Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells

Information

  • Patent Grant
  • 7228901
  • Patent Number
    7,228,901
  • Date Filed
    Thursday, December 1, 2005
    19 years ago
  • Date Issued
    Tuesday, June 12, 2007
    17 years ago
Abstract
The steel drill string attached to a drilling bit during typical rotary drilling operations used to drill oil and gas wells is used for a second purpose as the casing that is cemented in place during typical oil and gas well completions. Methods of operation are described that provide for the efficient installation a cemented steel cased well wherein the drill string and the drill bit are cemented into place during one single drilling pass down into the earth. The normal mud passages or watercourses present in the rotary drill bit are used for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single pass into the earth. A one-way cement valve is installed near the drill bit of the drill string that allows the cement to set up efficiently under ambiently hydrostatic conditions while the drill string and drill bit are cemented into place during one single drilling pass into the earth.
Description
BACKGROUND OF THE INVENTION

1. Field of Invention


The field of invention relates to apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions. The field of invention further relates to methods of operation of said apparatus that provides for the efficient installation a cemented steel cased well during one single pass down into the earth of the steel drill string. The field of invention further relates to methods of operation of the apparatus that uses the typical mud passages already present in a typical drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single drilling pass into the earth. The field of invention further relates to apparatus and methods of operation that provides the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation. The field of invention further relates to a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation.


2. Description of the Prior Art


From an historical perspective, completing oil and gas wells using rotary drilling techniques has in recent times comprised the following typical steps. With a pile driver or rotary rig, install any necessary conductor pipe on the surface for attachment of the blowout preventer and for mechanical support at the wellhead. Install and cement into place any surface casing necessary to prevent washouts and cave-ins near the surface, and to prevent the contamination of freshwater sands as directed by state and federal regulations. Choose the dimensions of the drill bit to result in the desired sized production well. Begin rotary drilling of the production well with a first drill bit. Simultaneously circulate drilling mud into the well while drilling. Drilling mud is circulated downhole to carry rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. After the first bit wears out, pull the drill string out, change bits, lower the drill string into the well and continue drilling. It should be noted here that each “trip” of the drill bit typically requires many hours of rig time to accomplish the disassembly and reassembly of the drill string, pipe segment by pipe segment.


Drill the production well using a succession of rotary drill bits attached to the drill string until the hole is drilled to its final depth. After the final depth is reached, pull out the drill string and its attached drill bit. Assemble and lower the production casing into the well while back filling each section of casing with mud as it enters the well to overcome the buoyancy effects of the air filled casing (caused by the presence of the float collar valve), to help avoid sticking problems with the casing, and to prevent the possible collapse of the casing due to accumulated build-up of hydrostatic pressure.


To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination problems comprised of the following individual steps. Introduce the Bottom Wiper Plug into the interior of the steel casing assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement. Introduce the Top Wiper Plug into the interior of the steel casing assembled into the well and pump down with water under pump pressure thereby forcing the cement through the float collar valve and any other one-way valves present. Allow the cement to cure.


SUMMARY OF THE INVENTION

Apparatus and methods of operation of that apparatus are disclosed that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The process of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures. Apparatus and methods of operation of the apparatus are disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some 14 steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in the Description of the Preferred Embodiments below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in the Description of the Preferred Embodiments below. In addition, the New Drilling Process also requires new apparatus to properly allow the cement to cure under ambient hydrostatic conditions. That new apparatus includes a Latching Subassembly, a Latching Float Collar Valve Assembly, the Bottom Wiper Plug, and the Top Wiper Plug. Suitable methods of operation are disclosed for the use of the new apparatus.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a section view of a drill string in the process of being cemented in place during one drilling pass into formation with a preferred embodiment of the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Apparatus and methods of operation of that apparatus are disclosed herein in the preferred embodiments of the invention that allow for cementation of a drill string with attached drill bit into place during one single drilling pass into a geological formation. The drill bit is the cutting or boring element used in drilling oil and gas wells. The method of drilling the well and installing the casing becomes one single process that saves installation time and reduces costs during oil and gas well completion procedures as documented in the following description of the preferred embodiments of the invention. Apparatus and methods of operation of the apparatus are disclosed herein that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place.



FIG. 1 shows a section view of a drill string in the process of being cemented in place during one drilling pass into formation. Often, the drill string is the term loosely applied to both drill pipe and drill collars. Drill collars provide weight on the bit to keep it in firm contact with the bottom of the hole. Drill collars are primarily used to supply weight to the bit for drilling and to maintain weight to keep the drill string from bending or buckling. They also prevent doglegs by supporting and stabilizing the bit. A borehole 2 is drilled though the earth including geological formation 4. The borehole is the wellbore, or the hole made by drilling or boring. Drilling is boring a hole in the earth, usually to find and remove subsurface formation fluids such as oil and gas. The borehole 2 is drilled with a milled tooth rotary drill bit 6 having milled steel roller cones 8, 10, and 12 (not shown for simplicity). A standard water passage 14 is shown through the rotary cone drill bit. This rotary bit could equally be a tungsten carbide insert roller cone bit having jets for waterpassages, the principle of operation and the related apparatus being the same for either case for the preferred embodiment herein.


Where formations are relatively soft, a jet deflection bit may be employed in directional drilling to deviate the hole. Directional drilling is the intentional deviation of a wellbore from the vertical. Controlled directional drilling makes it possible to reach subsurface areas laterally remote from the point where the bit enters the earth. For a jet deflection bit, a conventional roller cone bit is modified by equipping it with one oversize nozzle and closing off or reducing others, or by replacing a roller cone with a large nozzle. The drill pipe and special bit are lowered into the hole, and the large jet is pointed so that, when pump pressure is applied, the jet washes out the side of the hole in a specific direction. The large nozzle erodes away one side of the hole so that the hole is deflected off vertical. The large amount of mud emitted from the enlarged jet washes away the formation in front of the bit, and the bit follows the path of least resistance. The path of the wellbore is the trajectory.


A basic requirement in drilling a directional well is some means of changing the course of the hole. Generally, a driller either uses a specially-designed deflection tool or modifies the bottomhole assembly he is using to drill ahead. A bottomhole assembly is a combination of drill collars, stabilizers, and associated equipment made up just above the bit. Ideally, altering the bottomhole assembly in a particular way enables the driller to control the amount and direction of bending and thereby to increase, decrease, or maintain drift angle as desired.


Deflection tools cause the bit to drill in a preferred direction because of the way the tool is designed or made up in the drill string. A stabilizer may be used to change the deviation angle in a well by controlling the location of the contact point between the hole and drill collars. The stabilizer is a tool placed near the bit, and often above it, in the drilling assembly. Conversely, stabilizers are used to maintain correct hole angle. To maintain hole angle, the driller may use a combination of large, heavy drill collars and stabilizers to minimize or eliminate bending. Any increase in stabilization of the bottomhole assembly increases the drift diameter of the hole being drilled. Stabilizers must be adequately supported by the wall of the hole if they are to effectively stabilize the bit and centralize the drill collars.


The threads 16 on rotary drill bit 6 are screwed into the Latching Subassembly 18. The Latching Subassembly 18 is also called the Latching Sub for simplicity herein. The Latching Sub 18 is a relatively thick-walled steel pipe having some functions similar to a standard drill collar.


The Latching Float Collar Valve Assembly 20 is pumped downhole with drilling mud after the depth of the well is reached. The Latching Float Collar Valve Assembly 20 is pumped downhole with mud pressure pushing against the Upper Seal 22 of the Latching Float Collar Valve Assembly 20. The Latching Float Collar Valve Assembly 20 latches into place into Latch Recession 24. The Latch 26 of the Latching Float Collar Valve Assembly 20 is shown latched into place with Latching Spring 28 pushing against Latching Mandrel 30.


The Float 32 of the Latching Float Collar Valve Assembly 20 seats against the Float Seating Surface 34 under the force from Float Collar Spring 36 that makes a one-way cement valve. However, the pressure applied to the mud or cement from the surface may force open the Float to allow mud or cement to be forced into the annulus generally designated as 38 in FIG. 1. This one-way cement valve is a particular example of “a one-way cement valve means installed near the drill bit” which is a term defined herein. The one-way cement valve means may be installed at any distance from the drill bit but is preferentially installed “near” the drill bit.



FIG. 1 corresponds to the situation where cement is in the process of being forced from the surface through the Latching Float Collar Valve Assembly 20. In fact, the top level of cement in the well is designated as element 40. Below 40, cement fills the annulus of the borehole 2. Above 40, mud fills the annulus of the borehole 2. For example, cement is present at position 42 and drilling mud is present at position 44 in FIG. 1.


Relatively thin-wall casing, or drill pipe, designated as element 46 in FIG. 1, is attached to the Latching Sub 18. The bottom male threads of the drill pipe 48 are screwed into the female threads 50 of the Latching Sub 18.


