Method and apparatus for cementing a well

Information

  • Patent Grant
  • 6267181
  • Patent Number
    6,267,181
  • Date Filed
    Friday, March 17, 2000
    24 years ago
  • Date Issued
    Tuesday, July 31, 2001
    23 years ago
Abstract
In one embodiment, the invention relates to a method or process, useful in cementing a well, especially a hydrocarbon well, which is characterized by the use of increased external and internal diameter liners, the method being characterized by provision and use of a novel liner and liner-tool assembly. Novel liner apparatus, a liner-tool assembly, and a fluid circulating tool are also disclosed.
Description




FIELD OF THE INVENTION




This invention relates to a method for cementing a well and to apparatus useful in well cementing operations.




BACKGROUND OF THE INVENTION




In the conventional drilling of a well, such as an oil well, a series of casings and/or liners are commonly installed sequentially in the wellbore or borehole. In standard practice, each succeeding liner placed in the wellbore has an outside diameter significantly reduced in size when compared to the casing or liner previously installed. Commonly, after the installation of each casing or liner, cement slurry is pumped downhole and back up into the space or annulus between the casing or liner and the wall of the wellbore, in an amount sufficient to fill the space. The cement slurry, upon setting, stabilizes the casing or liner in the wellbore, prevents fluid exchange between or among formation layers through which the wellbore passes, and prevents gas from rising up the wellbore.




The use of a series of liners which have sequentially reduced diameters is derived from long experience and is aimed at avoiding problems at the time of insertion of casing or liner installation in the wellbore. The number of liners or casings required to reach a given target location is determined principally by the properties of the formations penetrated and by the pressures of the fluids contained in the formations. If the driller encounters an extended series of high pressure/low pressure configurations, the number of liners required under such circumstances may be such that the well cannot usefully be completed because of the continued reduction of the liner diameters required. Again, a further problem of the standard well liner configuration is that large volumes of cuttings are produced initially, and heavy logistics are required during early phases of drilling.




The present invention is directed to a well lining and cementing technique or procedure, and means to carry it out, which would eliminate or significantly reduce the degree of diameter reduction required when a series of well liners must be inserted.




SUMMARY OF THE INVENTION




There is thus provided, in one embodiment, a method or process, useful in cementing a well, especially a hydrocarbon well, which is characterized by the use of increased external and internal diameter liners, i.e., by a reduction in the degree of diameter reduction of the liners required, and which does not require excessively large initial conductor casing or surface pipe. Accordingly, in this embodiment, the invention relates to a method of cementing a wellbore in which a casing or first liner is provided in a wellbore. As utilized herein, the terms “first” and “second”, etc., in relation to the casing or liners mentioned, are relative, it being understood that, after the initial “second” casing or liner is cemented, it may become a “first” liner for the next cementing operation as such operations proceed down the wellbore. Moreover, the “first” liner may actually be at a location down well if previous liner techniques have been utilized in “upper” liner sections. Regardless, the bottom end of the casing or a designated “first” liner is provided with or terminates in a specially shaped joining section (or joint) of somewhat reduced or decreased internal diameter (compared to the normal internal diameter of the casing) adapted to stabilize and/or provide support for an additional section of liner, as described more fully hereinafter.




