1. Field of the Invention
The invention pertains to the field of emergency rescue techniques. More particularly, the invention pertains to a method and apparatus for stabilizing a roof-resting motor vehicle, such as for access by rescue workers.
2. Description of Related Art
A roof-resting motor vehicle can be a difficult situation for rescue teams in terms of stabilization. In any stabilization effort, quick and simple solutions are desired. Time spent on vehicle stabilization is time not spent on victim extrication and patient care. What is often overlooked is that most of the known quick and simple techniques for stabilizing a roof-resting vehicle interfere with the passenger compartment. Many of these techniques involve attaching restraint straps to the rear posts, or running straps across the door up to the undercarriage of the vehicle, thus limiting extrication options.
Another problem with the stabilization of a roof-resting vehicle is that the locations most desired to place stabilization stands are the least conducive to a good purchase. In many situations, the engine weight of the vehicle keeps the nose down and the rear end up, leaving a sloped slippery surface with little for a prop tip to engage. The rear of a typical sedan, for example, provides very few solid locations for stand engagement. Examples of areas which typically lend themselves to purchase include fender light knockouts in fenders, gas fill openings, rear trunk walls, tail light knockouts, and some bumpers or bumper supports. Often one can punch out the rear fender lights, thus leaving a hole in the fender as a purchase point.
Depending on vehicle condition as a result of the collision, the presence of rust, and/or vehicle material composition, one may be able to gain a purchase sufficient to remove “play” in the vehicle. However, if vertical support is necessary, this could be a problem with sheet metal or plastic materials, particularly if the fenders are the only purchase. If one opens the gas fill door, one may find a good purchase there. Unfortunately, a gas fill door typically is available only on one side, of the vehicle (although some models of vehicles have them on two sides, but this is a rare exception). If fuel is leaking, this will have to be addressed also. Setting the metal stand against a metal fender could possibly cause ignition.
The rear trunk wall usually provides a good grip for a channel type end fitting. However, getting to it can often be difficult, unless the trunk lid is removed. Bumpers are another option, and come in many shapes and materials. Some are strong, some are weak. Bumper supports vary considerably as well. One technique which is very quick to employ, is a single stand centered in the rear of the vehicle, in conjunction with step blocking or wedges in front of the ‘A’ posts. This basically provides three points of stabilization. However, two of the points, the wedges, are low relative to the center of gravity of the vehicle, and do little to increase the vehicle “footprint”.
Note that a roof-resting vehicle has a much lower center of gravity in comparison with a side-resting vehicle, as well as a wider footprint to start with. The wedges do, however increase good solid ground contact. An advantage to this type of setup is that the prop purchase is typically a solid one with the rear trunk wall or a solid bumper, and the base is well restrained. However, there are several disadvantages with this type of setup. To restrain the base properly, the straps typically are either hooked at the rear posts, or run up the sides to the vehicle undercarriage. Attaching to the rear posts can in some situations cause difficulty in roof removal. Further, straps that run up the sides in front of the doors limit access from the sides. In addition, the stand itself is centered in the rear of the vehicle, thus hampering access to the rear window.
Another known method is to apply a stand at each fender, again with wedges in front of the ‘A’ post. With a good purchase, this can be sufficient stabilization in some cases. With this setup, the base strap of one stand is connected to the opposite stand base. Disadvantages with this setup include the purchase difficulties mentioned earlier, along with the fact that the bases are not restrained as completely as possible. If the vehicle can be restrained from sliding, the lack of sideward base restraint most likely will not be an issue. An advantage to this setup is that the passenger compartment is left relatively unobstructed.
Another known technique is to combine the previous two methods, thus providing a stand at both rear fenders and a stand at the rear center, along with the wedge cribbing at the ‘A’ post. Restraint straps can be configured in a few different ways. One strapping configuration is to strap the fender stand bases to each other independent of the rear stand, and to strap the rear stand base to the rear roof posts using ‘J’ hooks. Another method is to strap the rear stand to the fender stands, and then strap the fender stands to the rear post. In addition, the fender stands may be strapped to each other. In this situation, the straps connected to the rear posts can be moved to the front of the vehicle, thus leaving the passenger compartment unobstructed. The final strap configuration noted above keeps extrication options open, however, the difficulty of finding quick and solid stand engagement remains a problem.