The drilling mud was wiped off the walls of the drill pipe 48 in the well with Bottom Wiper Plug 52. The Bottom Wiper Plug 52 is fabricated from rubber in the shape shown. Portions 54 and 56 of the Upper Seal of the Bottom Wiper Plug 52 are shown in a ruptured condition in FIG. 1. Initially, they sealed the upper portion of the Bottom Wiper Plug 52. Under pressure from cement, the Bottom Wiper Plug 52 is pumped down into the well until the Lower Lobe 58 of the Bottom Wiper Plug 52 latches into place into Latching Sub Recession 60 in the Latching Sub 18. After the Bottom Wiper Plug 52 latches into place, the pressure of the cement ruptures the Upper Seal of the Bottom Wiper Plug 52. A Bottom Wiper Plug Lobe 62 is shown in FIG. 1. Such lobes provide an efficient means to wipe the mud off the walls of the drill pipe 48 while the Bottom Wiper Plug 52 is pumped downhole with cement.


Top Wiper Plug 64 is being pumped downhole by water 66 under pressure in the drill pipe. As the Top Wiper Plug 64 is pumped down under water pressure, the cement remaining in region 68 is forced downward through the Bottom Wiper Plug 52, through the Latching Float Collar Valve Assembly 20, through the waterpassages of the drill bit and into the annulus in the well. A Top Wiper Plug Lobe 70 is shown in FIG. 1. Such lobes provide an efficient means to wipe the cement off the walls of the drill pipe while the Top Wiper Plug 64 is pumped downhole with water.


After the Bottom Surface 72 of the Top Wiper Plug 64 is forced into the Top Surface 74 of the Bottom Wiper Plug 52, almost the entire “cement charge” has been forced into the annulus between the drill pipe and the hole. As pressure is reduced on the water, the Float of the Latching Float Latching Float Collar Valve Assembly 20 seals against the Float Seating Surface. As the water pressure is reduced on the inside of the drill pipe, then the cement in the annulus between the drill pipe and the hole can cure under ambient hydrostatic conditions. This procedure herein provides an example of the proper operation of a “one-way cement valve means”.


Therefore, the preferred embodiment in FIG. 1 provides apparatus that uses the steel drill string attached to a drilling bit during drilling operations used to drill oil and gas wells for a second purpose as the casing that is cemented in place during typical oil and gas well completions.


The preferred embodiment in FIG. 1 provides apparatus and methods of operation of said apparatus that results in the efficient installation of a cemented steel cased well during one single pass down into the earth of the steel drill string thereby making a steel cased borehole or cased well.


The steps described herein in relation to the preferred embodiment in FIG. 1 provides a method of operation that uses the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, that allow mud to circulate during typical drilling operations for the second independent, and the distinctly separate, purpose of passing cement into the annulus between the casing and the well while cementing the drill string into place during one single pass into the earth.


The preferred embodiment of the invention further provides apparatus and methods of operation that result in the pumping of cement down the drill string, through the mud passages in the drill bit, and into the annulus between the formation and the drill string for the purpose of cementing the drill string and the drill bit into place during one single drilling pass into the formation.


The apparatus described in the preferred embodiment in FIG. 1 also provide a one-way cement valve and related devices installed near the drill bit of the drill string that allows the cement to set up efficiently while the drill string and drill bit are cemented into place during one single drilling pass into the formation.


Methods of operation of apparatus disclosed in FIG. 1 have been disclosed that use the typical mud passages already present in a typical rotary drill bit, including any watercourses in a “regular bit”, or mud jets in a “jet bit”, for the second independent purpose of passing cement into the annulus between the casing and the well while cementing the drill string in place. This is a crucial step that allows a “Typical Drilling Process” involving some 14 steps to be compressed into the “New Drilling Process” that involves only 7 separate steps as described in detail below. The New Drilling Process is now possible because of “Several Recent Changes in the Industry” also described in detail below.


Typical procedures used in the oil and gas industries to drill and complete wells are well documented. For example, such procedures are documented in the entire “Rotary Drilling Series” published by the Petroleum Extension Service of the University of Texas at Austin, Austin, Tex. that is included herein by reference in its entirety comprised of the following: Unit I—“The Rig and Its Maintenance” (12 Lessons); Unit II—“Normal Drilling Operations” (5 Lessons); Unit III—Nonroutine Rig Operations (4 Lessons); Unit IV—Man Management and Rig Management (1 Lesson); and Unit V—Offshore Technology (9 Lessons). All of the individual Glossaries of all of the above Lessons are explicitly included in the specification herein and any and all definitions in those Glossaries shall be considered explicitly referenced herein.


Additional procedures used in the oil and gas industries to drill and complete wells are well documented in the series entitled “Lessons in Well Servicing and Workover” published by the Petroleum Extension Service of the University of Texas at Austin, Austin, Tex. that is included herein by reference in its entirety comprised of all 12 Lessons. All of the individual Glossaries of all of the above Lessons are explicitly included in the specification herein and any and all definitions in those Glossaries shall be considered explicitly referenced herein.


With reference to typical practices in the oil and gas industries, a typical drilling process may therefore be described in the following.


Typical Drilling Process


From an historical perspective, completing oil and gas wells using rotary drilling techniques has in recent times comprised the following typical steps:


Step 1


With a pile driver or rotary rig, install any necessary conductor pipe on the surface for attachment of the blowout preventer and for mechanical support at the wellhead.


Step 2


Install and cement into place any surface casing necessary to prevent washouts and cave-ins near the surface, and to prevent the contamination of freshwater sands as directed by state and federal regulations.


Step 3


Choose the dimensions of the drill bit to result in the desired sized production well. Begin rotary drilling of the production well with a first drill bit. Simultaneously circulate drilling mud into the well while drilling. Drilling mud is circulated downhole to carry rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. After the first bit wears out, pull the drill string out, change bits, lower the drill string into the well and continue drilling. It should be noted here that each “trip” of the drill bit typically requires many hours of rig time to accomplish the disassembly and reassembly of the drill string, pipe segment by pipe segment.


Step 4


Drill the production well using a succession of rotary drill bits attached to the drill string until the hole is drilled to its final depth.


Step 5


After the final depth is reached, pull out the drill string and its attached drill bit.


Step 6


Perform open-hole logging of the geological formations to determine the amount of oil and gas present. This typically involves measurements of the porosity of the rock, the electrical resistivity of the water present, the electrical resistivity of the rock, certain neutron measurements from within the open-hole, and the use of Archie's Equations. If no oil and gas is present from the analysis of such open-hole logs, an option can be chosen to cement the well shut. If commercial amounts of oil and gas are present, continue the following steps.


Step 7


Typically reassemble drill bit and drill string into the well to clean the well after open-hole logging.


Step 8


Pull out the drill string and its attached drill bit.


Step 9


Attach the casing shoe into the bottom male pipe threads of the first length of casing to be installed into the well. This casing shoe may or may not have a one-way valve (“casing shoe valve”) installed in its interior to prevent fluids from back-flowing from the well into the casing string.


Step 10


Typically install the float collar onto the top female threads of the first length of casing to be installed into the well which has a one-way valve (“float collar valve”) that allows the mud and cement to pass only one way down into the hole thereby preventing any fluids from back-flowing from the well into the casing string. Therefore, a typical installation has a casing shoe attached to the bottom and the float collar valve attached to the top portion of the first length of casing to be lowered into the well. Please refer to pages 28-31 of the book entitled “Casing and Cementing” Unit II Lesson 4, Second Edition, of the Rotary Drilling Series, Petroleum Extension Service, The University of Texas at Austin, Tex., 1982 (hereinafter defined as “Ref. 1”). All of the individual definitions of words and phrases in the Glossary of Ref. 1 are explicitly included herein in their entirety.


Step 11


Assemble and lower the production casing into the well while back filling each section of casing with mud as it enters the well to overcome the buoyancy effects of the air filled casing (caused by the presence of the float collar valve), to help avoid sticking problems with the casing, and to prevent the possible collapse of the casing due to accumulated build-up of hydrostatic pressure.


Step 12


To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination problems comprised of the following individual steps:

    • A. Introduce the Bottom Wiper Plug into the interior of the steel casing assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement (Ref. 1, pages 28-31).
    • B. Introduce the Top Wiper Plug into the interior of the steel casing assembled into the well and pump down with water under pump pressure thereby forcing the cement through the float collar valve and any other one-way way valves present (Ref. 1, pages 28-31).
    • C. After the Bottom Wiper Plug and the Top Wiper Plug have seated in the float collar, release the pump pressure on the water column in the casing that results in the closing of the float collar valve which in turn prevents cement from backing up into the interior of the casing. The resulting interior pressure release on the inside of the casing upon closure of the float collar valve prevents distortions of the casing that might prevent a good cement seal (Ref. 1, page 30). In such circumstances, “the cement is cured under ambient hydrostatic conditions”.


      Step 13


Allow the cement to cure.


Step 14


Follow normal “final completion operations” that include installing the tubing with packers and perforating the casing near the producing zones. For a description of such normal final completion operations, please refer to the book entitled “Well Completion Methods”, Well Servicing and Workover, Lesson 4, from the series entitled “Lessons in Well Servicing and Workover”, Petroleum Extension Service, The University of Texas at Austin, Tex., 1971 (hereinafter defined as “Ref. 2”). All of the individual definitions of words and phrases in the Glossary of Ref. 2 are explicitly included herein in their entirety. Other methods of completing the well are described therein that shall, for the purposes of this application herein, also be called “final completion operations”.


