 WO
WO0113358 Feb 2001 WO
WO0117163 Mar 2001 WO
WO0119027 Mar 2001 WO
WO0120805 Mar 2001 WO
WO0145443 Jun 2001 WO
WO0150783 Jul 2001 WO
WO0156232 Aug 2001 WO
WO0208449 Jan 2002 WO
0215578 Feb 2002 WO
0247407 Jun 2002 WO
WO0247356 Jun 2002 WO
WO02061572 Jun 2002 WO
WO02054663 Jul 2002 WO
WO02080449 Oct 2002 WO
WO02080454 Oct 2002 WO
WO02096150 Nov 2002 WO
WO03001772 Mar 2003 WO
WO03032573 Apr 2003 WO
03043310 May 2003 WO
03051056 Jun 2003 WO
WO03051072 Jun 2003 WO
03063418 Jul 2003 WO
WO2004025895 Mar 2004 WO
WO2005008393 Jan 2005 WO
WO2009130589 Oct 2009 WO
Non-Patent Literature Citations (93)
Entry
International Search Report PCT/US03/041311, International Search Authority-European Patent Office, Feb. 25, 2005.
International Preliminary Examination Report—PCT/US03/041311, IPEA/US, May 17, 2006.
ETSI: “Universal Mobile Telecommunications System (UMTS) ; Multimedia Broadcast/Multicast Service (MBMS) ; Stage 1, 3GPP TS 22.146 Version 5.2.0 Release 5”, ETSI TS 22.146 v5.2.0, pp. 1-15, Mar. 2002.
ETSI: “Universal Mobile Telecommunications System (UMTS) ; Radio Interference for Broadcast/Multicast Services (3GPP TR25.925 Version 3.30 Release 1999)”, ETSI TR 125 925 v3.30 p. 1-35, Dec. 2000.
3GPP TS 25.214 v4.1.0(Jun. 2001) Universal Mobile Telecommunications System (UMTS); Physical layer procedurees (FDD), Release 4, ETSI TS 125 214 V4.1.0, Jun. 2001.
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of Applied Cryptography, CRC Press. (Oct. 1996) p. 364 (in particular, refer to section 9.6.3), http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf.
Baugher et al.: “The Secure Real Time Transport Protocol” Internet Engineering Task Force, AVT Working Froup, Internet -Draft, Jul. 2003, XP002320685.
Brown, D., “Techniques for Privacy and Authentication in Personal Communication Systems,” IEEE Personal Communications, vol. 2, No. 4, pp. 6-10, Aug. 1995, doi: 10.1109/98.403452.
European Search Report—EP10004607, Search Authority—Munich Patent Office, Nov. 18, 2010.
European Search Report—EP10005810, Search Authority—Munich Patent Office, Nov. 10, 2010.
Haverinen, et al., “EAP SIM Authentication”draft-haver inen-pppext-eap-sim-11 .txt, [online] <URL:http://www.watersprings.orglpub.id/draft-haverinen˜pppext-easp-sim- 11 .txt> Jun. 2003, pp. 1-64.
Haverinen H: “EAP SIM Authentication”, 3DPP Draft; S3-010663—Draft-Haverinen-pppext-EAP-SIM-0 2, 3rd Generation Partnership-Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921Sophia-Antipolis Cedex; France, vol. SA WG3, no. Sophia; 20011128, Nov. 28, 2001, XP050271835, [retrieved on Nov. 28, 2001].
JNSA, Trend of the Lastest Security Protocol “IPsecH-with Demonstration Experiment Report for Interconnection,” Network Magazine, vol. 6, No. 6, Japan, Jun. 2001, vol. 6, pp. 86-93.
Meier J D et al: “Building Secure ASP.NET Applications: Authentication, Authorication, and Secure Communication: Cryptography and Certificates” Microsoft Patterns & Practices, Nov. 2002, pp. 1-5, XP002321827.
Okamoto, “Encrytion Technology for Realizing a Bright Information Society 5: Management of Encrytion Key Distribution”, Bit Japan, Kyoritsu Shuppan Co., Ltd., Nov. 1, 1991, vol. 23, pp. 51-59.
Pannetrat, et al, “Authenticating real time packet streams and multicast”, 2002 IEEE. Computers and Communications, 2002. Proceedings. ISCC 2002. Seventh International Symposium on, pp. 490-495.
Pelletier, et al., “Robust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP)”, Internet Draft, Feb. 21, 2005, pp. 1-2.
Stallings, W.: “Cryptography and networks security: Principles and Practice” Second Edition, 1999, Prentice Hall, New Jersey, pp. 400-413.
Supplementary European Search Report—EP04777745, Search Authority—Berlin Patent Office, Dec. 14, 2010.
Taiwanese Search report—093124861—TIPO—Dec. 7, 2010.