Further drilling operations are then conducted, preferably after cementing the casing or first liner, to provide an enlarged wellbore. As used herein, the term “enlarged wellbore” refers to a wellbore or borehole having a diameter greater than that of the normal internal diameter of the casing or preceding liner, preferably greater than the largest external diameter of the casing or preceding liner, such a wellbore being provided or drilled in a manner known to those skilled in the art, as also described more fully hereinafter. At a desired depth, or when it is otherwise decided to line and cement the enlarged wellbore, there is provided in the casing or liner a liner-tool assembly which comprises a wellbore liner, having at least one port for wellbore fluid flow, and a novel fluid circulating tool disposed in the liner. The liner-tool assembly is adapted to provide a first fluid flow path for transmission of a fluid through the fluid circulating tool and the liner and into a wellbore, and a second separate fluid flow path for transmitting fluid received from exterior or outside the liner through the port or ports and through the fluid circulating tool in a direction opposite that of the first flow path. For simplicity, as used hereinafter, except where inconsistent with clearly intended meaning, e.g., in describing specific embodiments where a plurality of ports is illustrated, the term “ports”, will be understood to include a single port, the requirement of the invention being simply that sufficient flow opening or aperture be provided, although a plurality of openings is preferred. Preferably, the greatest external (outside) diameter of the liner or second liner of the liner-tool assembly approximates, i.e., is only slightly smaller, than the normal or smallest internal diameter of the casing or first liner provided. In a preferred embodiment, the liner or second novel liner comprises a minor section or segment whose outside diameter may closely approximate the normal internal diameter of the previous casing or liner and a major portion or section having an external -diameter which approximates that of the joining section or segment. The minor and major sections of the liner are joined or coupled in suitable manner, communicating preferably through a tapering section, and the liner portion or junction where they join is preferably of unitary or integral construction. The size differential between the segments permits provision of the length of the major section of the liner through the aforementioned bottom joining section and into the wellbore while retaining the minor section in the previous casing or liner in or above the bottom joining section or segment.




According to the invention, therefore, the liner-tool assembly is then positioned in the wellbore so that the ports are positioned proximate and beneath the casing in the enlarged wellbore. In the case of the preferred embodiment, the liner or second liner is positioned in relation to the enlarged wellbore, with the ports placed as mentioned, so that the minor section or segment is located or positioned in the lower portion of the casing or first liner and in such manner that the weight of the second liner may be supported by the upper or first casing or liner.




To position the liner or second liner, as described, there is disposed or provided on the drill string or tool, as part of the liner-tool assembly mentioned, inside the bore of the liner or second liner, as more fully described hereinafter, a movable, fluid circulating tool of appropriate dimensions, preferably positioned in said liner distant from the bottom of the major segment and disposed or partly disposed in the major and minor sections or segments, and which, after initial positioning or installation by the string, is fixed thereby in relation to the wellbore. The fluid circulating tool comprises a member appropriately sized and adapted or shaped to allow a separate or first fluid flow path or passage(s) for transmission of a fluid or fluids through a liner into a wellbore and, in conjunction with ports and means provided, a second fluid or flow path or passage(s) for transmission of wellbore fluid in a direction opposite that of the first fluid flow path. The invention thus provides flow without substantial or significant impediment from the annulus formed by the liner and the enlarged wellbore to the interior or bore of the casing or first liner, and up the well. The novel fluid circulating tool may further comprise or contain appropriate sealing means on the member for preventing significant passage of fluid past that portion or portions of its periphery or circumference which would otherwise be contiguous or approximately so to the interior wall or bore of the second liner, as more fully described hereinafter. The fluid circulating tool also includes means for connecting the member to a drill string, and generally cooperates with, and includes means for connecting thereto, a cementing tool assembly which comprises or includes means for transmitting a cement slurry to the bore of a liner. The fluid circulating tool connecting means are important in positioning the novel member in the enlarged wellbore initially, as described more fully hereinafter. As utilized hereinafter, the term “drill string” is understood to include tool members or collars, etc., normally utilized in wellbore operations.




According to the invention, upon proper positioning of the liner-fluid circulating tool assembly of the invention, with an attached cementing tool in the enlarged wellbore, cement slurry is then pumped down the drill string through the casing or first liner and the second liner (via the fluid circulating tool member, first fluid flow path) and into the enlarged wellbore annulus in an amount sufficient to cement the wellbore annulus. (Prior to cementing, other wellbore fluids may be present or used in the wellbore, as is common in the art, such as drilling fluid or spacer fluid.) The cement slurry displaces the wellbore fluid in the liner and the annulus formed by the liner wall and the enlarged wellbore, the wellbore fluid leaving the annulus through the ports and passages (second fluid flow path) mentioned previously.