Several Recent Changes in the Industry


Several recent concurrent changes in the industry have made it possible to reduce the number of steps defined above. These changes include the following:

    • a. Until recently, drill bits typically wore out during drilling operations before the desired depth was reached by the production well. However, certain drill bits have recently been able to drill a hole without having to be changed. For example, please refer to the book entitled “The Bit”, Unit I, Lesson 2, Third Edition, of the Rotary Drilling Series, The University of Texas at Austin, Tex., 1981 (hereinafter defined as “Ref. 3”). All of the individual definitions of words and phrases in the Glossary of Ref. 3 are explicitly included herein in their entirety. On page 1 of Ref. 3 it states: “For example, often only one bit is needed to make a hole in which the casing will be set.” On page 12 of Ref. 3 it states in relation to tungsten carbide insert roller cone bits: “Bit runs as long as 300 hours have been achieved; in some instances, only one or two bits have been needed to drill a well to total depth.” This is particularly so since the advent of the sealed bearing tri-cone bit designs appeared in 1959 (Ref. 3, page 7) having tungsten carbide inserts (Ref. 3, page 12). Therefore, it is now practical to talk about drill bits lasting long enough for drilling a well during one pass into the formation, or “one pass drilling”.
    • b. Until recently, it has been impossible or impractical to obtain sufficient geophysical information to determine the presence or absence of oil and gas from inside steel pipes in wells. Heretofore, either standard open-hole logging tools or Measurement-While-Drilling (“MWD”) tools were used in the open-hole to obtain such information. Therefore, the industry has historically used various open-hole tools to measure formation characteristics. However, it has recently become possible to measure the various geophysical quantities listed in Step 6 above from inside steel pipes such as drill strings and casing strings. For example, please refer to the book entitled “Cased Hole Log Interpretation Principles/Applications”, Schlumberger Educational Services, Houston, Tex., 1989. Please also refer to the article entitled “Electrical Logging: State-of-the-Art”, by Robert E. Maute, The Log Analyst, May-June 1992, pages 206-227.


Because drill bits typically wore out during drilling operations until recently, different types of metal pipes have historically evolved which are attached to drilling bits, which, when assembled, are called “drill strings”. Those drill strings are different than typical “casing strings” run into the well. Because it was historically absolutely necessary to do open-hole logging to determine the presence or absence of oil and gas, the fact that different types of pipes were used in “drill strings” and “casing strings” was of little consequence to the economics of completing wells. However, it is possible to choose the “drill string” to be acceptable for a second use, namely as the “casing string” that is to be installed after drilling has been completed.


New Drilling Process


Therefore, the preferred embodiments of the invention herein reduce and simplify the above 14 steps as follows:


Repeat Steps 1-2 Above.


Steps 3-5 (Revised)


Choose the drill bit so that the entire production well can be drilled to its final depth using only one single drill bit. Choose the dimensions of the drill bit for desired size of the production well. If the cement is to be cured under ambient hydrostatic conditions, attach the drill bit to the bottom female threads of the Latching Subassembly (“Latching Sub”). Choose the material of the drill string from pipe material that can also be used as the casing string. Attach the first section of drill pipe to the top female threads of the Latching Sub. Rotary drill the production well to its final depth during “one pass drilling” into the well. While drilling, simultaneously circulate drilling mud to carry the rock chips to the surface, to prevent blowouts, to prevent excessive mud loss into formation, to cool the bit, and to clean the bit. Open-hole logging can be done while the well is being drilled with measuring-while-drilling (MWD) or logging-while-drilling (LWD) techniques. LWD is obtaining logging measurements by MWD techniques as the well is being drilled. MWD is the acquisition of downhole information during the drilling process. One MWD system transmits data to the surface via wireline; the other, through drilling fluid. MWD systems are capable of transmitting well data to the surface without interrupting circulating and drilling.


MWD may be used to determine the angle and direction by which the wellbore deviates from the vertical by directional surveying during routine drilling operations. A steering tool is a directional survey instrument used in combination with a deflected downhole motor that shows, on a rig floor monitor, the inclination and direction of a downhole sensing unit. A gyroscopic surveying instrument may be used to determine direction and angle at which a wellbore is drifting off the vertical. The steering tool instrument enables the operator both to survey and to orient a downhole motor while actually using a deflection tool to make hole. Sensors in the downhole instrument transmit data continuously, via the wireline, to the surface monitor. The operator can compensate for reactive torque, maintain hole direction, and change course when necessary without tripping out the drill string or interrupting drilling. MWD systems furnish the directional supervisor with real-time directional data on the rig floor—that is, they show what is happening downhole during drilling. The readings are analyzed to provide accurate hole trajectory.


Step 6 (Revised)


After the final depth of the production well is reached, perform logging of the geological formations to determine the amount of oil and gas present from inside the drill pipe of the drill string. This typically involves measurements from inside the drill string of the necessary geophysical quantities as summarized in Item “b.” of “Several Recent Changes in the Industry”. If such logs obtained from inside the drill string show that no oil or gas is present, then the drill string can be pulled out of the well and the well filled in with cement. If commercial amounts of oil and gas are present, continue the following steps.


Steps 7-11 (Revised)


If the cement is to be cured under ambient hydrostatic conditions, pump down a Latching Float Collar Valve Assembly with mud until it latches into place in the notches provided in the Latching Sub located above the drill bit.


Steps 12-13 (Revised)


To “cure the cement under ambient hydrostatic conditions”, typically execute a two-plug cementing procedure involving a first Bottom Wiper Plug before and a second Top Wiper Plug behind the cement that also minimizes cement contamination comprised of the following individual steps:

    • A. Introduce the Bottom Wiper Plug into the interior of the drill string assembled in the well and pump down with cement that cleans the mud off the walls and separates the mud and cement.
    • B. Introduce the Top Wiper Plug into the interior of the drill string assembled into the well and pump down with water thereby forcing the cement through any Float Collar Valve Assembly present and through the watercourses in “a regular bit” or through the mud nozzles of a “jet bit” or through any other mud passages in, the drill bit into the annulus between the drill string and the formation.
    • C. After the Bottom Wiper Plug and Top Wiper Plug have seated in the Latching Float Collar Valve Assembly, release the pressure on the interior of the drill string that results in the closing of the float collar which in turn prevents cement from backing up in the drill string. The resulting pressure release upon closure of the float collar prevents distortions of the drill string that might prevent a good cement seal as described earlier. I.e., “the cement is cured under ambient hydrostatic conditions”.


      Repeat Step 14 Above.


Centering the casing in the hole is necessary for cement to form a uniform sheath around the casing to effectively prevent migration of fluids from permeable zones. Various accessory devices assure better distribution of the cement slurry outside the casing.


Field reports show that that casing cementation is improved by the employment of centralizers. Centralizers are often used on casing for two main purposes in connection with cementing: (1) to ensure a reasonably uniform distribution of cement around the pipe, and (2) to obtain a compete seal between the casing and the formation. Centralizers allow proper cement distribution by holding casing away from the wall. Centralizers also lessen the effect of differential pressure to stick the liner and center the pipe in the hole. A casing centralizer is a device secured around the casing at regular intervals to center it in the hole. Hinged centralizers are usually clamped onto the casing after it is made up and as it is run into the hole.


Therefore, the “New Drilling Process” has only 7 distinct steps instead of the 14 steps in the “Typical Drilling Process”. The “New Drilling Process”, consequently has fewer steps, is easier to implement, and will be less expensive.


The preferred embodiment of the invention disclosed in FIG. 1 requires a Latching Subassembly and a Latching Float Collar Valve Assembly. The advantage of this approach is that the Float 32 of the Latching Float Collar Valve Assembly and the Float Seating Surface 34 in FIG. 1 are installed at the end of the drilling process and will not be worn due to mud passage during normal drilling operations.


Another preferred embodiment of the invention provides a float and float collar valve assembly permanently installed within the Latching Subassembly at the beginning of the drilling operations. However, such a preferred embodiment has the disadvantage that drilling mud passing by the float and the float collar valve assembly during normal drilling operations will tend to wear on the mutually sealing surfaces.


The drill bit described in FIG. 1 is a milled steel toothed roller cone bit. However, any rotary bit can be used with the invention. A tungsten carbide insert roller cone bit can be used. Any type of diamond bit or drag bit can be used. The invention may be used with any drill bit described in Ref. 3 above that possesses mud passages, waterpassages, or passages for gas. The bit consists of a cutting element and circulating element. The cutting element penetrates and gouges or scrapes the formation to remove it. The circulating element permits passage of drilling fluid and utilizes the hydraulic force of the fluid stream to improve drilling rates. Any type of rotary drill bit can be used possessing such passageways. Similarly, any type of bit whatsoever that utilizes any fluid or gas that passes through passageways in the bit can be used whether or not the bit rotates. A drag bit, for example, is any of a variety of drilling bits with no moving parts that drill by intrusion and drag.


A rock bit cone or other chunk of metal is sometimes left in an open hole and never touched again. A fish is an object that is left in the wellbore during drilling or workover operations and that must be recovered before work can proceed, which may be anything from a piece of scrap metal to a part of the drill stem. The drill stem includes all members in the assembly used for rotary drilling from the swivel to the bit. The fish may be part of the drill string which has been purposely disconnected, so that the part of the drill string may be recovered from the well by fishing.