Translation of Office Action in Japan Application 2004-531597 corresponding to U.S. Appl. No. 11/626,822, citing JP2002506296, JP2002026835, JP2002152194, JP2000287192, JP20017800, WO0062476, JP115414, JP7288798, JP10214233, JP11510668, JP2000134193, JP2001131193, JP2001512842, JP2001513587, JP2002027417, JP2002521879, JP2002505458, JP2002232418, WO020612572 and JP2003529963 dated Nov. 24, 2011.
Translation of Office Action in Japan application 2006-518894 corresponding to U.S. Appl. No. 10/870,303, citing JP2002541685, WO0208449, WO2005008393, Dan—Brown—Techniques—pgs—6—10—year—1995 and Haverinen—EAP—SIM—year—2003 dated Mar. 22, 2011.
Translation of Office Action in Japan Application 2002-577339 corresponding to U.S. Appl. No. 09/933,971, citing JP11331070, JP2090840, JP2000244603 and JP2000115860 dated Oct. 19, 2010.
Translation of Office Actionin Japan Application 2008-184930 corresponding to U.S. Appl. No. 12/703,099, citing JP2001177564, JP10200536, T. Asaka et al., T. Miyazaki et al., WO0156232 and WO0150783 dated Feb. 8, 2011.
“Functional Model of a Conditional Access System”, EBU Review˜Technical European Broadcasting Union, Bussels, BE, No. 266; Dec. 21, 1995: pp. 64-77; XP000559450.
“TIA/EIA/IS-95-B Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System.” (IS-95 Standard).
3G TS 25.213 V4.1.0 (Jun. 2001) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spreading and Modulation (FDD)(Release 4).
3GPP TS 25.211 V4.2.0 (Sep. 2001) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels Onto Physical Channels (FDD)(Release 4).
3GPP TS 25.212 V4.2.0 (Sep. 2001) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Multiplexing and Channel Coding (FDD)(Release 4).
3GPP TS 25.214 V4.2.0 (Sep. 2001) 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical layer Procedures (FDD)(Release 4).
3GPP2 C.S0002-0 Version 1.0 (Jul. 1999) 3rd Generation Partnership Project 2 “3GPP2” Physical Layer Standard for cdma2000 Spread Spectrum Systems.
Al-Tawil, “A New Authentication Protocol for Roaming Users in GSM”, Proceedings for IEEE International Symposium on Computers and Communication, Jul. 6, 1999, pp. 93-99.
B.G. Marchent et al., “Intelligent Control of Mobile Multimedia Systems” Vehicular Technology Conference 1998. VTC 98, 48th IEEE Ottawa, Canada, May 18-21, 1998; New York, USA, May 18, 1998, pp. 2047-2051.
Baccelli, F. et al: “Self Organizing Hierarchical Multicast Trees and Their Optimization,” INFOCOM 1999. IEEE, 1081-1089 (Mar. 21, 1999).
Berkovits, S. “How to Broadcast a Secret” Advances in Cryptology, Eurocrypt, International Conference on the Theory and Application of Cryptographic Techniques, Springer-Verlag, Delaware, Apr. 11, 1991, pp. 535-541.
Bormann, C., et al. “Robust Header Compression (ROHC)” Internet Draft, Dec. 2000, pp. 1-122, XP002901751 (pp. 4-5).
Bormann, et al. “Robust Header Compression (ROHC)” Internet Engineering Task Force IETF Draft, 1-145, Feb. 26, 2001.
Brown: “The Electronic Post It Note Model for Mobile Computing Applications,” Computing Lab, The University, Canterbury, Kent, The Institution of Electrical Engineers, IEEE, Savoy Place, London, WC2R OBL, UK.
Estrin, et al., “The Protocol Independent Multicast-Sparse Mode (PIM-SM),” RFC 2362, Jun. 1998.
Farinacci, D., et al., “Generic Routing Encapsulation (GRE).” Network Working Group Request for Comments 2784, Mar. 1-8, 2000. URL:http://www.globecom.net/ieft/rfc/rfc2784.html (retrieved on Feb. 14, 2003).
FOLDOC, “Spread-spectrum communications”, definition, dated Aug. 8, 2001, from http://foldoc.org/index.cgi?query=spread+spectrum.
Gong, L. et al: “Trade-offs in Routing Private multicast Traffic,” Global Telecommunications Conference, 1995, IEEE, 2124-2128 (Nov. 13, 1995).
Greg Rose et al., “The Secure Real Time Transport Protocol,” Internet Draft, Feb. 2001, pp. 1-26.
Handley, M. et al., “SDP; Session Description Protocol” Network Working Group, Request for Comments: 2327, Category: Standards Track, ISI/LBNL, Apr. 1998, pp. 1-42.