Michalo, U.S. Pat. No. 6,017,170, “Adjustable Self Locking Shoring Strut”, and Cudmore, et al, U.S. Pat. No. 6,158,705, “Vehicle Stabilization and Support Tool” are examples of prior art shoring struts, which could be used with the method of the invention, if equipped with appropriately designed end fittings, which are not shown in the patents. Neither patent discloses a method of use similar to the method of the invention. Cudmore, et. al, suggests tying the base of a support tool to the vehicle, but uses only one strut and does not discuss where the strap should be attached.
The present invention provides new techniques for stabilizing a roof-resting motor vehicle, which are quick, simple, require no search for prop purchase, and leave the passenger compartment free from obstruction, thereby keeping multiple access options open.
An improved method for stabilizing a roof-resting vehicle includes the steps of leaning one or more buttress stands, each preferably having chain-grab end fittings or other suitable attaching means, against a fender area of the vehicle, passing a chain or other suitable fastening means under an end of the vehicle from one of the buttress stands to another (if more than one stand is used), with slack extending up to the vehicle's undercarriage on each side of the vehicle, tightening the slack from the chain or other suitable fastening means by pulling the chain-grab end fittings or other suitable attaching means towards the fenders at the vehicle undercarriage or lower side of the vehicle, using a ratchet strap or similar tightening means, optionally restraining the chain or other suitable fastening means from sliding off the end of the vehicle by attaching a ratchet strap or similar tightening means to the chain or other suitable fastening means near the vehicle, and passing the chain or other suitable fastening means up to the vehicle undercarriage in front of a wheel assembly of the vehicle, attaching a ratchet strap or similar tightening means at a base of the one or more buttress stands and tightening, and optionally placing wedges in front of each roof support post, such that the vehicle is stabilized.
a shows an embodiment of the chain-grab end fitting of the invention.
b shows the embodiment of the chain-grab end fitting of the invention of
c shows another embodiment of the chain-grab end fitting of the invention.
The vehicle stabilization method of the present invention was developed with the following goals in mind: a) provide universal stand engagement at fenders independent of vehicle construction, material, and design; b) keep patient access free from obstruction; c) keep all possible extrication options available; d) provide solid stabilization; e) simple to understand; and f) quick setup.
As detailed in the flowchart of
Stand, buttress, strut, adjustable stand, cribbing post, post, and jack stand may be used interchangeably to describe the rigid member extending from the vehicle down and outward to the ground. The stands optionally are adjustable on fixed increments, such as jack stands, or include a lifting means, or consist simply of timber posts, for example. This member may be of a fixed length, although the length is preferably adjustable. The buttresses (3) in
Note that while this method might normally be used at the rear end of the vehicle, as shown in the figures, because of the tendency of the weight of the engine to pull the front of the vehicle down, it will be understood that the method of the invention is equally applicable to situations where the front end of the vehicle needs to be stabilized and the trunk is down, with other types of vehicles such as the pickup truck shown in
a, 8b and 8c show an embodiment of a chain-grab end fitting (10) which would be suitable for use with the method of the invention. The end fitting body (80) fits within the end of the buttress stand, and is held in place by a pin (81) which runs through holes in the body (80) and stand. Provision of a number of holes permits a range of length adjustment of the buttress stand. A keeper (82) prevents the pin (81) from pulling out inadvertently. A grab plate (84) is attached to the body (80), and has a slot (83) into which a link of chain (87) can fit. Since the slot (83) is only the width of the link of chain, the next link will wedge against the plate (84) and hold the chain in place. In the variation shown in
It will be recognized by one skilled in the art that most modem vehicles lack classic fenders as that term traditionally is defined, however, the terms “fender” and “fender area” are used herein to describe generally a side body panel of a vehicle, which typically is located near the wheels and may include, for example, fenders, wheel wells, cutouts, as well as other similar structures.
Note that in the context of the invention the term “chain” is meant to encompass literal chains, as well as straps, ropes, cables, slings, wires, etc.—the terms are used interchangeably to refer to a flexible or semi-flexible tie member which may be attached to two or more points;
Note that the term “ratchet strap” is meant to include any adjustable-length flexible member, such as straps with ratchet adjusters, as well as locking straps, “come-alongs”, turnbuckle straps or chains, or other similar arrangements. The length of the flexible member may be adjusted between said points to cause a change in the tension in that member by means of a cam-buckle, ratchet, binder, turnbuckle, come-along, or similar device for tightening.
With a typical sedan it is preferred to place the stands and straps/chains on both sides to be sure the chain can not slip over the rear of the vehicle at any location. However, with an SUV, hatchback, or wagon type vehicle you have a roof post at the very back of the vehicle. If you break the windows and pass through here with the chain there may be no need to use the above referenced tie members on either side unless vehicle condition requires it. I recommend it always be done on both sides as a practice such that it becomes a standard procedure that will not be left out when needed, however, technically it can be done on both sides or one side only.
