The disclosure relates to medical devices and more particularly relates to a method and apparatus for determining breast density and assessing cancer risk utilizing acoustic parameters.
According to the World Health Organization, breast cancer is the second most common type of cancer and the fifth most common cause of cancer death. In view of the commonality of breast cancer, diligent individuals subject themselves to regular mammograms for the purpose of detecting an existence of breast cancer.
An ancillary benefit of having a mammogram conducted is the ability of the radiologist to determine a radiographical density of the participant's breast tissue due to the fact that there is a prognostic relationship between breast density and cancer risk. In general, it is known in the art that the radiographical density of a breast illustrated within a mammogram may vary due to differences in the amount of fat, connective tissues, and epithelial tissues that are present. For example, because fibroglandular and connective tissues (i.e. glands, ducts, and fibers) have a relatively high x-ray attenuation, fibroglandular and connective tissues may appear to be radiographically dense/light on radiographic films. By contrast, fat has a relatively low x-ray attenuation and therefore appears to be the least radiographically dense/dark, when compared to the remaining breast tissue. Because of the distinct differences in x-ray attenuation between fat and fibroglandular tissue, segmentation of fibroglandular tissue from the rest of the breast is possible.
A known breast density estimation standard may be based upon a four-category Breast Imaging Reporting and Data Systems (BI-RADS) lexicon. Upon visually assessing a mammogram, a radiologist may classify the radiographical image of the breast into one of four BI-RADS compositional categories defined as: 1: Fatty, 2: Scattered, 3: Heterogeneous, and 4: Dense. Women whose breasts are categorized in the BI-RADS 4/densest breast category are four-to-six times more likely to develop breast cancer than those categorized as BI-RADS 1/fatty.
Because the above standard in breast density estimation involves a radiologist's visual assessment of a mammogram, this assessment is subjective and relies on the perception of the radiologist. While such a subjective density classification is quick to use and widely employed, it has been proven to be limited due to considerable intra- and inter-reader variability of a radiologist.
Further, as also known in the art, the use of mammography is not ideal because of the associated radiation exposure to the participant that is undergoing breast evaluation Even further, a mammogram is a two-dimensional projection which, by definition, does not provide an accurate, three-dimensional volumetric estimation of the breast density due to the tissue thickness not being taken into account. Even further, it is also known that women are apprehensive about mammography due to the uncomfortable compression of the breast associated with the scan.
Accordingly, there is a need in the art for an improved method and apparatus for determining breast density. In an embodiment, the novel method and apparatus is a non-ionizing method and apparatus. In an embodiment, the determined breast density may be utilized for assessing cancer risk.
Further, because the novel methodology yields parameters that are associated with high breast density, which, in turn, may be associated with increased breast cancer risk, it will be appreciated that data arising from the novel methodology may be utilized to assess cancer risk directly without the intermediate step of determining breast density.
Yet even further, by identifying women having high breast density, further preventative measures can be implemented.
The disclosure will now be described, by way of example, with reference to the accompanying drawings, in which:
The Figures illustrate an exemplary embodiment of a method and apparatus for determining breast density and assessing cancer risk utilizing acoustic parameters in accordance with an embodiment of the invention. Based on the foregoing, it is to be generally understood that the nomenclature used herein is simply for convenience and the terms used to describe the invention should be given the broadest meaning by one of ordinary skill in the art. Further, although an embodiment of the invention described in the foregoing disclosure is related to the analysis of breast tissue, it will be appreciated that the invention is not meant to be limited to breast tissue; for example, it will be appreciated that the invention may be utilized to analyze organ tissue, such as, for example, a liver. As such, the foregoing methodologies disclosed in the foregoing disclosure may be utilized to assess the risk of, for example, cancer of the liver.
I. Embodiment of an Apparatus
Referring to
Because the apparatus 10 utilizes ultrasound to analyze the tissue, T, there is no ionizing radiation exposure to the patient, P. In addition, because the tissue is immersed in a fluid within the tank 16, there is no compression of the tissue, T, which may otherwise cause discomfort to the patient, P. Even further, it will be appreciated that the apparatus 10 provides a volumetric, three-dimensional analysis of the tissue, T, as opposed to a less accurate, two-dimensional analysis of the tissue, T. Finally, it will be appreciated that the time it takes for apparatus 10 to scan a breast tissue volume is typically less than 90 seconds.
In an embodiment, the patient, P, is a female, and the tissue, T, being analyzed is breast tissue. However, it will be appreciated that the patient, P, being examined is not limited to being a female, and, the tissue, T, being scrutinized is not limited to breast tissue.
In operation and as shown in
Referring to
According to an embodiment, the transmitter end 34 and receiver end 36 may be constructed from any desirable material, such as, for example, an array of piezoelectric elements, an array of ceramic elements, an array of electromechanical elements, an array of magnetostrictive elements, or the like. Even further, in an embodiment, it will be appreciated that the array may be static, a stationary pair, a rotated pair, or the like. In an embodiment, the array may comprise a two-dimensional array, or, alternatively, a three-dimensional array that may be translated along different planes to enable three-dimensional data collecting, which is described in greater detail below.