In yet further embodiments, the invention relates to a novel liner assembly, and to a novel liner, fluid circulating tool combination. The liner assembly comprises a wellbore liner having a minor section of increased or expanded external and internal diameter communicating, preferably through a tapered or tapering section, with a larger major or remainder section of smaller external and internal diameter, the remainder portion provided with ports, and optional means for closing or sealing the ports, at a location proximate the junction of the sections. A further combination of the invention comprises the fluid circulating tool described.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

illustrates schematically the prior art practice of telescoping liner sections.





FIG. 2

illustrates schematically a liner assembly according to the invention.





FIG. 3

illustrates schematically a preferred assembly adapted for a cementing operation in a wellbore.





FIG. 4

is a vertical section of a novel fluid circulating tool according to the invention.





FIG. 5

is a horizontal section of a novel tool according to the invention.





FIG. 6

illustrates a liner and tool assembly adapted for a cementing operation.





FIG. 7

illustrates the same assembly after completion of a cementing operation.











DETAILED DESCRIPTION OF THE INVENTION




For a fuller understanding of the invention, reference is made to the drawing. Accordingly, in

FIG. 1

there is shown a wellstring


1


extending to the earth surface


2


and to conductor pipe or casing


3


. Conductor pipe


3


is positioned in the portion


4




a


of wellbore


4


, while pipe


5


is in reduced diameter section


4




b


of the same wellbore. The wellbore forms segmented annulus


6


with pipes


3


and


5


, the width of the annulus segments being the same or approximately the same. A further reduced diameter section


9


is illustrated. As is evident, standard cementing operations provide a cemented annulus which stabilizes the wellbore, but the effective diameter of the conducting passage is progressively and substantially reduced as the well is deepened.





FIG. 2

illustrates an important embodiment of the invention. Accordingly, in

FIG. 2

there is shown a liner assembly designated generally as


10


. The assembly includes the liner component


11


which, as shown, comprises a liner head section


12


which is integral with or coupled to and communicates with a main body portion or remainder segment


13


. Head section


12


is larger in external and internal diameter than segment


13


(for understanding, the figure exaggerates the diameter size differential). Alternately, segment


13


may be conceived as having somewhat smaller or reduced external and internal diameter compared with segment


12


. In a practical case, the external diameter of segment


12


may be larger than that of major segment


13


by a few millimeters or so, the internal diameters normally varying correspondingly. As will be understood by those skilled in the art, a “liner” or “casing” will be composed of segments or sections assembled and coupled by suitable means, such as by threaded connections. In the present invention, the major section


13


may be formed or composed of one section or less of liner, but will normally comprise many sections (each 30 ft.) to the end or bottom end thereof. As a practical matter, in providing the liner in the wellbore, all but the last section will be positioned in the wellbore, and the last section containing the larger diameter segment will be assembled with the fluid circulating tool, a cementing tool, and other operational structure for connection to the rest and lowering into the wellbore to the desired depth. In this embodiment, segments


12


and


13


are connected through an optional tapered segment or section


14


. As illustrated, the segment


12


and tapered section


14


together form a generally frusto-conical liner shape whose smaller base would have a diameter corresponding to that of the major segment of liner


11


. The angle of the taper may be varied considerably, but will preferably range from 1° to 25°, most preferably from 2° to 10°. The angle of taper is that angle formed by the juncture of a line in the interior surface of the taper extended to the axis of the major section, the angle of taper being at least substantially uniform around the tapered section for a particular segment utilized. In general, the angle of taper is determined by the weight of the liner to be supported and the characteristics of the section. However, head section


12


and section


13


may be connected by other equivalent joining means, such as by a reducing joint (not shown). An elastic or compressible sleeve (e.g., rubber) or sleeves


15


are provided at least in the tapered section


14


for centering and sealing, preferably also, as shown, in the head section


12


. The liner assembly is further provided with means for preventing upward movement of the liner once positioned in place in the wellbore, such as locking keys or dogs


17


, which are mounted on section


13


of the liner. The locking keys


17


secure the liner assembly from upward movement, e.g., from a sudden well eruption. The locking keys


17


are nested in or may trail liner


11


during insertion or lowering of the liner through the casing, and are mounted and actuated by suitable means described more fully hereinafter. Ports


18


are provided for entry of fluid from the wellbore, the ports being shown as closed by optional closure or sealing means, such as sliding or rotating sleeves, an illustrated or described more fully hereinafter. A slight cylindrical recess


19


(shown with dotted line) may be provided around the interior surface of the liner for accommodation of a sleeve or other sealing means, the recess extending upward for easier translation of the sleeve and allowing positioning of such means to provide alternate opening and obstruction or sealing of ports


18


.