IEEE. “IEEE STD. 802.11, Part 11; Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications” 1997, pp. 60-70.
Jalali, A., et al. “Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireless System,” 2000 IEEE, pp. 1854-1858.
Jou, Y, “Developments in Third Generation (3G) CDMA Technology,” 2000 IEEE, pp. 460-464.
Kalliokulju J.; “User Plane Architecture of 3rd Generation Mobile Telecommunication Network,” IEEE International Conference on Networks, ICON, Proceedings on Networks (ICON'99), Sep. 28, 1999-Oct. 1, 1999, pp. 270-278.
Keeler, Robert E., “Interoperability Considerations for Digital HDTV,” IEEE Transactions on Broadcasting, vol. 37, No. 4, Dec. 1991, pp. 128-130.
Lin, et al: “A Multicast Routing Protocol for Multihop Wireless Networks,” Dept of Computer Science and Information Engineering, Chung Cheng University, Taiwan, Global Telecommunications Conference, XP010373304.
Linuxguruz: “Free On-Line Dictionary of Computing”, §Internet Protocol, Dec. 2000.
Lou et al., “Progressive Video Streaming Over 2G and 3G Wireless System,” Proceedings of the 11th IEEE Intl Symposium on Personal Indoor and mobile Radio Communications, vol. 2, Sep. 18-21, 2000, London, pp. 1550-1554.
Macq. Benoit M. et al. “Cryptology for Digital TV Broadcasting”, 1995 IEEE.
Marchent, B.G., et al. “Intelligent Control of Mobile Multimedia Systems”Vehicular Technology Conference 1998. VTC 98, 48th IEEE Ottawa, Canada, May 18-21, 1998; New York, USA, May 18, 1998, pp. 2047-2051.
Menezes et al,: “Key Layering and Crypto periods,” Passage, Handbook of Applied Cryptography, CRC Press Series on Discrete mathematics and its Applications, BOCA Raton, Fl, CRC Press, US, 1997, pp. 551-553, 557-581.
Menezes, A. et al.: “Handbook of Applied Cryptography” 1997, CRC Press LIC, USA XP002246262 pp. 497-500, 551-552.
Menezes, A. et al.: “Handbook of Applied Cryptography,” Chapter 13, pp. 543-590, CRC Press (1996).
Miyazaki: “A Stream-data Multicast Protocol Using IP Unicast Address” Technical Report of IEICE, IN2001-9, May 11, 2001.
Mooij. W.: “Advances in Conditional Access Technology”, IEEE, pp. 461-464 (Sep. 1997).
Moy, “Multicast Extensions to OSPF,” RFC 1584, Mar. 1994.
Paul K. et al: “A Stability-Based Distributed Routing Mechanism to Support Unicast and Multicast Routing in AD HOC Wireless Network” Computer Communications, Elsevier Science Publishers BV, Amsterdam, NL, vol. 24, No. 18, Dec. 1, 2001, pp. 1828-1845.
Schneier, B.: “Applied Cryptography, Conference Key Distribution and Secret Broadcasting” Second Edition, pp. 520, 523-524, John Wiley & Sons, Inc. XP002248263 (1996).
Schneier. B.: “Applied Cryptography,” 2nd Ed, pp. 170, 171, 173, John Wiley & Sons, Inc. (1996).
Schneier. B.: “Applied Cryptography,” 2nd Ed, pp. 182-184, John Wiley & Sons, Inc. (1996).
Shannon, C.E., “A Mathematical Theory of Communication,” The Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, Jul. Oct. 1948.
Simpson, W., “PPP in HDLC-Like Framing,” Network Working Group, Request for Comments: 1662 (RFC 1662), Jul. 1994. pp. 1-17.
Stallings, W.: “Cryptography and network security” 1995, Prentice-Hall, Inc., XP002248261 pp. 402-406, 413-417, 421-424.
Takahashi: “Prospect of Push type Information Providing Service/Technology,” Information Processing, vol. 39, No. 11, Nov. 15, 1998, p. 1124-1131.
Tanenbaum, Andrew S.: Computer Network, Third Edition; Pub. 1996: 179-190.
Tanenbaum, Andrew S.: Computer Network, Second Edition; PUB 1993 XP2530414.
TIA/EIA/IS-856 Interim Standard cdma2000 High Rate Packet Data Air Interface Specification (Nov. 2000).
TIA/EIA/IS-95-A (Revision of TIA/EIA/IS-95) Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System (May 1995).
Toh C-K et al: “ABAM: On-Demand Associativity-Based Multicast Routing for AD HOC Mobile Networks,” Vehicular Technology Conference, 2000. IEEE, 987-993 (2000).
Waitzman, et al., “The Distance Vector Multicat Routing Protocol (DVMRP),” RFC 1075, Nov. 1, 1998.
