The present application claims the benefit of Chinese Patent Application No. 201410688277.8, filed Nov. 26, 2014, the entire disclosure of which is incorporated herein by reference.
The present invention relates to the liquid crystal display field, in particular to a method and an apparatus for calibrating a liquid crystal display device.
With the development in thin film transistor liquid crystal display (TFT-LCD Display) and the progress of the industrial technology, the production cost of liquid crystal display device has been reduced, the manufacturing process is increasingly sophisticated, TFT-LCD has replaced the cathode ray tube display and become the mainstream technology in the field of flat panel display; moreover, due to its advantages, it is an ideal display device for the market and consumer. In the present market, liquid crystal display panels with various models and various sizes are very popular, while for liquid crystal display panels accepted by user, the technical shortcomings need to be solved urgently.
In order to improve the differences of display effect in angles, in the existing liquid crystal display, as shown in
In order to solve the above technical problem, the embodiment of the present invention provides a method for calibrating a liquid crystal display device; the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; the method comprises:
measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and
adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
Preferably, the step of adjusting comprises: calculating a reference brightness in a gray scale by using brightness of the pixels of odd rows and brightness of the pixels of even rows in the gray scale; adjusting brightness of the pixels of odd rows and brightness of the pixels of even rows to be equal to the reference brightness in each one of the plurality of gray scales.
Preferably, the step of adjusting further comprises: adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows by using a relationship of voltage-transmittance of pixels of odd rows and/or pixels of even rows.
Preferably, the reference brightness is a mean value of brightness of the pixels of odd rows and brightness of the pixels of even rows in a gray scale.
Preferably, the number of the plurality of gray scales is 256.
Preferably, the electrodes are pixel electrodes.
Preferably, the predetermined direction is a viewing direction of a user.
The embodiment of the present invention further provides an apparatus for calibrating a liquid crystal display device; the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; wherein the apparatus comprises:
a measuring unit adapted for measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and
an adjusting unit adapted for adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
Preferably, the adjusting unit is adapted for: calculating a reference brightness in a gray scale by using brightness of the pixels of odd rows and brightness of the pixels of even rows in the gray scale; adjusting brightness of the pixels of odd rows and brightness of the pixels of even rows to be equal to the reference brightness in each one of the plurality of gray scales.
Preferably, the adjusting unit is adapted for: adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows by using a relationship of voltage-transmittance of pixels of odd rows and/or pixels of even rows.
Preferably, the reference brightness is a mean value of brightness of the pixels of odd rows and brightness of the pixels of even rows in a gray scale.
Preferably, the number of the plurality of gray scales is 256.
Preferably, the electrodes are pixel electrodes.
Preferably, the predetermined direction is a viewing direction of a user.
The embodiment of the present invention further provides an instrument for calibrating a liquid crystal display device, the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; wherein the instrument comprises:
a measuring unit comprising a brightness measuring component and an angle controlling component; and
an adjusting unit comprising a voltage regulating component connected with the liquid crystal display device.
Preferably, the angle controlling component is adapted for supporting the brightness measuring component.
Preferably, the brightness measuring component is a charge-coupled device.
Preferably, the voltage regulating component is connected with a data line driving circuit of the liquid crystal display device.
The present invention will be described below in more detail in combination with the drawings and the embodiments. The following embodiments are used for explanation of the present invention, not for limitation of the scope of the present invention.
Though the invention uses wording of “pixel row”, “row” to describe the solutions and the embodiments of the invention, but those skilled in the art understand, the solutions of the invention are also applicable for other liquid crystal display panels with the inclined orientations of electrodes being differentiated in columns.
To eliminate the H-Line phenomenon of the prior art, the embodiment of the present invention provides a method for calibrating a liquid crystal display device; the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; the method comprises:
measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and
adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
For the liquid crystal display with opposite electrode orientations in adjacent rows, the H-Line phenomenon can be seen in an inclined direction with respect to the liquid crystal panel; this is attributed to the different transmittances of respective pixel due to different inclined orientations of the electrodes. The inventor realizes that: in a predetermined direction (i.e., in a direction having a predetermined angle with respect to the normal direction of the liquid crystal panel), the brightness difference between adjacent rows can be calibrated by adjusting the data line voltages of pixels in each gray scale.
It should be noted that, the method of calibrating a liquid crystal display device provided by the embodiment of the invention can also be performed under different demands or scenes, to calibrate the same liquid crystal display device many times for different predetermined directions; thus the H-Line phenomenon can be eliminated for the liquid crystal display device successively in different predetermined directions under different demands or scenes.
Preferably, the step of adjusting comprises: calculating a reference brightness in a gray scale by using brightness of the pixels of odd rows and brightness of the pixels of even rows in the gray scale; adjusting brightness of the pixels of odd rows and brightness of the pixels of even rows to be equal to the reference brightness in each one of the plurality of gray scales.