In practice, execution of the above steps takes only about two minutes to accomplish. There is little thinking required in terms of deciding how to set the stands, how to gain purchase with the vehicle, or how to keep stabilization from interference with patient access/extrication.
If a third stand is desired at the rear center of the vehicle, it optionally can be added at any time, as shown in
Also note in
A situation could arise where one side of the vehicle is otherwise supported either because obstructions demand a different support on that side or the way the vehicle came to rest provided that support. The chain could still be wrapped around in the same fashion, and a stand applied at only one side. The base of this stand could be attached to an object on the opposite side of the vehicle. Alternately, if the stand were a jack stand which is capable of self tightening, the base of the stand could be “picketed” or staked in place or otherwise prohibited from movement by a strap or other means.
There are other possibilities—wherever one can place a tight chain, one can place a stand with a chain grab end fitting. Let's assume a car is resting on its roof beside an obstruction (say, a building or other object such as the dumpster (139) shown in
Alternately, if the obstruction does not prevent a full wrap of the chain around the tail end (or front end), the chain could be placed and a loop possibly taken off of it.
Our research in the area of buttress stabilization of a roof-resting vehicle has led to improvements as well as alternative methods, which in many cases simplify and quicken the stabilization process. We have discovered through such research that, while the foregoing methods are a great improvement over any prior means, there are improved derivatives of the technique which are equally valuable in saving time and producing a stable working environment.
Sway Straps
Referring now to
Staking the Hood
Referring now to
Alternatives to Chain Saddle
We have developed several alternate methods of creating a chain or similar flexible member type purchase with a roof resting vehicle for the purpose of buttress stabilization. These include the Rear Post Chain Wrap method, J-Hooking the Rear Post, J-Hooking the Side-Wall, and J-Hooking the Rear Deck, each of which is described below in detail.
While the figures and description herein show attachment of the chain to the rear post for the purpose of illustration of the methods, the invention contemplates alternatively attachments to other posts, such as a front or middle post.
Rear Post Chain Wrap
Referring now to
J-Hooking the Rear Post
Referring now to
J-Hooking the Sidewall
Referring now to
J-Hooking the Rear Deck
Referring now to
Hole Saw Method for Creating a Purchase Point
Prior art techniques for making a purchase with a vehicle using round pin type or round point end fitting typically involve the use of pre-existing holes or the violent action of piercing a hole. Pre-existing holes in a vehicle provided by the manufacturer are not always readily available or in the needed location. The act of piercing a hole with a tool, such as a Halligan tool, for example, is a violent and loud action, which has the potential to further complicate the accident scene. A pierced hole may also have a tendency to tear under load.
Referring now to
Multi-Function Buttress Stabilization Stand End Fitting
Adjustable Turret Head
Buttress Stabilization Base With Multiple Restraint Means
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
This is a continuation-in-part patent application of application Ser. No. 09/982,368, filed Oct. 18, 2001 now U.S. PAT. No. 6,772,984, entitled “METHOD AND APPARATUS FOR BUTTRESS STABILIZATION”. The aforementioned application is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2403456 | Pitcairn | Jul 1946 | A |
3430911 | Olson | Mar 1969 | A |
3743125 | Ashley, Jr. | Jul 1973 | A |
3754427 | Hunnicutt et al. | Aug 1973 | A |
3836030 | Timmons | Sep 1974 | A |
4198847 | Russell et al. | Apr 1980 | A |
4596371 | Clark | Jun 1986 | A |
4941343 | Stancato | Jul 1990 | A |
5056753 | Lunau et al. | Oct 1991 | A |
5474330 | Meehleder | Dec 1995 | A |
5520030 | Muldoon | May 1996 | A |
5575492 | Stone | Nov 1996 | A |
5797226 | MacKarvich | Aug 1998 | A |
6017170 | Michalo | Jan 2000 | A |
6095474 | Arnold | Aug 2000 | A |
6142488 | Orr | Nov 2000 | A |
6158705 | Cudmore et al. | Dec 2000 | A |
6363803 | Hubers | Apr 2002 | B1 |
6776383 | Lanka | Aug 2004 | B2 |
6953180 | Ruvalcaba et al. | Oct 2005 | B1 |
20020047077 | Gibson et al. | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20040159768 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09982368 | Oct 2001 | US |
Child | 10720997 | US |