1. Field of the Invention
The field of the invention relates to methods for capping bottles and bottle capping devices.
2. Brief Description of the Related Art
Blown containers or bottles are in widespread use for many purposes. Such containers are often employed to store milk, juice, water and other liquids. Neck finishes of different types are formed on blown containers to accommodate various types of closures or caps. Some containers have threaded neck portions. Application of caps to such containers is accomplished in some cases by rotating a threaded cap relative to the container. U.S. Pat. No. 5,473,855 discloses a system of this type. Some threaded caps and associated neck finishes are designed such that the caps can be applied to the bottle neck portion by downward pressure on the caps. Such caps are sometimes referred to as snap-on, screw-off caps. In order to effect a satisfactory seal, some of these caps must be rotated slightly following application. U.S. Pat. No. 5,437,140 discloses a system which applies a final tightening rotation to a push on cap. Some snap-on, screw-off caps can be simply pushed on a threaded neck portion to form a leak-proof seal without having to be rotated. U.S. Pat. No. 5,775,528 discloses such a cap and neck portion. Another type of cap is often referred to as a snap-on, snap-off cap. Such a cap is not threaded, nor is the container neck portion to which it is secured. Such caps are simply pushed on the neck portions by known capping equipment. Caps as described above are often provided with annular valve members which are intended to engage the interior portion of the neck to provide a seal. The cap must be properly secured to the neck portion for the seal to be effective.
The present invention concerns a method of applying a push-on cap to a neck portion of a container in order to provide sealing and closure. Such caps include threaded and unthreaded snap-on caps as described above. The invention also concerns an assembly for securing a cap to a neck portion of a container such as a blown container.
The assembly for mounting a cap to the neck finish of a container includes a support and one or more applicators for engaging the top surface of the cap. At least one applicator is provided which includes structure for resiliently exerting a pressure member against the top surface of a cap. The pressure member preferably includes a substantially spherical surface. A spring or other appropriate mechanism urges the pressure member towards the cap, and resists displacement of the pressure member away from the cap. The spring pressure may be adjustable by appropriate means. In operation, the support member is positioned over a cap, and the applicator(s) engage(s) different portions of the top surface of the cap. The cap is thereby pushed onto the neck portion of the container to reliably effect closure and sealing. The applicator(s) help ensure that the cap will be applied to the neck portion without misalignment. Sequential engagement of a plurality of applicators is preferred. An effective seal is accordingly formed using a procedure and assembly that are easily employed in automated bottling plants.
The method according to the invention involves the resilient and preferably sequential application of pressure to various parts of the top surface of a cap, thereby urging it downwardly over the neck finish of a blown container.
There is shown in the drawings and described below in detail a preferred embodiment of the invention with the understanding that the present disclosure is to be considered as exemplary of the principles of the invention and is not intended to limit the invention to the embodiment illustrated.
Referring to
Each of the three applicators employed in the preferred embodiment of the invention is identical in construction. The number of applicators and their construction may vary for various types of equipment and caps. The three applicators are in a triangular configuration for applying pressure to three different portions of the top wall of the cap. As shown in
The support may include as few as one applicator. Brackets 27 may be used to mount each applicator to the support 12. There is no known maximum number of applicators, but more than three would be unlikely to be necessary for most bottling operations. Where more than one applicator is used, the spherical end surfaces thereof are preferably arranged such that they will engage the top surface of a cap sequentially. When three applicators are used, one is positioned to traverse the central portion of the top surface. In other words, it substantially bisects the top surface of the cap. The other two applicators are positioned over the outer edge of the path 29 of the annular valve member of the cap, as shown in
In use, filled containers 126 and caps 26 are provided to a capping station. The caps are positioned upon the neck portions of the containers in a known manner. The filled containers are moved with respect to the applicators such that the caps are engaged sequentially by the applicators, causing the caps to be locked in place by complementary locking features and/or threads 133,114 on the containers and caps. If the cap is of the type including a lower skirt 106 connected to the cap body 115 by a tear line 107, as disclosed in U.S. Pat. No. 5,775,528, the lugs 120 of the lower skirt are moved into position between ratchet teeth (not shown) on the collar portion 134 of the container. The annular valve members 113 of the caps will also be in sealing engagement with the neck portions. The applicator(s) interact with each cap as it is seated to promote reliability in closure and sealing. The force exerted by the spring(s) is preferably such that, in normal operation, the pressure member(s) maintain contact with the top surface of the cap as it is moved with respect to the neck finish.
In the embodiment shown in
The method and apparatus described above are usable with various types of caps and complementary neck portions, including threaded and unthreaded caps. It is particularly applicable to the application of plastic caps to blown plastic bottles. A system for filling and capping blown bottles is shown in
It will be appreciated that various modifications can be made to the apparatus and method described above without departing from the spirit of the invention.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/284,030 filed Apr. 16, 2001.
Number | Name | Date | Kind |
---|---|---|---|
5012630 | Ingram et al. | May 1991 | A |
5437140 | Molinaro | Aug 1995 | A |
5473855 | Hidding et al. | Dec 1995 | A |
5775528 | Wohlgemuth et al. | Jul 1998 | A |
5816029 | Sweeny | Oct 1998 | A |
6598378 | Pottier | Jul 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20020152728 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
60284030 | Apr 2001 | US |