Preferably, the reference brightness is a mean value of brightness of the pixels of odd rows and brightness of the pixels of even rows in a gray scale. The present invention is not limited to this; based on the same idea, e.g., if the brightness of the pixels in odd (even) rows is always higher than the brightness of the pixels in even (odd) rows (as shown in
Preferably, the number of the plurality of gray scales is 256. Though, in the embodiments of the present invention, 256 gray scales are described as an example, those skilled in the art can understand that the present invention is also applicable for the liquid crystal display devices with other gray scale numbers.
Preferably, the electrodes are pixel electrodes. Those skilled in the art can understand that the methods of the embodiments of the present invention are also applicable for the calibration of liquid crystal display devices, in which liquid crystal display devices the common electrodes are arranged on the light-exiting side, and the orientations of the common electrodes alternate in adjacent rows. Likewise, based on the idea of the present invention, the methods of the embodiments of the present invention are also applicable for calibrating the brightness difference of several rows (columns, or, pixels) in a same gray scale, which brightness difference is caused by arrangement difference of electrodes in pixels.
Preferably, the predetermined direction is a viewing direction of a user.
The embodiment of the present invention further provides an apparatus for calibrating a liquid crystal display device; the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; wherein the apparatus comprises:
a measuring unit adapted for measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and
an adjusting unit adapted for adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
Preferably, the adjusting unit is adapted for: calculating a reference brightness in a gray scale by using brightness of the pixels of odd rows and brightness of the pixels of even rows in the gray scale; adjusting brightness of the pixels of odd rows and brightness of the pixels of even rows to be equal to the reference brightness in each one of the plurality of gray scales.
Preferably, the adjusting unit is adapted for: adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows by using a relationship of voltage-transmittance of pixels of odd rows and/or pixels of even rows.
Preferably, the reference brightness is a mean value of brightness of the pixels of odd rows and brightness of the pixels of even rows in a gray scale.
Preferably, the number of the plurality of gray scales is 256.
Preferably, the electrodes are pixel electrodes.
Preferably, the predetermined direction is a viewing direction of a user.
The embodiment of the present invention further provides an instrument for calibrating a liquid crystal display device, the liquid crystal display device comprises a pixel array, each pixel of the pixel array comprises electrodes in inclined arrangement, wherein an inclined orientation of the electrodes in pixels of odd rows is different with an inclined orientation of the electrodes in pixels of even rows; wherein the instrument comprises:
a measuring unit comprising a brightness measuring component and an angle controlling component; and
an adjusting unit comprising a voltage regulating component connected with the liquid crystal display device.
To eliminate the H-Line phenomenon, the measuring unit is adapted for measuring brightness of the pixels of odd rows in a plurality of gray scales and brightness of the pixels of even rows in the plurality of gray scales respectively in a predetermined direction; and the adjusting unit is adapted for adjusting data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows, such that in the predetermined direction, in each one of the plurality of gray scales, brightness of the pixels of odd rows is equal to brightness of the pixels of even rows.
Preferably, the angle controlling component is adapted for supporting the brightness measuring component, such that the brightness measuring component can perform the measurement in any predetermined directions.
Preferably, the brightness measuring component is a charge-coupled device.
Preferably, the voltage regulating component is connected with a data line driving circuit of the liquid crystal display device, so as to modify (i.e., adjust) data line voltages of the pixels of odd rows and/or data line voltages of the pixels of even rows.
For the liquid crystal display device calibrated by the above mentioned methods and the electronic equipment comprising the liquid crystal display device, images with same brightness in a predetermined direction can be obtained for odd rows and even rows; the H-Line phenomenon is eliminated without loss of transmittance, and a display effect with consistent brightness is realized.
The above embodiments are only used for explanations rather than limitations to the present invention, the ordinary skilled person in the related technical field, in the case of not departing from the spirit and scope of the present invention, may also make various modifications and variations, therefore, all the equivalent solutions also belong to the scope of the present invention, the patent protection scope of the present invention should be defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0688277 | Nov 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
5589960 | Chiba | Dec 1996 | A |
20030142055 | Iisaka | Jul 2003 | A1 |
20030151617 | Morita | Aug 2003 | A1 |
20090207106 | Mizukoshi | Aug 2009 | A1 |
20160035305 | Jin | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
102236216 | Nov 2011 | CN |
103472642 | Dec 2013 | CN |
103824548 | May 2014 | CN |
2014071128 | Apr 2014 | JP |
20080076805 | Aug 2008 | KR |
Entry |
---|
Office action from Chinese Application No. 201410688277.8 dated Mar. 18, 2016. |
Office action from Chinese Application No. 201410688277.8 dated Jul. 25, 2016. |
Office Action from China Application No. 201410688277.8 dated Dec. 19, 2016. |
Decision on Rejection from Chinese Patent Application No. 201410688277.8 dated Apr. 12, 2017. |
Number | Date | Country | |
---|---|---|---|
20160148552 A1 | May 2016 | US |