While the above description contains many specificities, these should not be construed as limitations on the scope of the invention, but rather as exemplification of preferred embodiments thereto. As have been briefly described, there are many possible variations. Accordingly, the scope of the invention should be determined not only by the embodiments illustrated, but by the appended claims and their legal equivalents.

Claims
  • 1. A method of drilling a wellbore, comprising: providing a casing string having: a drilling assembly disposed at a lower end of the casing string; andan annular recess profile formed in an inner surface of the casing string, wherein the annular recess profile is located above the drilling assembly, drilling the wellbore using the casing string and the drilling assembly;engaging a one-way valve to the annular recess profile; andpumping cement through the casing string and the one-way valve.
  • 2. The method of claim 1, further comprising pumping the one-way valve down the casing string until the one-way valve engages into the annular recess profile.
  • 3. The method of claim 2, wherein the one-way valve is in sealing engagement with the casing string.
  • 4. The method of claim 2, further comprising allowing the cement to cure under ambient hydrostatic conditions.
  • 5. The method of claim 1, wherein the one-way valve comprises a float valve.
  • 6. The method of claim 1, further comprising drilling out at least a portion of the one-way valve.
  • 7. The method of claim 1, further comprising releasing a first plug and coupling the first plug to the one-way valve.
  • 8. The method of claim 7, further comprising releasing a second plug and coupling the second plug to the first plug.
  • 9. The method of claim 1, wherein the one-way valve includes a radially extendable latch for latching to the annular recess profile.
  • 10. The method of claim 1, wherein the one-way valve includes a seal for sealing engagement with the casing string.
  • 11. The method of claim 1, further comprising collecting geological information regarding a formation proximate the wellbore.
  • 12. The method of claim 11, wherein the geological information is collected using a measuring-while-drilling technique, a logging-while-drilling technique, or combinations thereof.
  • 13. The method of claim 1, further comprising changing a trajectory of the wellbore.
  • 14. The method of claim 1, further comprising retrieving a portion of the casing string from the wellbore by fishing.
  • 15. The method of claim 1, wherein engaging the annular recess profile comprises latching to the annular recess profile.
  • 16. The method of claim 1, wherein the one-way valve releasably engages the annular recess profile.
  • 17. A drill string for drilling a wellbore, comprising: a casing string having a bore;a drilling assembly coupled to a lower end of the casing string; anda recess profile formed in a surface of the bore; anda one-way valve adapted to engage the recess profile.
  • 18. The drill string of claim 17, wherein the one-way valve is adapted to releasably engage the recess profile.
  • 19. The drill string of claim 17, wherein the one-way valve includes a self-locking mechanism for engaging the recess profile.
  • 20. The drill string of claim 19, wherein the self-locking mechanism comprises a radially extendable latch adapted to engage the recess profile.
  • 21. The drill string of claim 17, wherein the recess profile is an annular groove.
  • 22. A cement valve assembly for use with a drill string, comprising: a tubular body connectable to the drill string, wherein the tubular body includes a bore extending therethrough;a recess profile formed in a surface of the bore; anda cement valve adapted to engage the recess profile.
  • 23. The assembly of claim 22, wherein the cement valve is a one-way valve.
  • 24. The assembly of claim 22, wherein the cement valve includes a latch for engaging the recess profile.
  • 25. The assembly of claim 24, wherein the latch is radially extendable.
  • 26. The assembly of claim 24, wherein the latch is adapted to releasably engage the recess profile.
  • 27. The assembly of claim 22, wherein the drill string comprises casing.
  • 28. The assembly of claim 22, wherein an upper portion of the cement valve is adapted to receive a cement plug.
  • 29. The assembly of claim 22, wherein the cement valve includes a seal for sealing engagement with the drill string.
  • 30. The assembly of claim 22, wherein the cement valve includes a self-locking mechanism for engaging the recess profile.
  • 31. The assembly of claim 30, wherein the self-locking mechanism comprises a mechanically biased latch.
CROSS-REFERENCE TO RELATED APPLICATIONS

Portions of this application were disclosed in U.S. Disclosure Document No. 362582 filed on Sep. 30, 1994, which is incorporated herein by reference. This application is a continuation of U.S. patent application Ser. No. 10/678,731, filed on Oct. 2, 2003 now U.S. Pat. No. 7,048,050, which is a continuation of U.S. patent application Ser. No. 10/162,302, filed on Jun. 4, 2002, now U.S. Pat. No. 6,868,906, which applications and patent are herein incorporated by reference in their entirety. U.S. patent application Ser. No. 10/162,302 is a continuation-in-part of U.S. patent application Ser. No. 09/487,197 filed on Jan. 19, 2000, now U.S Pat. No. 6,397,946, which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,397,946 is a continuation-in-part of U.S. patent application Ser. No. 09/295,808 filed on Apr. 20, 1999, now U.S. Pat. No. 6,263,987, which is herein incorporated by reference in its entirety. U.S. Pat. No. 6,263,987 is a continuation-in-part of U.S. patent application Ser. No. 08/708,396 filed on Sep. 3, 1996, now U.S. Pat. No. 5,894,897, which is incorporated herein by reference in its entirety. U.S. Pat. No. 5,894,897 is a continuation-in-part of U.S. patent application Ser. No. 08/323,152 filed on Oct. 14, 1994, now U.S. Pat. No. 5,551,521, which is herein incorporated by reference in its entirety. U.S. patent application Ser. No. 10/162,302 further claims benefit of U.S. ProvisIonal Patent Application Ser. No. 60/313,654 filed on Aug. 19, 2001, U.S. Provisional Patent Application Ser. No. 60/353,457 filed on Jan. 31, 2002, U.S. Provisional Patent Application Ser. No. 60/367,638 filed on Mar. 26, 2002, and U.S. Provisional Patent Application Ser. No. 60/384,964 filed on Jun. 3, 2002. All of the above United States Provisional Patent Applications are herein incorporated by reference in their entirety.