In an embodiment, an ultrasound caliper device including a transmitting end and receiving end, can also be used in a substantially similar manner as the transducer ring 32 in order to collect data. If an ultrasound caliper is utilized, acoustic parameters can be obtained and evaluated without the construction of a graphical image. Further, the use of an ultrasound caliper provides a simple, hand-held device and therefore eliminates the use of a relatively larger tank 16 including, for example, a water bath.
Referring to
To obtain a volumetric, three-dimensional analysis of the breast tissue, T, the transducer ring 32 is initialized to a start position within the tank 16. Once initialized to the desired starting position, the sound-waves, U, are emitted as the transducer ring 32 moves in a direction according to the arrow, D, toward the platform 12/chest, C, of the patient, P, to an end position. The fluid, which may be, for example, water, is known to have well-defined sound speed parameters that serve as both a coupling medium and a matching layer between the breast tissue, T, and the transducer elements 34, 36.
Although the above-disclosed embodiment is described to include an apparatus 10 having a tank 16 holding a fluid, it will be appreciated that the invention is not limited to the use of the apparatus 10 for obtaining tissue data of a breast. For example, coupling fluids other than water, such as, for example, acoustic gels, may be applied to an outer surface of the breast; and, in an embodiment, a transducer may directly contact the breast by way of the acoustic gel. In another embodiment, a single transducer in conjunction with acoustic mirrors may also be utilized instead of the apparatus 10. A further alternative embodiment may include measurements in the time domain such that collected data from one or more transducers is not related to imaging data associated with the apparatus 10.
II. Determining Breast Density
In an embodiment, the sound waves, U, may be utilized to determine whole-breast acoustic measures. In an embodiment, the sounds waves, U, are utilized to determine an average whole breast acoustic sound speed velocity. The average whole breast acoustic sound speed velocity may then be utilized as an indicator of the density of the breast tissue, T.
In an embodiment, the speed of the sound waves, U, is based on signals transmitted through the breast tissue, T, and are used to generate graphical maps of the sound speed distribution. In an embodiment, the sound speed may be provided in a scale of, for example, meters-per-second (m/s). In another embodiment, graphical maps of sound speed distribution are not created such that a sound speed measurement, calculation or the like representing an entire breast may be provided. In an embodiment, the sound speed measurement, calculation or the like may be utilized as a factor for assessing cancer risk.
In an embodiment, whole breast acoustic velocity may be defined as a global sound speed measure obtained from a sound speed histogram 50 (see, e.g.,
From this relationship, the average velocity 52 (see, e.g.
To provide the histograms 50, image stacks are created for each segment of the patient's breast as the transducer ring 32 moved from its initialized start position to its end position. Because an image stack corresponds to the entire breast volume, the histograms 50 represent the statistical distribution of all sound speed voxels within that particular breast. From the histogram 50, an overall mean sound speed value for each breast is obtained to provide a single-value estimate of the volumetric average of the sound speed velocity 52 of the whole breast.
It will be appreciated, however, that measurements of an overall mean is not intended to limit the present invention and that other measures may be utilized. For example, other measures may include, but are not limited to a median, mode, midrange, skewness, kurtosis, or the like.
It will be appreciated that an overall sound speed is not meant to limit the present invention and that other measures of acoustical data may be utilized. For example, other acoustical data may include, but are not limited to attenuation, reflection, elasticity, or the like. Also, derivations of acoustical properties other than measures of central tendency may be used to derive a whole breast density measure. Examples could include parameters such as texture (2D or 3D, skewness, kurtosis, etc.) and pattern (fractal dimension, lacunarity, etc.). Even further, data integration could also be used for whole breast density acoustical measures, such as combining features from several temporal scans, different acoustical parameters, etc.
Referring to
Accordingly, to establish the data shown in
In an embodiment, the relationships of the data shown in
It will be appreciated that by using the above-described data associated with
Thus, the four sound speed ranges described above may establish, in an embodiment, the basis of a cancer risk model such that a sound speed measure falling into the range of 1460-1575 m/s may be said to have a greatest risk of developing breast cancer than sound speed measures in the ranges of 1420-1465 m/s, 1405-1420 m/s, and 1400-1415 m/s. Accordingly, by obtaining a measure (e.g., sound speed) and comparing the measured value against the above ranges, a quantified risk assessment may be obtained.
It can be appreciated that the basis of a breast cancer risk evaluation model using acoustic parameters is not limited to comparisons with BI-RADS compositional categories, and instead, more quantitative evaluation methods can be considered (i.e. computer-assisted segmentation of mammograms using interactive thresholding or automated segmentation). Further, it can be appreciated that a breast cancer risk evaluation model can be developed independent of any association with other breast density evaluation techniques.
It will be appreciated, however, that although sound speed is described above, a measured distribution of an acoustic signal is not limited to sound speed; for example, the measured distribution of acoustic signals may also be applied to attenuation, reflectivity, elasticity and the like. Further, the cancer risk model may be further refined by also applying additional data to, for example, the measured sound speed. In an embodiment, the additional data may include, for example, one or more of age, menopausal status, age at menarche, parity, age at first birth, number of first and second degree relatives with breast cancer, prior breast biopsies, hormonal usage, history of atypical hyperplasia, or history of lobular carcinoma in situ, and the like.