Yamaguchi, S., “Realization of Multimedia Communications”, Unix Magazine, ASCII Corporation, Jun. 1, 1996, vol. 11, No. 6, pp. 45-53.
Yang et al: “An Efficient Multicast Delievery Scheme to Support Mobile IP,” Database and Expert Systems Applications, 1999. IEEE, 638-68 (Sep. 1, 1999).
You Xiaohu, “D&R Progress on China's 3G mobile Communications”, Telecom Science, vol. 2, 2001, pp. 11-17.
Asaka et al., “Dynamic Multicast Routing Using Predetermined Path Search”, Technical Report of IEICE (The Institute of Electronics, Information and Communication Engineers). SSE95-56 IN99-37 CS99-76, Sep. 27, 1999.
Tadaumi, “IP Technology as Communication Infa,” The Institute of Electronics Information and Communication Engineers, col. 83, No. 4, Apr. 2000, pp. 286-294.
Bauer D., et al., “An error-control scheme for a multicast protocol based on round-trip time calculations”, Local Computer Networks, 1996., Proceedings 21ST IEEE Conference on Minneapolis, MN, USA Oct. 13-16, 1996, Los Alamitos, CA, USA, IEEE Comput. Soc, US, Oct. 13, 1996, pp. 212-221, XP010200690, DOI: 10.1109/LCN. 1996.558149 ISBN: 978-0-8186-7617-8 * chapters 3 + 3.1 *.
“Feature Story I: Evolution of Cellular Phones,” ASCII, Dec. 1, 2000, vol. 24, No. 12, pp. 204.
Menezes Alfred J., et al.,“Handbook of Applied Cryptography,” 1997 CRC Press, pp. 169-190.
Mysore J. P., et al., Performance of transport protocols over a multicasting-based architecture for Internet host mobility, Communications, 1998. ICC 98. Conference Record. 1998 IEEE International Conference on Atlanta, GA, USA Jun. 7-11, 1998, New York, NY, USA, IEEE, US, vol. 3, Jun. 7, 1998, pp. 1817-1823, P010284635, DOI: 10.1109/ICC. 1998.683142 ISBN: 978-07803-4788-5 * abstract * chapter 2 * *.
Ohnishi H., et al., “Proposed Scheme for Route Optimization on the Mobile IP Network,” Technical Report of the Institute of Electronics, Information and Communication Engineers, SSE99-123 PS99-47, Dec. 17, 1999 .
Taiwan Search Report—TW093120386—TIPO—Feb. 8, 2012.
Yajnik M., et al., “Packet loss correlation in the MBone multicast network”, Global Telecommunications Conference, 1996. GLOBECOM '96. 'Communications: The Key to Global Prosperity London, UK Nov. 18-22, 1996, New York, NY, USA, IEEE, US, Nov. 18, 1996, pp. 94-99, XP010220159, DOI: 10.1109/GLOCOM. 1996.586133 ISBN: 978-0/7803-3336-9 * chapter 3.1 *.
3GPP2 C.R1001-A, “Administration of Parameter Value Assignments for cdma2000 Spread Spectrum Standards Release C” Jul. 14, 2000, Version 2.0.
Chen T., et al.,“cdma2000 Broadcast Services Stage 2: System Design”, C10-20010820-008, 3GPP2, Aug. 20, 2001.
Qualcomm Europe: “MBMS Security Framework”, 3GPP TSG SA WG3 Security—S3 #29 S3-030356, Jul. 2003, MBMS Security and 3GPP-3GPP2 joint meeting.
Romkey J., “A Nonstandard for Transmission of IP Datagrams Over Serial Lines: Slip”, rfc1055, IETF, Jun. 1988, URL, http://www. ietf.org/rfc/rfc1055.txt.
Sinnarajah R., “Signaling Support for Broadcast Service”, 3GPP2 TSG-C Contribution, 2002, C20-20020107-022, URL http://ftp.3gpp2.org/TSGC/Working/2002/TSG-C-0201/TSG-C-0201-Vancouver/WG2/C20-20020107-020 (Signaling-Support-for-Broadcast-Service).doc.
Momona, M., et al., “Technologies and Standardization Activities in Cable TV Access Networks,” IEICE Technical Report, Japan. The Institute of Electronics, Information and Communication Engineers (IEICE), Feb. 15, 1999. vol. 98, No. 589: pp. 57-64.
Haverinen, H., “GSM SIM Authentication and Key Generation for Mobile IP”; draft-haverinen-mobileip-gsmsim-01.txt; Internet Engineering Task Force, IETF, CH; Nov. 2000; XP015014135.
Related Publications (1)
Number Date Country
20100048206 A1 Feb 2010 US
Continuations (1)
Number Date Country
Parent 10335626 Jan 2003 US
Child 12550129 US