US Referenced Citations (725)
Number Name Date Kind
122514 Bullock Jan 1872 A
761518 Lykken May 1904 A
1077772 Weathersby Nov 1913 A
1185582 Bignell May 1916 A
1301285 Leonard Apr 1919 A
1324303 Carmichael Dec 1919 A
1342424 Cotten Jun 1920 A
1418766 Wilson Jun 1922 A
1459990 Reed Jun 1923 A
1471526 Pickin Oct 1923 A
1545039 Deavers Jul 1925 A
1561418 Duda Nov 1925 A
1569729 Duda Jan 1926 A
1585069 Youle May 1926 A
1597212 Spengler Aug 1926 A
1728136 Power Sep 1929 A
1777592 Thomas Oct 1930 A
1825026 Thomas Sep 1931 A
1830625 Schrock Nov 1931 A
1842638 Wigle Jan 1932 A
1851289 Owen Mar 1932 A
1880218 Simmons Oct 1932 A
1917135 Littell Jul 1933 A
1930825 Raymond Oct 1933 A
1981525 Price Nov 1934 A
1998833 Crowell Apr 1935 A
2017451 Wickersham Oct 1935 A
2049450 Johnson Aug 1936 A
2060352 Stokes Nov 1936 A
2102555 Dyer Dec 1937 A
2105885 Hinderliter Jan 1938 A
2167338 Murcell Jul 1939 A
2214226 English Sep 1940 A
2214429 Miller Sep 1940 A
2216226 Bumpous Oct 1940 A
2216895 Stokes Oct 1940 A
2228503 Boyd et al. Jan 1941 A
2295803 O'Leary Sep 1942 A
2305062 Church et al. Dec 1942 A
2324679 Cox Jul 1943 A
2344120 Baker Mar 1944 A
2345308 Wallace Mar 1944 A
2370832 Baker Mar 1945 A
2379800 Hare Jul 1945 A
2383214 Prout Aug 1945 A
2414719 Cloud Jan 1947 A
2499630 Clark Mar 1950 A
2522444 Grable Sep 1950 A
2536458 Munsinger Jan 1951 A
2610690 Beatty Sep 1952 A
2621742 Brown Dec 1952 A
2627891 Clark Feb 1953 A
2641444 Moon Jun 1953 A
2650314 Hennigh et al. Aug 1953 A
2663073 Bieber et al. Dec 1953 A
2668689 Cormany Feb 1954 A
2692059 Bolling, Jr. Oct 1954 A
2720267 Brown Oct 1955 A
2738011 Mabry Mar 1956 A
2741907 Genender et al. Apr 1956 A
2743087 Layne et al. Apr 1956 A
2743495 Eklund May 1956 A
2764329 Hampton Sep 1956 A
2765146 Williams Oct 1956 A
2805043 Williams Sep 1957 A
2898971 Hempel Aug 1959 A
2953406 Young Sep 1960 A
2978047 DeVaan Apr 1961 A
3006415 Burns et al. Oct 1961 A
3041901 Knights Jul 1962 A
3054100 Jones Sep 1962 A
3087546 Wooley Apr 1963 A
3090031 Lord May 1963 A
3102599 Hillburn Sep 1963 A
3111179 Albers et al. Nov 1963 A
3117636 Wilcox et al. Jan 1964 A
3122811 Gilreath Mar 1964 A
3123180 Kammerer Mar 1964 A
3124023 Marquis et al. Mar 1964 A
3131769 Rochemont May 1964 A
3159219 Scott Dec 1964 A
3169592 Kammerer Feb 1965 A
3191677 Kinley Jun 1965 A
3191680 Vincent Jun 1965 A
3193116 Kenneday et al. Jul 1965 A
3195646 Brown Jul 1965 A
3353599 Swift Nov 1967 A
3380528 Timmons Apr 1968 A
3387893 Hoever Jun 1968 A
3392609 Bartos Jul 1968 A
3419079 Current Dec 1968 A
3467180 Pensotti Sep 1969 A
3477527 Koot Nov 1969 A
3489220 Kinley Jan 1970 A
3518903 Ham et al. Jul 1970 A
3548936 Kilgore et al. Dec 1970 A
3550684 Cubberly, Jr. Dec 1970 A
3552507 Brown Jan 1971 A
3552508 Brown Jan 1971 A
3552509 Brown Jan 1971 A
3552510 Brown Jan 1971 A
3552848 Van Wagner Jan 1971 A
3559739 Hutchison Feb 1971 A
3566505 Martin Mar 1971 A
3570598 Johnson Mar 1971 A
3575245 Cordary et al. Apr 1971 A
3602302 Kluth Aug 1971 A
3603411 Link Sep 1971 A
3603412 Kammerer, Jr. et al. Sep 1971 A
3603413 Grill et al. Sep 1971 A
3606664 Weiner Sep 1971 A
3621910 Sanford Nov 1971 A
3624760 Bodine Nov 1971 A
3635105 Dickmann et al. Jan 1972 A
3656564 Brown Apr 1972 A
3662842 Bromell May 1972 A
3669190 Sizer et al. Jun 1972 A
3680412 Mayer et al. Aug 1972 A
3691624 Kinley Sep 1972 A
3691825 Dyer Sep 1972 A
3692126 Rushing et al. Sep 1972 A
3696332 Dickson, Jr. et al. Oct 1972 A
3700048 Desmoulins Oct 1972 A
3712376 Owen et al. Jan 1973 A
3729057 Werner Apr 1973 A
3746330 Taciuk Jul 1973 A
3747675 Brown Jul 1973 A
3760894 Pitifer Sep 1973 A
3766991 Brown Oct 1973 A
3776320 Brown Dec 1973 A
3778307 Young Dec 1973 A
3785193 Kinley et al. Jan 1974 A
3808916 Porter et al. May 1974 A
3818734 Bateman Jun 1974 A
3838613 Wilms Oct 1974 A
3840128 Swoboda, Jr. et al. Oct 1974 A
3848684 West Nov 1974 A
3857450 Guier Dec 1974 A
3870114 Pulk et al. Mar 1975 A
3881375 Kelly May 1975 A
3885679 Swoboda, Jr. et al. May 1975 A
3901331 Djurovic Aug 1975 A
3911707 Minakov et al. Oct 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3915244 Brown Oct 1975 A
3945444 Knudson Mar 1976 A
3947009 Nelmark Mar 1976 A
3948321 Owen et al. Apr 1976 A
3964556 Gearhart et al. Jun 1976 A
3980143 Swartz et al. Sep 1976 A
4049066 Richey Sep 1977 A
4054332 Bryan, Jr. Oct 1977 A
4054426 White Oct 1977 A
4064939 Marquis Dec 1977 A
4069573 Rogers, Jr. et al. Jan 1978 A
4077525 Callegari et al. Mar 1978 A
4082144 Marquis Apr 1978 A
4083405 Shirley Apr 1978 A
4085808 Kling Apr 1978 A
4095865 Denison et al. Jun 1978 A
4100968 Delano Jul 1978 A
4100981 Chaffin Jul 1978 A
4127168 Hanson et al. Nov 1978 A
4127927 Hauk et al. Dec 1978 A
4133396 Tschirky Jan 1979 A
4142739 Billingsley Mar 1979 A
4159564 Cooper, Jr. Jul 1979 A
4173457 Smith Nov 1979 A
4175619 Davis Nov 1979 A
4186628 Bonnice Feb 1980 A
4189185 Kammerer, Jr. et al. Feb 1980 A
4194383 Huzyak Mar 1980 A
4221269 Hudson Sep 1980 A
4227197 Nimmo et al. Oct 1980 A
4241878 Underwood Dec 1980 A
4257442 Claycomb Mar 1981 A
4262693 Giebeler Apr 1981 A
4274777 Scaggs Jun 1981 A
4274778 Putnam et al. Jun 1981 A
4277197 Bingham Jul 1981 A
4280380 Eshghy Jul 1981 A
4281722 Tucker et al. Aug 1981 A
4287949 Lindsey, Jr. Sep 1981 A
4288082 Setterberg, Jr. Sep 1981 A
4311195 Mullins, II Jan 1982 A
4315553 Stallings Feb 1982 A
4319393 Pogonowski Mar 1982 A
4320915 Abbott et al. Mar 1982 A
4324407 Upham et al. Apr 1982 A
4336415 Walling Jun 1982 A
4384627 Ramirez-Jauregui May 1983 A
4392534 Miida Jul 1983 A
4396076 Inoue Aug 1983 A
4396077 Radtke Aug 1983 A
4407378 Thomas Oct 1983 A
4408669 Wiredal Oct 1983 A
4413682 Callihan et al. Nov 1983 A
4427063 Skinner Jan 1984 A
4429620 Burkhardt et al. Feb 1984 A
4437363 Haynes Mar 1984 A
4440220 McArthur Apr 1984 A
4445734 Cunningham May 1984 A
4446745 Stone et al. May 1984 A
4449596 Boyadjieff May 1984 A
4460053 Jurgens et al. Jul 1984 A
4463814 Horstmeyer et al. Aug 1984 A
4466498 Bardwell Aug 1984 A
4469174 Freeman Sep 1984 A
4470470 Takano Sep 1984 A
4472002 Beney et al. Sep 1984 A
4474243 Gaines Oct 1984 A
4483399 Colgate Nov 1984 A
4489793 Boren Dec 1984 A
4489794 Boyadjieff Dec 1984 A
4492134 Reinholdt et al. Jan 1985 A
4494424 Bates Jan 1985 A
4515045 Gnatchenko et al. May 1985 A
4529045 Boyadjieff et al. Jul 1985 A
4531581 Pringle et al. Jul 1985 A
4544041 Rinaldi Oct 1985 A
4545443 Wiredal Oct 1985 A
4570706 Pugnet Feb 1986 A
4580631 Baugh Apr 1986 A
4583603 Dorleans et al. Apr 1986 A
4588030 Blizzard May 1986 A
4589495 Langer et al. May 1986 A
4592125 Skene Jun 1986 A
4593773 Skeie Jun 1986 A
4595058 Nations Jun 1986 A
4604818 Inoue Aug 1986 A
4605077 Boyadjieff Aug 1986 A
4605268 Meador Aug 1986 A