III. Determining Breast Density Using a Tissue Volume Separator
Referring now to
Functionally, the waveform generator 38 creates a series of digital signals. The digital signals are sequentially sent to the digital-to-analog converter 40 that converts each signal to a corresponding analog out-put signal which is then amplified by the transmit amplifier 42. The amplified signal drives the transmitter end 34, which converts the electrical analog signal into an acoustical signal, which propagates through the fluid in the tank 16 to the receiver end 36. The receiver end 36 converts the acoustical signal back into an electrical analog received signal, which may be amplified by a receive amplifier 44. The received signal may be digitized by the analog-to-digital converter 46.
The sampling rate of the analog-to-digital converter 46 can be set to digitize the analog signal at the Nyquist (or other) rate corresponding to the frequency used to drive the transducers 34, 36. The resulting digital data stream may be stored in the tissue volume separator 48, which may include a digital storage system in the form a random access memory, a hard drive, or the like. It will be appreciated that the tissue volume separator may be a stand-alone device, or, alternatively, be incorporated in the electronics 22, or, alternatively be incorporated in the central processing unit 30.
To determine the tissue volume separator results of the breast tissue, T, the processor of the breast density factor 48 is concerned with breast sound speed. According to an embodiment as seen in Equation 2 below, a tissue density factor, TDF, can be defined by:
The denominator (i.e., Total Breast Volume) is further defined as the total (summed) integrated areas of breast sound speed tomograms. The numerator (i.e., High Sound Speed Volume Data) is further defined as the integrated area of sound speed regions from the sound speed tomograms that are considered to be of high sound speed value. The can be determined by the areas exceeding a sound speed threshold value. This threshold for determining high sound speed is not meant to limit the present invention and that other techniques used to segment higher sound speed regions may be utilized. For example, other techniques may include, but are not limited to semi-automated or automated: k-means or fuzzy clustering, segmentation in the frequency domain or time domain, artificial neural networks, or the like. Further, the TDF can be determined from data arising directly from a three-dimensional (3D) volume as opposed to a stack of two dimensional (2D) tomograms.
It can be appreciated that using this methodology, sound speed threshold values can be determined and applied to an entire population, thereby associating TDF value of a subject to identify the likelihood of breast cancer risk. Similarly, tissues other than fatty and fibroglandular may be further segmented by volumetric assessment of other ultrasound parameters. In an embodiment, it will be appreciated that the TDF is not restricted to a ratio, but also, an absolute integrated area of dense tissue and total breast tissue as indicators of breast cancer risk.
Referring to
It will be appreciated that, similar to providing several different volumetric distributions of imaging data, the associated tissue characterizations and assorted tissue types can be displayed in multiple different distributions. While sound speed has been currently used to separate fatty from parenchymal breast tissues for volumetric density estimates, other imaging data (such as attenuation, reflectivity, elasticity, etc.) may allow further volumetric separation of cystic areas, and benign and malignant tumors from the current separation of fatty and parenchymal tissue by sound speed alone.
IV. Applications of Acoustic and TDF Measurements of the Breast
Multiple measurements of the breast can be conducted in space in a repeated fashion by positioning the transducer ring 32 and discretely measuring the breast tissue, T, in two-dimensional cycles until full, three-dimensional coverage of the breast tissue, T, is achieved. As such, discrete, two-dimensional measurements of the breast tissue, T, may be obtained to provide coverage of the breast tissue, T, at different cross-sections to simulate a three-dimensional analysis of the breast tissue, T, by ‘stacking’ a plurality of discrete, two-dimensional measurements. Although it is possible to ‘stack’ a plurality of discrete, two-dimensional measurements to provide a three-dimensional measurement, it will be appreciated that a direct three-dimensional measurement with a two-dimensional array is also possible.
It will be appreciated that having three-dimensional reconstructions of the breast also can allow for 2D or 3D projection images of the acoustical parameters such that a direct comparison to mammography can be made. In an embodiment, as shown in
In an embodiment, the sound speed may be estimated either through direct measurement (e.g., with a transducer pair or set of ultrasound calipers). The direct measurement of sound speed through the tissue, T, is independent of reconstructed images such that the sound speed is determined directly from the timing of the arrival of the pulses without requiring the complexity of any imaging. In another embodiment, a series of sound speed tomographic images can be formed and used to obtain the volume averaged sound speed.
According to an embodiment, the stored data may be analyzed by a software program that is stored, in an embodiment, within the tissue volume separator 48 to determine various acoustic parameters associated with the interaction of the sound waves, U, with the breast tissue, T. The novel methodology associated with the software can be used to categorize breast tissue density and evaluate parameters such as sound speed, attenuation, reflectivity, elasticity, and TDF. It can be appreciated that this software can also be used to provide a combination of such parameters that may best distinguish women with elevated breast density, and, as such, an increased risk of breast cancer. An extension of such software may include the development of a breast cancer risk assessment model to incorporate other risk factors such as age, menopausal status, age at menarche, parity, hormonal usage, age at first birth, number of first and second degree relatives with breast cancer, prior breast biopsies, history of atypical hyperplasia, or history of lobular carcinoma in situ using any number of aforementioned acoustic parameters.