Liner segment


13


may be provided with suitable partial sealing means


16


, such as a differential fill-up collar, and additional centering means (not shown), at or near the end of the liner opposite the minor section to allow ingress of fluid into the liner during insertion thereof in the enlarged wellbore, seal the liner from ingress of fluid from the wellbore after its insertion, and prevent egress of fluid from the bore of segment


13


(as described more fully hereinafter). As will be evident to those skilled in the art, the liner and cementing components or tool disposed therein may suitably be provided in or lowered into a wellbore as a unit, to the purpose that, upon completion of the cementing technique described more fully hereinafter, a suitable cemented liner combination of genuine advantage is obtained.




The procedure of the invention and operation of the novel apparatus of the invention are understood more fully by reference to

FIGS. 3 through 7

. Elements previously described with respect to

FIGS. 1 and 2

are shown or referred to by identical numbers. Accordingly, in

FIG. 3

the liner assembly


10


is provided in a wellbore


30


, such as a hydrocarbon (e.g., oil or gas) wellbore, and positioned in relation to cemented casing


31


, as shown. Liner assembly


10


is formed by first fitting together and lowering liner sections into the wellbore in normal fashion to form the greater length of the major section, and then, for example, fitting and coupling thereto a section comprising a minor portion of increased diameter and containing the novel components of the invention, as hereinafter described. The completed liner is then lowered into the wellbore and positioned, as shown, by means of a novel fluid circulating tool


32


. Wellbore


30


has a diameter greater than the external diameter of casing


31


, such wellbores being obtainable by use of a bi-center bit, under-reamer bit, or similar tool known to those skilled in the art. The external diameter of liner segment


12


is preferably just slightly smaller than the internal or, preferably, the drift, diameter of casing


31


, being just sufficiently smaller to allow translation thereof through casing


31


. The section


12


is shown as positioned and the tapered section


14


nested at the area of reduced internal diameter


33


of the casing or liner


31


(or joint) so that liner


10


cannot be lowered further into the wellbore. Means


17


, such as the locking keys mentioned, are utilized to lock the liner


10


and prevent upward movement thereof. The locking keys


17


are preferably mounted on pins in recesses in liner


11


in known fashion, e.g., as commonly employed in tubing locators, and are spring biased to provide outward movement from the liner when clearance of section


33


is obtained. In

FIG. 3

, ports


19


are shown as open. A sliding sleeve


34


is provided, for closing of the ports


18


, by suitable mechanism, as described more fully hereinafter. A slight cylindrical recess (not shown) is provided around the interior surface of the liner for accommodation of sleeve


34


, the recess extending upward for easier translation of the sleeve and allowing the positioning of sleeve


34


to provide alternate opening and obstruction of ports


18


. Additional detail of liner


11


is illustrated in

FIGS. 6 and 7

.




Fluid circulating tool


32


comprises tool member or body


35


which provides means for lowering the liner into a wellbore, for allowing the removal of fluid from the wellbore annulus


36


to permit cementing of the annulus, and for stabilizing the liner during cementing. Referring to

FIGS. 4 through 7

, which illustrate aspects of tool member


35


and its use and assembly with liner


11


in greater detail, body member


35


has a principal, preferably central, bore or passage


40


and has means, such as threads


41




a


and


41




b


, or equivalents thereof, for positioning or suspending the body member on a drill string and for supporting a tool, respectively. Member


35


also possesses one or more passages or channels


42


, preferably radially disposed from the central bore, to allow passage of fluid from the end


43


of member


35


to and through the end


44


of the member.