4605724 Shaginian et al. Aug 1986 A
4610320 Beakley Sep 1986 A
4613161 Brisco Sep 1986 A
4620600 Persson Nov 1986 A
4625796 Boyadjieff Dec 1986 A
4630691 Hooper Dec 1986 A
4646827 Cobb Mar 1987 A
4649777 Buck Mar 1987 A
4651837 Mayfield Mar 1987 A
4652195 McArthur Mar 1987 A
4655286 Wood Apr 1987 A
4667752 Berry et al. May 1987 A
4671358 Lindsey, Jr. et al. Jun 1987 A
4676310 Scherbatskoy et al. Jun 1987 A
4676312 Mosing et al. Jun 1987 A
4678031 Blandford et al. Jul 1987 A
4681158 Pennison Jul 1987 A
4681162 Boyd Jul 1987 A
4683962 True Aug 1987 A
4686873 Lang et al. Aug 1987 A
4691587 Farrand et al. Sep 1987 A
4693316 Ringgenberg et al. Sep 1987 A
4697640 Szarka Oct 1987 A
4699224 Burton Oct 1987 A
4709599 Buck Dec 1987 A
4709766 Boyadjieff Dec 1987 A
4725179 Woolslayer et al. Feb 1988 A
4735270 Fenyvesi Apr 1988 A
4738145 Vincent et al. Apr 1988 A
4742876 Barthelemy et al. May 1988 A
4744426 Reed May 1988 A
4760882 Novak Aug 1988 A
4762187 Haney Aug 1988 A
4765401 Boyadjieff Aug 1988 A
4765416 Bjerking et al. Aug 1988 A
4773689 Wolters Sep 1988 A
4775009 Wittrisch et al. Oct 1988 A
4778008 Gonzalez et al. Oct 1988 A
4781359 Matus Nov 1988 A
4788544 Howard Nov 1988 A
4791997 Krasnov Dec 1988 A
4793422 Krasnov Dec 1988 A
4800968 Shaw et al. Jan 1989 A
4806928 Veneruso Feb 1989 A
4813493 Shaw et al. Mar 1989 A
4813495 Leach Mar 1989 A
4821814 Willis et al. Apr 1989 A
4825947 Mikolajczyk May 1989 A
4832552 Skelly May 1989 A
4836064 Slator Jun 1989 A
4836299 Bodine Jun 1989 A
4842081 Parant Jun 1989 A
4843945 Dinsdale Jul 1989 A
4848469 Baugh et al. Jul 1989 A
4854386 Baker et al. Aug 1989 A
4858705 Thiery Aug 1989 A
4867236 Haney et al. Sep 1989 A
4878546 Shaw et al. Nov 1989 A
4880058 Lindsey et al. Nov 1989 A
4883125 Wilson et al. Nov 1989 A
4901069 Veneruso Feb 1990 A
4904119 Legendre et al. Feb 1990 A
4909741 Schasteen et al. Mar 1990 A
4915181 Labrosse Apr 1990 A
4921386 McArthur May 1990 A
4936382 Thomas Jun 1990 A
4960173 Cognevich et al. Oct 1990 A
4962579 Moyer et al. Oct 1990 A
4962622 Pascale Oct 1990 A
4962819 Bailey et al. Oct 1990 A
4962822 Pascale Oct 1990 A
4997042 Jordan et al. Mar 1991 A
5009265 Bailey et al. Apr 1991 A
5022472 Bailey et al. Jun 1991 A
5024273 Coone et al. Jun 1991 A
5027914 Wilson Jul 1991 A
5036927 Willis Aug 1991 A
5049020 McArthur Sep 1991 A
5052483 Hudson Oct 1991 A
5060542 Hauk Oct 1991 A
5060737 Mohn Oct 1991 A
5062756 McArthur et al. Nov 1991 A
5069297 Krueger Dec 1991 A
5074366 Karlsson et al. Dec 1991 A
5082069 Seiler et al. Jan 1992 A
5083608 Abdrakhmanov et al. Jan 1992 A
5085273 Coone Feb 1992 A
5096465 Chen et al. Mar 1992 A
5109924 Jurgens et al. May 1992 A
5111893 Kvello-Aune May 1992 A
5141083 Quesenbury Aug 1992 A
RE34063 Vincent et al. Sep 1992 E
5148875 Karlsson et al. Sep 1992 A
5156213 George et al. Oct 1992 A
5160925 Dailey et al. Nov 1992 A
5168942 Wydrinski Dec 1992 A
5172765 Sas-Jaworsky et al. Dec 1992 A
5176518 Hordijk et al. Jan 1993 A
5181571 Mueller et al. Jan 1993 A
5186265 Henson et al. Feb 1993 A
5191932 Seefried et al. Mar 1993 A
5191939 Stokley Mar 1993 A
5197553 Leturno Mar 1993 A
5224540 Streich et al. Jul 1993 A
5233742 Gray et al. Aug 1993 A
5234052 Coone et al. Aug 1993 A
5245265 Clay Sep 1993 A
5251709 Richardson Oct 1993 A
5255741 Alexander Oct 1993 A
5255751 Stogner Oct 1993 A
5271468 Streich et al. Dec 1993 A
5271472 Leturno Dec 1993 A
5272925 Henneuse et al. Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5284210 Helms et al. Feb 1994 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5285204 Sas-Jaworsky Feb 1994 A
5291956 Mueller et al. Mar 1994 A
5294228 Willis et al. Mar 1994 A
5297833 Willis et al. Mar 1994 A
5303772 George et al. Apr 1994 A
5305830 Wittrisch Apr 1994 A
5305839 Kalsi et al. Apr 1994 A
5318122 Murray et al. Jun 1994 A
5320178 Cornette Jun 1994 A
5322127 McNair et al. Jun 1994 A
5323858 Jones et al. Jun 1994 A
5332043 Ferguson Jul 1994 A
5332048 Underwood et al. Jul 1994 A
5340182 Busink et al. Aug 1994 A
5343950 Hale et al. Sep 1994 A
5343951 Cowan et al. Sep 1994 A
5343968 Glowka Sep 1994 A
5348095 Worrall et al. Sep 1994 A
5351767 Stogner et al. Oct 1994 A
5353872 Wittrisch Oct 1994 A
5354150 Canales Oct 1994 A
5355967 Mueller et al. Oct 1994 A
5361859 Tibbitts Nov 1994 A
5368113 Schulze-Beckinghausen Nov 1994 A
5375668 Hallundbaek Dec 1994 A
5379835 Streich Jan 1995 A
5388651 Berry Feb 1995 A
5388746 Hauk Feb 1995 A
5392715 Pelrine Feb 1995 A
5394823 Lenze Mar 1995 A
5402856 Warren et al. Apr 1995 A
5409059 McHardy Apr 1995 A
5433279 Tessari et al. Jul 1995 A
5435400 Smith Jul 1995 A
5452923 Smith Sep 1995 A
5456317 Hood, III et al. Oct 1995 A
5458209 Hayes et al. Oct 1995 A
5461905 Penisson Oct 1995 A
5472057 Winfree Dec 1995 A
5477925 Trahan et al. Dec 1995 A
5494122 Larsen et al. Feb 1996 A
5497840 Hudson Mar 1996 A
5501286 Berry Mar 1996 A
5503234 Clanton Apr 1996 A
5520255 Barr et al. May 1996 A
5526880 Jordan, Jr. et al. Jun 1996 A
5535824 Hudson Jul 1996 A
5535838 Keshavan et al. Jul 1996 A
5540279 Branch et al. Jul 1996 A
5542472 Pringle et al. Aug 1996 A
5542473 Pringle Aug 1996 A
5547029 Rubbo et al. Aug 1996 A
5551521 Vail, III Sep 1996 A
5553672 Smith, Jr. et al. Sep 1996 A
5553679 Thorp Sep 1996 A
5560426 Trahan et al. Oct 1996 A
5560437 Dickel et al. Oct 1996 A
5560440 Tibbitts Oct 1996 A
5566772 Coone et al. Oct 1996 A
5575344 Wireman Nov 1996 A
5577566 Albright et al. Nov 1996 A
5582259 Barr Dec 1996 A
5584343 Coone Dec 1996 A
5588916 Moore Dec 1996 A
5611397 Wood Mar 1997 A
5613567 Hudson Mar 1997 A
5615747 Vail, III Apr 1997 A
5645131 Trevisani Jul 1997 A
5651420 Tibbitts et al. Jul 1997 A
5661888 Hanslik Sep 1997 A
5662170 Donovan et al. Sep 1997 A
5662182 McLeod et al. Sep 1997 A
5667011 Gill et al. Sep 1997 A
5667023 Harrell et al. Sep 1997 A
5667026 Lorenz et al. Sep 1997 A
5685369 Ellis et al. Nov 1997 A
5697442 Baldridge Dec 1997 A
5706894 Hawkins, III Jan 1998 A
5706905 Barr Jan 1998 A
5711382 Hansen et al. Jan 1998 A
5717334 Vail, III et al. Feb 1998 A
5718288 Bertet et al. Feb 1998 A
5720356 Gardes Feb 1998 A
5730471 Schulze-Beckinghausen et al. Mar 1998 A
5732776 Tubel et al. Mar 1998 A
5735348 Hawkins, III Apr 1998 A
5735351 Helms Apr 1998 A
5743344 McLeod et al. Apr 1998 A
5746276 Stuart May 1998 A
5755299 Langford, Jr. et al. May 1998 A
5772514 Moore Jun 1998 A
5785132 Richardson et al. Jul 1998 A
5785134 McLeod et al. Jul 1998 A
5787978 Carter et al. Aug 1998 A
5791410 Castille et al. Aug 1998 A
5791416 White et al. Aug 1998 A
5794703 Newman et al. Aug 1998 A
5803191 Mackintosh Sep 1998 A
5803666 Keller Sep 1998 A
5813456 Milner et al. Sep 1998 A
5823264 Ringgenberg Oct 1998 A