Using aforementioned measurements of the breast, a new classification scheme may be developed to characterize breast density using one or more acoustic parameters, TDF, or any combination thereof. It will be appreciated that due to the multitude of acoustic parameters available and the ability to measure them repeatedly, a more quantitative breast density classification scheme may be realized than currently employed using the mammographic BI-RADS Categories.
Finally, it will be appreciated that many alternative applications to volumetric tissue evaluation over time may be conducted rather than evaluating breast density over time. As noted, a diagnostic value is anticipated from volumetric tissue assessments in response to changes during the exam (e.g., temperature, shape, pressure, intravenous contrasts). Similarly, as seen in
V. Benefits of Determining a Breast Density by Utilizing Acoustics
It is known that women under the age of 40 do not routinely undergo mammographic screening for breast cancer because the benefit of receiving mammographic examinations does not outweigh the risk associated with the exposure to ionizing radiation. The processes disclosed herein for determining breast density are conducted without exposing the subject to harmful ionizing radiation, and accordingly allow for risk-free screening and the establishment of baselines at an earlier age. Moreover, the present invention presents and objective approach for assessing present and future cancer risk. This is in contrast to the subjective nature of interpreting mammograms.
Even further, because the tissue undergoing examination, T, is not compressed in any of the methodologies associated with the present invention, the evaluation of the tissue, T, is conducted when the breast tissue is in a non-compressed, natural shape thereby rendering a more accurate representation of the spatial distribution of fibroglandular and fat tissues. Further, by not utilizing a compression technique, women may be more likely to respond favorably to the comfort of the scan, particularly when comparing the embodiments of the present invention to mammography.
In obtaining the breast density by way of the present methodologies, a reduced amount of time may be employed when evaluating a subject's tissue, T; the examination may take as little as five minutes to set-up and one minute to conduct. As a result of knowing one's breast tissue density, preventative measures may be taken, as the relative risk of breast cancer increases with increased breast density. Preventative measures may include, for example, the screening of such subjects at a younger age (e.g., women who are not of mammographic age, such as women that are younger than 40 years old) and/or the screening of such subjects with a greater than annual frequency. In addition, knowing one's tissue density may justify the use of chemoprevention methods. Chemoprevention methods may include, for example, dietary intervention or use of Tamoxifen.
In addition, by knowing one's acoustical or TDF measures, the known tissue density may be utilized as a baseline value for subsequent comparison over time. For example, if a subsequent screening determined breast density has increased in view of one's previous/baseline breast density, the subject may be advised to undergo earlier/preventative screenings, which may not otherwise be suggested without the knowledge of the change in breast density from the baseline.
Volumetric changes over time in response to temporal alterations of the ultrasound parameters provide further potential tissue characterization. Volumetric tissue responses can be measured during a single or multiple scans. Parameters which may be altered during a single scan session may include, but are not limited to: temperature, shape, pressure, and vascular content. Further, it will be appreciated that these more immediate volumetric changes may include all or a portion of the scanned volume. Changes in volumetric ultrasound parameters affecting vascular content may be in response to any variety of intravenous or interstitial agents which change the reflectivity, sound speed, attenuation, elasticity, etc. Volumetric parameters which may be altered during multiple scan session include, but are not limited to, interval interventions, such as: responses to chemotherapy, chemoprevention, dietary changes, radiation treatment, tumor ablations or other surgical interventions.
Even further, it will be appreciated that many alternative applications of the present invention may also be made available. For example, the breast tissue density could be monitored in response to treatments such as, for example, soy isoflavones, dietary interventions, hormone-replacement therapy, and the like. In addition, the acoustical parameters and TDF could evaluate breast density over the phases of one's menstrual cycle, which may assist in determining the ideal time span to evaluate the breast. Alternatively, the breast density could be used to determine the natural variance of breast density for each patient.
The present invention has been described with reference to certain exemplary embodiments thereof. However, it will be readily apparent to those skilled in the art that it is possible to embody the invention in specific forms other than those of the exemplary embodiments described above. This may be done without departing from the spirit of the invention. The exemplary embodiments are merely illustrative and should not be considered restrictive in any way. The scope of the invention is defined by the appended claims and their equivalents, rather than by the preceding description.