FIG. 5

illustrates a preferred cross section of member


35


, channel


40


being centered and the channels


42


being positioned or spaced radially around the tool member so as to provide communication with the ports


18


when the ports are unsealed. Each channel


42


terminates at its end


45


in such manner that good communication may be made with ports


18


. Other channel configurations (not shown) may be employed, e.g., passage


40


may comprise more than one channel, and channels


42


may be irregularly spaced. Shear pins


46


, whose purpose is described more fully hereinafter, are provided appropriately positioned at the lower end of tool member


35


. Additionally, grooves


48


and


49


, which contain o-ring sealing members


50


and


51


, respectively, are provided in the lower section


43


, as shown, for providing an effective seal between the outer surface of the tool member and the inner surface of the liner


11


. Seals


50


and


51


, together with the positioning of channel


40


and channels ensure separate flow passages for fluids into liner segment


13


and from enlarged borehole


36


back into the liner or casing. Means


52


, such as right hand threads, or other suitable means, are provided for connecting the tool member


35


to a liner, to the end that proper support may be provided when the liner is being lowered into a wellbore.





FIGS. 6 and 7

illustrate the combination of fluid circulating tool and liner assembly, to the purpose that an advantageous cementing arrangement and procedure are provided. More particularly, as shown in

FIG. 6

, tool member


35


is positioned so that the end


45


of channel


42


communicates with ports


18


of liner


11


. The sliding sleeve


34


comprises a cylindrical member slidably disposed in liner


11


. Sleeve


34


is slidable between a lower open position, illustrated in

FIG. 6

, whereby the ports


18


are uncovered and an upper closed position shown in FIG.


7


. At least one shear pin


60


, or other similar shear means, is provided between liner


11


and sliding sleeve


34


for holding the sliding sleeve in the lower open port position until closing of ports


18


is desired, as described hereinafter. The sliding sleeve


34


further comprises a continuous annular groove


61


formed in the external surface thereof. An expandable locking ring


62


is disposed in the groove, as shown. A circular groove


63


, which is of size and shape complimentary to the ring


62


, is formed in the inner surface of liner


11


, and is positioned with respect to ring


62


so that when shear pin


60


is sheared and sliding sleeve


34


is moved upward, the expandable locking ring


62


expands into the groove


63


and locks the sliding. ring in position, blocking or sealing ports


18


. If the interior surface of the liner has been recessed (not shown) for assisting movement of sliding ring


34


, the reduction in liner thickness will preferably extend to a point on the interior surface past groove


63


. Sliding ring


34


may be provided with upward movement by upward movement of the tool member


35


and the action of shear pins


46


which force the ring upward when tool member


35


is moved upward in the wellbore.

FIG. 7

illustrates this arrangement of the assembly in which ports


18


are blocked or sealed by upward repositioning of sliding sleeve


34


. As will be apparent to those skilled in the art, shear pins


46


must have greater shear resistance than pin or pins


60


. Liner


11


is provided with threads


64


, as indicated, for cooperation with threads


52


to permit lowering of the liner into the wellbore and for securing the liner during cementing operations. The end portion


43


of member


35


is thus adapted to or provided with suitable structure to provide closed channels for fluid entering from ports


18


, when the ends of channel


42


are positioned proximate the ports


18


and the sleeve


34


is appropriately positioned. The invention thus allows a cementing operation to be conducted which provides the advantages mentioned. More particularly, with the liner assembly, with cementing operation components, positioned in the enlarged wellbore, as shown, fluids, e.g., drilling mud or cement slurry, may be passed down the string


1


and via the pipe or bore


40


into the liner segment


13


or suitable tools or structure therein, described more fully hereinafter, out of the liner segment


13


, and into the wellbore annulus


36


. A preferred cementing assembly


72


(

FIG. 3

) includes suitable mounting means or connecting means


73


, such as a threaded connector section for connecting to the tool member


35


, as well as other cementing operation components, indicated generally, such as wiper plug launching apparatus, as described, for example, in U. S. Ser. No. 08/805,782, filed Feb. 25, 1997, by Gilbert Lavaure, Jason Jonas, and Bernard Piot, incorporated herein by reference.