5826651 Lee et al. Oct 1998 A
5828003 Thomeer et al. Oct 1998 A
5829520 Johnson Nov 1998 A
5833002 Holcombe Nov 1998 A
5836395 Budde Nov 1998 A
5836409 Vail, III Nov 1998 A
5839330 Stokka Nov 1998 A
5839515 Yuan et al. Nov 1998 A
5839519 Spedale, Jr. Nov 1998 A
5842149 Harrell et al. Nov 1998 A
5842530 Smith et al. Dec 1998 A
5845722 Makohl et al. Dec 1998 A
5850877 Albright et al. Dec 1998 A
5860474 Stoltz et al. Jan 1999 A
5878815 Collins Mar 1999 A
5887655 Haugen et al. Mar 1999 A
5887668 Haugen et al. Mar 1999 A
5890537 Lavaure et al. Apr 1999 A
5890540 Pia et al. Apr 1999 A
5890549 Sprehe Apr 1999 A
5894897 Vail, III Apr 1999 A
5901787 Boyle May 1999 A
5907664 Wang et al. May 1999 A
5908049 Williams et al. Jun 1999 A
5909768 Castille et al. Jun 1999 A
5913337 Williams et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5921332 Spedale, Jr. Jul 1999 A
5931231 Mock Aug 1999 A
5947213 Angle et al. Sep 1999 A
5950742 Caraway Sep 1999 A
5954131 Sallwasser Sep 1999 A
5957225 Sinor Sep 1999 A
5960881 Allamon et al. Oct 1999 A
5971079 Mullins Oct 1999 A
5971086 Bee et al. Oct 1999 A
5984007 Yuan et al. Nov 1999 A
5988273 Monjure et al. Nov 1999 A
6000472 Albright et al. Dec 1999 A
6012529 Mikolajczyk et al. Jan 2000 A
6021850 Wood et al. Feb 2000 A
6024169 Haugen Feb 2000 A
6026911 Angle et al. Feb 2000 A
6029748 Forsyth et al. Feb 2000 A
6056060 Abrahamsen et al. May 2000 A
6059051 Jewkes et al. May 2000 A
6059053 McLeod May 2000 A
6061000 Edwards May 2000 A
6062326 Strong et al. May 2000 A
6065550 Gardes May 2000 A
6070500 Dlask et al. Jun 2000 A
6070671 Cumming et al. Jun 2000 A
6079498 Lima et al. Jun 2000 A
6079509 Bee et al. Jun 2000 A
6082461 Newman et al. Jul 2000 A
6085838 Vercaemer et al. Jul 2000 A
6089323 Newman et al. Jul 2000 A
6098717 Bailey et al. Aug 2000 A
6119772 Pruet Sep 2000 A
6135208 Gano et al. Oct 2000 A
6142545 Penman et al. Nov 2000 A
6155360 McLeod Dec 2000 A
6158531 Vail, III Dec 2000 A
6161617 Gjedebo Dec 2000 A
6170573 Brunet et al. Jan 2001 B1
6172010 Argillier et al. Jan 2001 B1
6173777 Mullins Jan 2001 B1
6179055 Sallwasser et al. Jan 2001 B1
6182776 Asberg Feb 2001 B1
6186233 Brunet Feb 2001 B1
6189616 Gano et al. Feb 2001 B1
6196336 Fincher et al. Mar 2001 B1
6199641 Downie et al. Mar 2001 B1
6202764 Ables et al. Mar 2001 B1
6206112 Dickinson, III et al. Mar 2001 B1
6216533 Woloson et al. Apr 2001 B1
6217258 Yamamoto et al. Apr 2001 B1
6220117 Butcher Apr 2001 B1
6223823 Head May 2001 B1
6224112 Eriksen et al. May 2001 B1
6227587 Terral May 2001 B1
6234257 Ciglenec et al. May 2001 B1
6237684 Bouligny, Jr. et al. May 2001 B1
6263987 Vail, III Jul 2001 B1
6273189 Gissler et al. Aug 2001 B1
6275938 Bond et al. Aug 2001 B1
6290432 Exley et al. Sep 2001 B1
6296066 Terry et al. Oct 2001 B1
6305469 Coenen et al. Oct 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315051 Ayling Nov 2001 B1
6325148 Trahan et al. Dec 2001 B1
6343649 Beck et al. Feb 2002 B1
6347674 Bloom et al. Feb 2002 B1
6349764 Adams et al. Feb 2002 B1
6357485 Quigley et al. Mar 2002 B2
6359569 Beck et al. Mar 2002 B2
6360633 Pietras Mar 2002 B2
6367552 Scott et al. Apr 2002 B1
6367566 Hill Apr 2002 B1
6371203 Frank et al. Apr 2002 B2
6374506 Schutte et al. Apr 2002 B1
6374924 Hanton et al. Apr 2002 B1
6378627 Tubel et al. Apr 2002 B1
6378630 Ritorto et al. Apr 2002 B1
6378633 Moore Apr 2002 B1
6390190 Mullins May 2002 B2
6392317 Hall et al. May 2002 B1
6397946 Vail, III Jun 2002 B1
6405798 Barrett et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6412554 Allen et al. Jul 2002 B1
6412574 Wardley et al. Jul 2002 B1
6419014 Meek et al. Jul 2002 B1
6419033 Hahn et al. Jul 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6427776 Hoffman et al. Aug 2002 B1
6429784 Beique et al. Aug 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6443247 Wardley Sep 2002 B1
6446323 Metcalfe et al. Sep 2002 B1
6446723 Ramons et al. Sep 2002 B1
6457532 Simpson Oct 2002 B1
6458471 Lovato et al. Oct 2002 B2
6464004 Crawford et al. Oct 2002 B1
6464011 Tubel Oct 2002 B2
6484818 Alft et al. Nov 2002 B2
6497280 Beck et al. Dec 2002 B2
6527047 Pietras Mar 2003 B1
6527049 Metcalfe et al. Mar 2003 B2
6527064 Hallundbaek Mar 2003 B1
6527493 Kamphorst et al. Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6536522 Birckhead et al. Mar 2003 B2
6536993 Strong et al. Mar 2003 B2
6538576 Schultz et al. Mar 2003 B1
6540025 Scott et al. Apr 2003 B2
6543552 Metcalfe et al. Apr 2003 B1
6547017 Vail, III Apr 2003 B1
6553825 Boyd Apr 2003 B1
6554064 Restarick et al. Apr 2003 B1
6571868 Victor Jun 2003 B2
6578630 Simpson et al. Jun 2003 B2
6585040 Hanton et al. Jul 2003 B2
6591471 Hollingsworth et al. Jul 2003 B1
6595288 Mosing et al. Jul 2003 B2
6619402 Amory et al. Sep 2003 B1
6622796 Pietras Sep 2003 B1
6634430 Dawson et al. Oct 2003 B2
6637526 Juhasz et al. Oct 2003 B2
6648075 Badrak et al. Nov 2003 B2
6651737 Bouligny Nov 2003 B2
6655460 Bailey et al. Dec 2003 B2
6666274 Hughes Dec 2003 B2
6668684 Allen et al. Dec 2003 B2
6668937 Murray Dec 2003 B1
6679333 York et al. Jan 2004 B2
6688394 Ayling Feb 2004 B1
6688398 Pietras Feb 2004 B2
6698595 Norell et al. Mar 2004 B2
6702029 Metcalfe et al. Mar 2004 B2
6702040 Sensenig Mar 2004 B1
6708769 Haugen et al. Mar 2004 B2
6715430 Choi et al. Apr 2004 B2
6719071 Moyes Apr 2004 B1
6722559 Millar et al. Apr 2004 B1
6725917 Metcalfe Apr 2004 B2
6725924 Davidson et al. Apr 2004 B2
6725938 Pietras Apr 2004 B1
6732822 Slack et al. May 2004 B2
6742584 Appleton Jun 2004 B1
6742591 Metcalfe Jun 2004 B2
6742596 Haugen Jun 2004 B2
6742606 Metcalfe et al. Jun 2004 B2
6745834 Davis et al. Jun 2004 B2
6749026 Smith et al. Jun 2004 B2
6752211 Dewey et al. Jun 2004 B2
6776233 Meehan Aug 2004 B2
6802374 Edgar et al. Oct 2004 B2
6832656 Cameron Dec 2004 B2
6832658 Keast Dec 2004 B2
6837313 Hosie et al. Jan 2005 B2
6840322 Haynes Jan 2005 B2
6845820 Hebert et al. Jan 2005 B1
6848517 Wardley Feb 2005 B2
6854533 Galloway et al. Feb 2005 B2
6857486 Chitwood et al. Feb 2005 B2
6857487 Galloway Feb 2005 B2
6868906 Vail, III et al. Mar 2005 B1
6877553 Cameron Apr 2005 B2
6892635 Shahin et al. May 2005 B2
6896075 Haugen et al. May 2005 B2
6899186 Galloway et al. May 2005 B2
6899772 Buytaert et al. May 2005 B1
6920932 Zimmerman Jul 2005 B2
6923255 Lee Aug 2005 B2
6926126 Baumann et al. Aug 2005 B2
6941652 Echols et al. Sep 2005 B2
6953096 Gledhill et al. Oct 2005 B2
7004264 Simpson et al. Feb 2006 B2
7013997 Vail, III Mar 2006 B2
7036610 Vail, III May 2006 B1
7040420 Vail, III May 2006 B2
7048050 Vail, III et al. May 2006 B2
7090004 Warren et al. Aug 2006 B2
7093675 Pia Aug 2006 B2
7096982 McKay et al. Aug 2006 B2
7100710 Vail, III Sep 2006 B2