This disclosure claims the benefit of Provisional Patent Application No. 60/915,946, filed on May 4, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3154067 | Stenstrom et al. | Oct 1964 | A |
3881466 | Wilcox | May 1975 | A |
3886489 | Jones | May 1975 | A |
4028934 | Sollish | Jun 1977 | A |
4059010 | Sachs | Nov 1977 | A |
4075883 | Glover | Feb 1978 | A |
4105018 | Greenleaf et al. | Aug 1978 | A |
4222274 | Johnson | Sep 1980 | A |
4317369 | Johnson | Mar 1982 | A |
4328707 | Clement et al. | May 1982 | A |
4433690 | Green et al. | Feb 1984 | A |
4509368 | Whiting et al. | Apr 1985 | A |
4515165 | Carroll | May 1985 | A |
4541436 | Hassler et al. | Sep 1985 | A |
4542744 | Barnes et al. | Sep 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4564019 | Miwa | Jan 1986 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4662222 | Johnson | May 1987 | A |
4671256 | Lemelson | Jun 1987 | A |
4855911 | Lele et al. | Aug 1989 | A |
4858124 | Lizzi et al. | Aug 1989 | A |
4917096 | Englehart et al. | Apr 1990 | A |
4941474 | Pratt, Jr. | Jul 1990 | A |
5003979 | Merickel et al. | Apr 1991 | A |
5029476 | Metala et al. | Jul 1991 | A |
RE33672 | Miwa | Aug 1991 | E |
5095909 | Nakayama et al. | Mar 1992 | A |
5143069 | Kwon et al. | Sep 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5178147 | Ophir et al. | Jan 1993 | A |
5179455 | Garlick | Jan 1993 | A |
5212571 | Garlick et al. | May 1993 | A |
5255683 | Monaghan | Oct 1993 | A |
5260871 | Goldberg | Nov 1993 | A |
5268876 | Rachlin | Dec 1993 | A |
5269309 | Fort et al. | Dec 1993 | A |
5280788 | Janes et al. | Jan 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5305752 | Spivey et al. | Apr 1994 | A |
5318028 | Mitchell et al. | Jun 1994 | A |
5329817 | Garlick et al. | Jul 1994 | A |
5339282 | Kuhn et al. | Aug 1994 | A |
5349954 | Tiemann et al. | Sep 1994 | A |
5413108 | Alfano | May 1995 | A |
5415164 | Faupel et al. | May 1995 | A |
5433202 | Mitchell et al. | Jul 1995 | A |
5463548 | Asada et al. | Oct 1995 | A |
5465722 | Fort et al. | Nov 1995 | A |
5474072 | Shmulewitz | Dec 1995 | A |
5479927 | Shmulewitz | Jan 1996 | A |
5485839 | Aida et al. | Jan 1996 | A |
5487387 | Trahey et al. | Jan 1996 | A |
5546945 | Soldner | Aug 1996 | A |
5553618 | Suzuki et al. | Sep 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5582173 | Li | Dec 1996 | A |
5588032 | Johnson et al. | Dec 1996 | A |
5590653 | Aida et al. | Jan 1997 | A |
5596992 | Haaland et al. | Jan 1997 | A |
5606971 | Sarvazyan | Mar 1997 | A |
5609152 | Pellegrino et al. | Mar 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5640956 | Getzinger et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5664573 | Shmulewitz | Sep 1997 | A |
5678565 | Sarvazyan | Oct 1997 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5749364 | Sliwa, Jr. et al. | May 1998 | A |
5759162 | Oppelt et al. | Jun 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5766129 | Mochizuki | Jun 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5810731 | Sarvazyan et al. | Sep 1998 | A |
5817025 | Alekseev et al. | Oct 1998 | A |
5833614 | Dodd et al. | Nov 1998 | A |
5846202 | Ramamurthy et al. | Dec 1998 | A |
5855554 | Schneider et al. | Jan 1999 | A |
5865167 | Godik | Feb 1999 | A |
5865743 | Godik | Feb 1999 | A |
5891619 | Zakim et al. | Apr 1999 | A |
6002958 | Godik | Dec 1999 | A |
6005916 | Johnson et al. | Dec 1999 | A |
6023632 | Wilk | Feb 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6056690 | Roberts | May 2000 | A |
6083166 | Holdaway et al. | Jul 2000 | A |
6102857 | Kruger | Aug 2000 | A |
6109270 | Mah et al. | Aug 2000 | A |
6117080 | Schwartz | Sep 2000 | A |
6135960 | Holmberg | Oct 2000 | A |
6149441 | Pellegrino et al. | Nov 2000 | A |
6242472 | Sekins et al. | Jun 2001 | B1 |
6289235 | Webber et al. | Sep 2001 | B1 |
6292682 | Kruger | Sep 2001 | B1 |
6296489 | Blass et al. | Oct 2001 | B1 |
6317617 | Gilhuijs et al. | Nov 2001 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6385474 | Rather et al. | May 2002 | B1 |
6413219 | Avila et al. | Jul 2002 | B1 |
6450960 | Rather et al. | Sep 2002 | B1 |
6475150 | Haddad | Nov 2002 | B2 |
6478739 | Hong | Nov 2002 | B1 |