As previously mentioned, liner segment


13


is provided with suitable structure


16


, at or near the end of the major segment of the liner, disposed from the tool mm. ber


35


, to allow ingress of fluid from the wellbore, such as a displacement fluid, during insertion of the liner, and sealing of the liner from ingress of cement slurry after cementing. In the usual case, a differential fill-up collar will be employed at or near the bottom of the liner to prevent wellbore fluids from entering the liner, and any suitable such collar or similar device may be employed. A variety of such devices are described in


Well Cementing


, edited by E. I. Nelson, Schlumberger Educational Services (1990), and the selection of a particular device is well within the ambit of those skilled in the art. Additionally, in order to seal the bottom of the liner after the cement has been placed in the wellbore annulus, as more fully described hereinafter, suitable sealing means, known to those skilled in the art, may be provided. Preferably, the wiper plug system described in the aforementioned Ser. No. 08/805782 may be employed, to the effect that a fluid tight seal is formed at the end of the liner distant from the assembly, or the bottom of the liner.




To conduct such a cementing operation, the liner, fluid circulating tool, and cementing components are assembled and positioned in the wellbore as shown in

FIG. 6

, ports


18


being open to allow wellbore fluids to pass through channel


42


and up the wellbore. Because of the novel invention configuration, hanger elements are not required. Following standard cementing procedures, cement slurry may be pumped downhole through the string


1


and through liner


11


via bore or pipe


40


through the cement flow distributor of tool


72


, which may be that of the aforementioned wiper plug launching system, and out the bottom of the liner through open means


16


. The cement slurry displaces the wellbore fluid and/or a suitable spacer fluid between the cement slurry and the fluid in the wellbore annulus, the wellbore fluid and/or spacer fluid passing from annulus


36


through open ports


18


, channels


42


, and into the bore of caning


31


without substantial impediment. The advantage of the internal flow removal of the annulus fluids according to the invention is demonstrated at this juncture. A wider cross section for production fluids can be achieved by the ability of the invention to remove fluids from the borehole annulus. Sealing means


16


at the bottom of liner section


13


is then sealed to the ingress and egress of fluid. In the normal case, after cement slurry sufficient to fill annulus


36


has been sent into the annulus, a wiper plug, which is solid, is sent downhole from the plug launching mechanism of assembly


72


to seal, with the differential fillup collar, the bottom of liner


11


. As mentioned, the technique of the aforementioned Ser. No. 08/805782 is preferred. Ports


18


may then be closed by raising sliding ring


34


. To raise sliding ring


34


, the tool member


35


is first freed from liner


11


by unscrewing threads


52


so that the tool member


35


may, be raised in the wellbore. When the tool member


35


is free, tool member


35


is raised in the wellbore, moving pins


46


upward. Movement of tool member


35


and pins


46


upward shears pin or pins


60


and forces sliding ring


34


upward to the position shown in

FIG. 7

, locking ring


62


in groove


63


. The cement may then be allowed to set before removing tool


35


from the wellbore, or tool


35


may be removed immediately. To remove tool


35


, the tool is raised further by the running string, shearing pins


46


. Sliding ring


34


remains in place because of the action of locking ring


62


, blocking flow through ports


18


. A stabilized wellbore, with increased flow capability over conventional liner sequence technique, is produced.




As will be evident to those skilled in the art, the invention allows the use of liners of decreased wall thickness and greater internal diameters, with their attendant advantages, while providing the stability derived from a cemented wellbore. This achievement is made possible by the novel combination of features of the invention, particularly the drilling of an enlarged wellbore, thus retaining the ability to cement the wellbore, provision of means to remove the wellbore fluids expeditiously.




While the invention has been described with reference to specific embodiments, it is understood that various modifications and ebodiments will be suggested to those skilled in the art upon reading and understanding this disclosure. For example, if desired, in some cases, the sealing means may be omitted or not employed, the cement filling the enlarged annulus simply being allowed to set and seal the ports. In such case the exit channel(s) of the fluid circulation tool member still allow the wellbore fluids to be removed with the attendant advantages of the invention. The tool member is not restricted to the specific structures illustrated, and those skilled in the art may provide, if desired, suitable sealing means for the ports on the tool member. Similarly, if utilized, other means for sealing the ports than the sliding sleeve may be employed, if utilized. Accordingly, it is intended that all such modifications and embodiments be included within the invention and that the scope of the invention be limited only by the appended claims.