7100713 Tulloch Sep 2006 B2
7108072 Cook et al. Sep 2006 B2
7108083 Simonds et al. Sep 2006 B2
7108084 Vail, III Sep 2006 B2
7117957 Metcalfe et al. Oct 2006 B2
7128154 Giroux et al. Oct 2006 B2
20010000101 Lovato et al. Apr 2001 A1
20010040054 Haugen et al. Nov 2001 A1
20010042625 Appleton Nov 2001 A1
20010045284 Simpson et al. Nov 2001 A1
20020040787 Cook et al. Apr 2002 A1
20020066556 Goode et al. Jun 2002 A1
20020108748 Keyes Aug 2002 A1
20020145281 Metcalfe et al. Oct 2002 A1
20020166668 Metcalfe et al. Nov 2002 A1
20020170720 Haugen Nov 2002 A1
20020189863 Wardley Dec 2002 A1
20030029641 Meehan Feb 2003 A1
20030056991 Hahn et al. Mar 2003 A1
20030070841 Merecka et al. Apr 2003 A1
20030111267 Pia Jun 2003 A1
20030141111 Pia Jul 2003 A1
20030146023 Pia Aug 2003 A1
20030164251 Tulloch Sep 2003 A1
20030164276 Snider et al. Sep 2003 A1
20030173073 Snider et al. Sep 2003 A1
20030173090 Cook et al. Sep 2003 A1
20030217865 Simpson et al. Nov 2003 A1
20030221519 Haugen et al. Dec 2003 A1
20040003490 Shahin et al. Jan 2004 A1
20040003944 Vincent et al. Jan 2004 A1
20040011534 Simonds et al. Jan 2004 A1
20040011566 Lee Jan 2004 A1
20040060697 Tilton et al. Apr 2004 A1
20040060700 Vert et al. Apr 2004 A1
20040069500 Haugen Apr 2004 A1
20040108142 Vail, III Jun 2004 A1
20040112603 Galloway et al. Jun 2004 A1
20040112646 Vail Jun 2004 A1
20040112693 Baumann et al. Jun 2004 A1
20040118613 Vail Jun 2004 A1
20040118614 Galloway et al. Jun 2004 A1
20040123984 Vail Jul 2004 A1
20040124010 Galloway et al. Jul 2004 A1
20040124011 Gledhill et al. Jul 2004 A1
20040124015 Vaile et al. Jul 2004 A1
20040129456 Vail Jul 2004 A1
20040140128 Vail Jul 2004 A1
20040144547 Koithan et al. Jul 2004 A1
20040173358 Haugen Sep 2004 A1
20040216892 Giroux et al. Nov 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20040216925 Metcalfe et al. Nov 2004 A1
20040221997 Giroux et al. Nov 2004 A1
20040226751 McKay et al. Nov 2004 A1
20040238218 Runia et al. Dec 2004 A1
20040244992 Carter et al. Dec 2004 A1
20040245020 Giroux et al. Dec 2004 A1
20040251025 Giroux et al. Dec 2004 A1
20040251050 Shahin et al. Dec 2004 A1
20040251055 Shahin et al. Dec 2004 A1
20040262013 Tilton et al. Dec 2004 A1
20050000691 Giroux et al. Jan 2005 A1
20050096846 Koithan et al. May 2005 A1
20050152749 Anres et al. Jul 2005 A1
20050183892 Oldham et al. Aug 2005 A1
Foreign Referenced Citations (165)
Number Date Country
2 335 192 Nov 2001 CA
3 213 464 Oct 1983 DE
3 523 221 Feb 1987 DE
3 918 132 Dec 1989 DE
4 133 802 Oct 1992 DE
0 087 373 Aug 1983 EP
0 162 000 Nov 1985 EP
0 171 144 Feb 1986 EP
0 235 105 Sep 1987 EP
0 265 344 Apr 1988 EP
0 285 386 Oct 1988 EP
0 397 323 Nov 1990 EP
0 426 123 May 1991 EP
0 462 618 Dec 1991 EP
0 474 481 Mar 1992 EP
0479583 Apr 1992 EP
0 525 247 Feb 1993 EP
0 554 568 Aug 1993 EP
0 589 823 Mar 1994 EP
0 659 975 Jun 1995 EP
0 790 386 Aug 1997 EP
0 881 354 Apr 1998 EP
0 961 007 Dec 1999 EP
0 962 384 Dec 1999 EP
1 006 260 Jun 2000 EP
1 050 661 Nov 2000 EP
1148206 Oct 2001 EP
1 256 691 Nov 2002 EP
2053088 Jul 1970 FR
2741907 Jun 1997 FR
2 841 293 Dec 2003 FR
540 027 Oct 1941 GB
709 365 May 1954 GB
716 761 Oct 1954 GB
7 928 86 Apr 1958 GB
8 388 33 Jun 1960 GB
881 358 Nov 1961 GB
887150 Jan 1962 GB
9 977 21 Jul 1965 GB
1 277 461 Jun 1972 GB
1 306 568 Mar 1973 GB
1 448 304 Sep 1976 GB
1 469 661 Apr 1977 GB
1 582 392 Jan 1981 GB
2 053 088 Feb 1981 GB
2 115 940 Sep 1983 GB
2 170 528 Aug 1986 GB
2 201 912 Sep 1988 GB
2 216 926 Oct 1989 GB
2 223 253 Apr 1990 GB
2 221 482 Jul 1990 GB
2 224 481 Sep 1990 GB
2 239 918 Jul 1991 GB
2 240 799 Aug 1991 GB
2 275 486 Apr 1993 GB
2 294 715 Aug 1996 GB
2 313 860 Feb 1997 GB
2 320 270 Jun 1998 GB
2 320 734 Jul 1998 GB
2 324 108 Oct 1998 GB
2 326 896 Jan 1999 GB
2 333 542 Jul 1999 GB
2 335 217 Sep 1999 GB
2 345 074 Jun 2000 GB
2 347 445 Sep 2000 GB
2 348 223 Sep 2000 GB
2 349 401 Nov 2000 GB
2 350 137 Nov 2000 GB
2 357 101 Jun 2001 GB
2 357 530 Jun 2001 GB
2 352 747 Jul 2001 GB
2 365 463 Feb 2002 GB
2 372 271 Aug 2002 GB
2 372 765 Sep 2002 GB
2 381 809 May 2003 GB
2 382 361 May 2003 GB
2 386 626 Sep 2003 GB
2 389 130 Dec 2003 GB
2 396 375 Jun 2004 GB
2 079 633 May 1997 RU
112631 Jan 1956 SU
247162 May 1967 SU
395557 Aug 1973 SU
415346 Feb 1974 SU
461218 Feb 1975 SU
481689 Aug 1975 SU
501139 Jan 1976 SU
581238 Nov 1977 SU
583278 Dec 1977 SU
585266 Dec 1977 SU
601390 Apr 1978 SU
655843 Apr 1979 SU
781312 Nov 1980 SU
899820 Jan 1982 SU
1 618 870 Jan 1991 SU
1808972 Apr 1993 SU
955765 Jan 1995 SU
1304470 Jan 1995 SU
WO 8201211 Apr 1982 WO
WO 90-06418 Jun 1990 WO
WO 91-16520 Oct 1991 WO
WO 92-01139 Jan 1992 WO
WO 92-18743 Oct 1992 WO
WO 92-20899 Nov 1992 WO
WO 93-07358 Apr 1993 WO
WO 93-24728 Dec 1993 WO
WO 95-10686 Apr 1995 WO
WO 96-28635 Sep 1996 WO
WO 97-05360 Feb 1997 WO
WO 97-08418 Mar 1997 WO
WO 9801651 Jan 1998 WO
WO 98-05844 Feb 1998 WO
WO 98-09053 Mar 1998 WO
WO 98-11322 Mar 1998 WO
WO 98-32948 Jul 1998 WO
WO 98-55730 Dec 1998 WO
WO 99-04135 Jan 1999 WO
WO 99-11902 Mar 1999 WO
WO 9918328 Apr 1999 WO
WO 99-23354 May 1999 WO
WO 99-24689 May 1999 WO
WO 99-35368 Jul 1999 WO
WO 99-37881 Jul 1999 WO
WO 99-41485 Aug 1999 WO
WO 99-50528 Oct 1999 WO
WO 99-58810 Nov 1999 WO
WO 99-64713 Dec 1999 WO
WO 0004269 Jan 2000 WO
WO 00-05483 Feb 2000 WO
WO 0009853 Feb 2000 WO
WO 00-11309 Mar 2000 WO
WO 00-11310 Mar 2000 WO
WO 00-11311 Mar 2000 WO
WO 00-28188 May 2000 WO
WO 00-37771 Jun 2000 WO
WO 0037772 Jun 2000 WO
WO 0037773 Jun 2000 WO
WO 00-08293 Jul 2000 WO
WO 00-39429 Jul 2000 WO
WO 00-39430 Jul 2000 WO
WO 0041487 Jul 2000 WO
WO 00-46484 Aug 2000 WO
WO 00-50730 Aug 2000 WO
WO 0050732 Aug 2000 WO
WO 00-66879 Nov 2000 WO
WO 0077431 Dec 2000 WO
WO 01-12946 Feb 2001 WO
WO 01-46550 Jun 2001 WO
WO 0160545 Aug 2001 WO
WO 0166901 Sep 2001 WO
WO 01-79650 Oct 2001 WO
WO 01-81708 Nov 2001 WO
WO 01-83932 Nov 2001 WO
WO 01-94738 Dec 2001 WO
WO 01-94739 Dec 2001 WO
WO 0214649 Feb 2002 WO
WO 0229199 Apr 2002 WO
WO 02-44601 Jun 2002 WO
WO 02-01863 Oct 2002 WO
WO 02-086287 Oct 2002 WO
WO 02092956 Nov 2002 WO
WO 03006790 Jan 2003 WO
WO 03-074836 Sep 2003 WO
WO 03-087525 Oct 2003 WO
WO 2004022903 Mar 2004 WO
Related Publications (1)
Number Date Country
20060137911 A1 Jun 2006 US
Provisional Applications (4)
Number Date Country
60384964 Jun 2002 US
60367638 Mar 2002 US
60353457 Jan 2002 US
60313654 Aug 2001 US
Continuations (2)
Number Date Country
Parent 10678731 Oct 2003 US
Child 11292331 US
Parent 10162302 Jun 2002 US
Child 10678731 US
Continuation in Parts (4)
Number Date Country
Parent 09487197 Jan 2000 US
Child 10162302 US
Parent 09295808 Apr 1999 US
Child 09487197 US
Parent 08708396 Sep 1996 US
Child 09295808 US
Parent 08323152 Oct 1994 US
Child 08708396 US