6490469 | Candy | Dec 2002 | B2 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6527759 | Tachibana et al. | Mar 2003 | B1 |
6540678 | Rather et al. | Apr 2003 | B2 |
6559178 | Zamoyski | May 2003 | B1 |
6587540 | Johnson et al. | Jul 2003 | B1 |
6636584 | Johnson et al. | Oct 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6672165 | Rather et al. | Jan 2004 | B2 |
6716412 | Unger | Apr 2004 | B2 |
6728567 | Rather et al. | Apr 2004 | B2 |
6776760 | Marmarelis | Aug 2004 | B2 |
6785570 | Nir | Aug 2004 | B2 |
6810278 | Webber et al. | Oct 2004 | B2 |
6837854 | Moore et al. | Jan 2005 | B2 |
6883194 | Corbeil et al. | Apr 2005 | B2 |
6926672 | Moore et al. | Aug 2005 | B2 |
6939301 | Abdelhak | Sep 2005 | B2 |
6984210 | Chambers et al. | Jan 2006 | B2 |
7025725 | Dione et al. | Apr 2006 | B2 |
7179449 | Lanza et al. | Feb 2007 | B2 |
7285092 | Duric et al. | Oct 2007 | B2 |
7346203 | Turek et al. | Mar 2008 | B2 |
7497830 | Li | Mar 2009 | B2 |
7530951 | Fehre et al. | May 2009 | B2 |
7556602 | Wang et al. | Jul 2009 | B2 |
7570742 | Johnson et al. | Aug 2009 | B2 |
20010029334 | Graumann et al. | Oct 2001 | A1 |
20010037075 | Candy | Nov 2001 | A1 |
20020065466 | Rather et al. | May 2002 | A1 |
20020099290 | Haddad | Jul 2002 | A1 |
20020131551 | Johnson et al. | Sep 2002 | A1 |
20030138053 | Candy et al. | Jul 2003 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040059265 | Candy et al. | Mar 2004 | A1 |
20040167396 | Chambers et al. | Aug 2004 | A1 |
20040181154 | Peterson et al. | Sep 2004 | A1 |
20050260745 | Domansky et al. | Nov 2005 | A1 |
20060009693 | Hanover et al. | Jan 2006 | A1 |
20060020205 | Kamiyama | Jan 2006 | A1 |
20060064014 | Falco et al. | Mar 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060287596 | Johnson et al. | Dec 2006 | A1 |
20060293597 | Johnson et al. | Dec 2006 | A1 |
20080045864 | Candy et al. | Feb 2008 | A1 |
20080218743 | Stetten et al. | Sep 2008 | A1 |
20080229832 | Huang et al. | Sep 2008 | A1 |
20080269812 | Gerber et al. | Oct 2008 | A1 |
20080275344 | Glide-Hurst et al. | Nov 2008 | A1 |
20080281205 | Naghavi et al. | Nov 2008 | A1 |
20080294027 | Frinking et al. | Nov 2008 | A1 |
20080294043 | Johnson et al. | Nov 2008 | A1 |
20080319318 | Johnson et al. | Dec 2008 | A1 |
20090035218 | Ross et al. | Feb 2009 | A1 |
20090143674 | Nields et al. | Jun 2009 | A1 |
20100331699 | Yu et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
2324602 | Sep 1999 | CA |
284055 | Sep 1988 | EP |
351610 | Jan 1990 | EP |
538241 | Apr 1993 | EP |
609922 | Aug 1994 | EP |
661029 | Jul 1995 | EP |
774276 | May 1997 | EP |
1063920 | Jan 2001 | EP |
2005253827 | Sep 2005 | JP |
2007181679 | Jul 2007 | JP |
2009034521 | Feb 2009 | JP |
9947046 | Sep 1999 | WO |
0228350 | Apr 2002 | WO |
0230288 | Apr 2002 | WO |
2004061743 | Jul 2004 | WO |
2005057467 | Jun 2005 | WO |
2007023408 | Mar 2007 | WO |
Entry |
---|
Chang et al., Breast Density Analysis in 3-D Whole Breast Ultrasound Images, 2006, IEEE, Proceedings of the 28th IEEE EMBS annual International Conference, 2795-2798. |
U.S. Appl. No. 60/901,903, filed Feb. 16, 2007, Li et al. |
Prospective Breast Cancer Risk Prediction Model for Women Undergoing Screening Mammography; William E. Barlow et al, Journal of the National Cancer Institute, vol. 98, No. 17, Sep. 6, 2006. |
Projecting Absolute Invasive Breast Cancer Risk in White Women With a Model that Includes Mammographic Density; Jinbo Chen et al, Journal of the National Cancer institute, vol. 98, No. 17, Sep. 6, 2006. |
Longitudinal Measurement of Clinical Mammographic Breast Density to Improve Estimation of Breast Cancer Risk; Karla Kerlikowske et al, Journal of the National Cancer Institute, vol. 99, Issue 5, Mar. 7, 2007. |
Mammographic Density Correlation with Gail Model Breast Cancer Risk Estimates and Component Risk Factors; Melanie R. Palomares et al, Cancer Epidemiol Biomarkers Prev 2006; 15(7), Jul. 2006. |
The Ultrasonic Field as a Medical Tool; Dussik, K., American Journal of Physical Medicine, Vo. 33, Issue 1, Feb. 1954. |
Computerized Tomography With Ultrasound; James Greenleaf, Proceedings of the IEEE, vo. 71, No. 3, Mar. 1983. |