Claims
  • 1. A wellbore liner assembly comprising a wellbore liner having a minor section of increased external and internal diameter joined to and communicating with a larger major section of smaller external and internal diameter, the major section provided with sealable ports proximate the junction of the major and minor sections.
  • 2. The apparatus of claim 1 wherein sealing means are provided for sealing the sealable ports.
  • 3. Apparatus comprising a casing having a uniform internal diameter, and its smallest internal diameter, at its bottom and terminating in a joining section of decreased internal diameter compared to the internal diameter of the remainder of the casing;a liner assembly comprising a wellbore liner having a minor section of increased external and internal diameter joined to and communicating with a larger major section of smaller external and internal diameter, the major section provided with sealable ports proximate the junction of the major and minor sections, said minor section having an external diameter approximating the internal diameter of the remainder of the casing and disposed in the bore of the casing above the joining section, with the casing being of uniform diameter above the minor section, and said major section being disposed such that its sealable ports are proximate and beneath the joining section.
  • 4. Apparatus comprising:(a) a casing terminating in a joining section of decreased internal diameter compared to the internal diameter of the remainder of the casing: (b) a liner assembly comprising a wellbore liner having a minor section of increased external and internal diameter joined to and communicating with a larger major section of smaller external and internal diameter, the major section provided with ports proximate the junction of the major and minor sections said minor section having an external diameter approximating the internal diameter of the casing and disposed in the bore of the casing, and said major section disposed such that its ports are proximate and beneath the joining section; and (c) means for sealing provided to seal the ports.
  • 5. The apparatus of claim 4 having a fluid circulating tool disposed in the liner assembly, said fluid circulating tool comprising a tool member having at least one first passage positioned for transmission of fluid into the major section, and at least one second passage positioned to communicate with said ports to provide a second fluid flow path, for a wellbore fluid, without substantial or significant impediment, from the ports to the interior of the casing.
  • 6. The apparatus of claim 5 in which means are provided inside the liner for sealing the ports and the tool member is provided with means for actuating the means for sealing the ports.
  • 7. The apparatus of claim 4 comprising at least one sleeve composed of a compressible material mounted on the periphery of the minor section.
  • 8. The apparatus of claim 7 in which the compressible material is rubber.
  • 9. The apparatus of claim 5 wherein means for releasably joining the liner and the fluid circulating tool are provided.
  • 10. The apparatus of claim 4 wherein the means for sealing comprises a sliding sleeve.
  • 11. The apparatus of claim 6 wherein the actuating means comprises pins mounted on the tool member.
  • 12. The apparatus of claim 9 wherein the major section of liner comprises an internal cylindrical recess for accommodation of the sliding sleeve.
  • 13. The liner assembly of claim 1 wherein a completely tapered section extends from and connects the minor section to the major section.
  • 14. The liner of claim 4 wherein the major and minor sections are joined through a tapered section.
  • 15. The liner of claim 4 wherein the major and minor sections are joined through a reducing joint.
  • 16. The apparatus of claim 9 wherein the liner and fluid circulating tool comprise threaded sections adapted for releasably joining the liner and the fluid circulating tool.
Parent Case Info

This is a division of application Ser. No. 08/960,513 filed on Oct. 29, 1997, now U.S. Pat. No. 6,098,710.

US Referenced Citations (12)
Number Name Date Kind
226185 Newell et al. Apr 1880
3050121 Garrett et al. Aug 1962
3347319 Littlejohn Oct 1967
3842912 Lindsey, Jr. Oct 1974
3865188 Doggett et al. Feb 1975
4044832 Richard et al. Aug 1977
4147213 Hollingsworth Apr 1979
4396064 Dearth Aug 1983
4602684 Van Wormer et al. Jul 1986
4619326 Van Mierlo Oct 1986
5803177 Hriscu et al. Sep 1998
6109356 Echols et al. Aug 2000