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues; J. Ophir et al, Proc Instn Mech Engrs, vol. 213 Part H, pp. 203-233. |
Volumetric Imaging with Ultrasonic Spiral CT; Haim Azhari et al, Dept. of Biomedical Engineering Technion, Israel Institute of Technology, 1999, pp. 270-275. |
Ultrasonographically Defined Parenchymal Patters of the Breast; L. Kaizer et al, The British Journal of Radiology, vol. 61, Issue 722, Feb. 1988, pp. 118-124. |
A New Method of Measuring in Vivo Sound Speed in the Reflection Mode; N. Hayashi, Journal of Clinical Ultrasound, vol. 16, Issue 2, Feb. 1988, pp. 87-93. |
Velocity Compensation in Water-Coupled Breast Echography; J. Jellins et al, Ultrasonics, vol. 11, Issue 5, 1973, pp. 223-226. |
Automated Classification of Parenchymal Patterns in Mammograms; N. Karssemeijer, Phys. Med. Biol. 43 (1998) 365-378. |
Average Velocity of Ultrasound in the Human Female Breast; George Kossoff et al, The Journal of the Acoustical Society of America, vol. 53, Issue 6, Jul. 1973, pp. 1730-1736. |
Empirical Relationships Between Acoustic Parameters in Human Soft Tissues; T. Douglas Mast, Acoustics Research Letters Online, Nov. 16, 2000. |
Relationship Between Myocardial Tissue Density Measured by Microgravimetry and Sound Speed Measured by Acoustic Microscopy; H. Masugata et al, Ultrasound in Med. & Biol. vol. 25, No. 9, pp. 1459-1463, 1999. |
Quantitative Sonography; D.E. Robinson et al, Ultrasound in Medicine & Biology, vol. 12, Issue 7, Jul. 1986, pp. 555-565. |
Direct Measurement of Sound Velocity in Various Specimens of Breast Tissue; Wieland Weiwad et al, Investigative Radiology, vol. 35, Issue 12, 2000, pp. 721-726. |
Comparative Studies of Various Echomammography; J. Teubner et al, Ultraschall in Der Medizin, Sep. 1982, 3(3):109-18. |
Dedicated Breast CT: Radiation Dose and Image Quality Evaluation; John Boone et al, Medical Physics, vol. 221, No. 3, Dec. 2001, pp. 657-667. |
Estimation of the Content of Fat and Parenchyma in Breast Tissue Using MRI T 1 Histograms and Phantoms; Raymond Boston et al, Magnetic Resonance Imaging 23 (2005) 591-599. |
Quantitative Classification of Mammographic Densities and Breast Cancer Risk: Results From the Canadian National Breast Screening Study; N.F. Boyd, Journal of the National Cancer Institute, vol. 87, No. 9, May 3, 1995. |
The Quantitative Analysis of Mammographic Densities; J.W. Byng et al, Phys. Med. Biol. 39 (1994) 1629-1638. |
Automatic Labelling and BI-RADS Characterisation of Mammogram Densities; K. Marias, Proceedings of the 2005 IEEE, Sep. 1-4, 2005, pp. 6394-6398. |
Correlation Between Mammographic Density and Volumetric Fibroglandular Tissue Estimated on Breast MR Images; Jun Wei et al, Medical Physics, vol. 31, No. 4, Apr. 2004. |
Risk for Breast Cancer Development Determined by Mammographic Parenchymal Pattern; John N. Wolfe, Cancer, vol. 37, Issue 5, May 1976. |
Breat Cancer Risk and Measured Mammographic Density; M.J. Yaffe, European Journal of Cancer Prevention, vol. 7 Suppl 1, 1998, pp. S47-S55. |
Detection of Breast Cancer With Ultrasound Tomography: First Results With the Computed Ultrasound Risk Evaluation (CURE) Prototype; Nebojsa Duric et al, Medical Physics, vol. 34, No. 2, Feb. 2007. |
Novel Approach to Evaluating Breast Density Utilizing Ultrasound Tomography; Carri Glide et al, Medical Physics, vol. 34, No. 2, Feb. 2007. |
A New Method for Quantitative Analysis of Mammographic Density; Carri K. Glide-Hurst, Medical Physics, vol. 34, No. 11, Nov. 2007. |
A Novel Ultrasonic Method for Measuring Breast Density and Breast Cancer Risk; Carri K. Glide-Hurst et al; Medical Imaging 2008, Proc. of SPIE vol. 6920, 69200Q. |
Clinical Breast Imaging Using Sound-Speed Reconstructions of Ultrasound Tomography Data; Cuiping Li et al; Medical Imaging 2008, Proc. of SPIE vol. 6920, 6920009. |
A Novel Approach to Evaluating Breast Density Using Ultrasound Tomography; Carri K. Glide, Dissertation Graduate School of Wayne State University, 2007. |
Breast Density Analysis in 3-D Whole Breast Ultrasound Images, Proceedings of the 28th IEEE EMBS Annual International conference, New York City, USA, Aug. 30-Sep. 3, 2006, pp. 2795-2798. |
Metz, “Basic principles of ROC analysis”; Semin Nucl Med. Oct. 8, 1978 (4):283-98. |
Metz, “Receiver Operating Characteristic Analysis: A Tool for the Quantitative Evaluation of Observer Performance and Imaging Systems”; J Am Coli Radiol 2006; 3: 413-422. |
Metz, “ROC methodology in radiologic imaging”; Invest Radiol. Sep. 21, 1986 (9):720-33. |
Chang et al., Kirchhoff migration of ultrasonic images, Materials evaluation, V59, N3, 413-417, 2001. |
Klimes, Grid Travel-time Tracing: Second-order Method for the First Arrivals in Smooth Media, PAGEOPH, vol. 148, Nos. 3/4,1996. |
Li et al., Breast Imaging Using Transmission Ultrasound: Reconstructing Tissue Parameters of Sound Speed and Attenuation,2008 International Conference on BioMedical Engineering and Informatics, IEEE computer society, 708-712. |
Li et al., Comparison of ultrasound attenuation tomography methods for breast imaging, Medical Imaging 2008: UltrasonicImaging and Signal Processing, Proc. of SPIE vol. 6920, 692015-(1-9), 2008. |
Li et al., Refraction corrected transmission ultrasound computed tomography for application in breast imaging, Med. Phys. 37(5), May 2010, 2233-2246. |
Walach et al., Local Tissue Attenuation Images Based on Pulsed-Echo Ultrasound Scans, IEEE Transactions Onbiomedical Engineering, vol. 36. No. 2, Feb. 1989. |
Duric et al. “Computed Ultrasound Risk Evaluation,” Barbara Ann Karmanos Cancer Institute. pp. 1-23. 2008. |
Xu, et al. “A Study of 3-Way Image Fusion for Characterizing Acoustic Properties of Breast Tissue.” Medical Imaging 2008: Ultrasonic Imaging and Signal Processing. Feb. 16, 2008. |
Centerline, PortalVision section, Summer 2002 edition, published by Varian Medical Systems. |
Chelfouh et al., “Characterization of Urinary Calculi: in Vitro Study of ‘Twinking Artifact’ revealed by Color-Flow Sonography,” AJR Am. J. Roentgenol. 171( 4) (1998) 1055-60. |
Diederich et al., “The design of ultrasound applicators for interstitial hyperthermia,” Ultrasonics Symposium, Proc IEEE 1993 Baltimore, MD, USA Oct. 31-Nov. 3, 1993, New York, NY, USA, 1215-1219. |
Fjield et al., “A Parametric Study of the Concentric-Ring Transducer Design for MRI Guided Ultrasound Surgery,” J Acoust. Soc. America 100 (2) Pt. 1 (1996). |
Gervias et al., “Renal Cell Carcinoma: Clinical Experience and Technical Success with Radio-frequency Ablation of 42 Tumors,” Radiology 226 (2003) 417-424. |
Greenleaf et al., “Artificial Cavitation Nuclei Significantly Enhance Acoustically Incuded Cell Transfection,” Ultrasound Med & Biol 24 (1998) 587-595. |
Louvar et al., “Correlation of Color Doppler Flow in the Prostate with Tissue Microvascularity,” Cancer 1:83(1) (1998) 135-40. |
Miller et al., “Sonoporation of Cultured Cells in the Rotating Tube Exposure System,” Ultrasound Med & Biol 25 (1999) 143-149. |
Noble et al., “Spleen Hemostasis Using High-Intensity Ultrasound: Survival and Healing,” J. Trauma Injury, Infection, and Critical Care 53(6) (2002) 1115-1120. |
Vaezy et al., “Real-Time Visualization of High-Intensity Focused Ultrasound Treatment Using Ultrasound Imaging,” Ultrasound in Med & Biol 27(1) (2001) 33-42. |
Yankelevitz et al., “Small Pulmonary Nodules: Volumetrically Determined Growth Rates Based on CT Evaluation,” Radiology 217 (2000) 251-256. |
Banihashemi, B. et al., “Ultrasound Imaging of Apoptosis in Tumor Response: Novel Preclinical Monitoring of Photodynamic Therapy Effects.” Cancer Research, vol. 68, No. 20, Oct. 15, 2008, pp. 8590-8596. |
Singh, Seema et al. “Color Doppler Ultrasound as an Objective Assessment Tool for Chemotherapeutic Response in Advanced Breast Cancer.” Breast Cancer, 2005, vol. 12, No. 1, 2005, pp. 45-51. |
Yaman, C. et al., “Three-Dimensional Ultrasound to Assess the Response to Treatment in Gynecological Malignancies.” Gynecologic Oncology, Academic Press, vol. 97, No. 2, May 1, 2005, pp. 665-668. |
Glide-Hurst et al., “Volumetric breast density evaluation from ultrasound tomography images”, Medical Physics, vol. 35, 2008, pp. 3988-3997. |
Li et al., “In Vivo Breast Sound-Speed Imaging with Ultrasound Tomography”, Ultrasound in Med & Bioi., vol. 35, No. 10, 2009, pp. 1615-1628. |
Number | Date | Country | |
---|---|---|---|
20080275344 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60915946 | May 2007 | US |