Method and apparatus for collecting and preparing biological samples for testing

Information

  • Patent Grant
  • 11350913
  • Patent Number
    11,350,913
  • Date Filed
    Tuesday, April 2, 2019
    5 years ago
  • Date Issued
    Tuesday, June 7, 2022
    a year ago
Abstract
A kit and a method are disclosed for collecting and preparing a biological sample for testing where the sample is to be mixed with a buffer prior to being tested.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

This invention relates broadly to the testing of biological samples such as blood, oral fluids, epithelia, urine, stool, etc. More particularly, this invention relates to methods and apparatus for collecting and preparing such samples prior to testing.


2. State of the Art

Many types of ligand-receptor assays have been used to detect the presence of various substances, often generally called ligands, in body fluids such as blood, urine, or saliva. These assays involve antigen antibody reactions, synthetic conjugates comprising radioactive, enzymatic, fluorescent, or visually observable polystyrene or metal sol tags, and specially designed reactor chambers. In all these assays, there is a receptor, e.g., an antibody, which is specific for the selected ligand or antigen, and a means for detecting the presence, and in some cases the amount, of the ligand-receptor reaction product. Some tests are designed to make a quantitative determination, but in many circumstances all that is required is a positive/negative qualitative indication. Examples of such qualitative assays include blood typing, most types of urinalysis, pregnancy tests, and AIDS tests. For these tests, a visually observable indicator such as the presence of agglutination or a color change is preferred.


U.S. Pat. No. 6,485,982 discloses what may be called a single path immunoassay device. The device has an elongate outer casing which houses an interior permeable material, e.g., glass fiber, capable of transporting an aqueous solution by capillary action, wicking, or simple wetting. The casing defines a sample inlet, and interior regions which, for ease of description, can be designated as a test volume and a reservoir volume. The reservoir volume is disposed in a section of the test cell spaced apart from the inlet, and preferably is filled with sorbent material. The reservoir acts to receive liquid transported along a flow path defined by the permeable material and extending from the inlet and through the test volume. In the test volume is a test site comprising a first protein having a binding site specific to a first epitope of the ligand immobilized in fluid communication with the flow path, e.g., bound to the permeable material or to latex particles entrapped in or bonded to the permeable material. A window such as a hole or transparent section of the casing permits observations of the test site through the casing wall. The method requires that the test sample be mixed with a conjugate or buffer before it is dispensed into the inlet.


Previously incorporated U.S. Pat. No. 7,189,522 discloses both dry and liquid conjugate immunoassay device systems. The systems include test cells with a first sorbent having a first location for receiving a buffer solution (in the case of a dry conjugate system) or a conjugate solution (in the case of a liquid conjugate system) with the first sorbent defining a first horizontal flow path, a second sorbent having a second location for receiving a sample with the second sorbent defining a second horizontal flow path distinct from the first flow path, and a test line or test site with immobilized antigens or antibodies or other ligand binding molecules such as aptamers, nucleic acids, etc. located in a test zone at a junction of the first and second sorbents.


Where the test cell is provided in a housing, such as the housing 1 show in prior art FIG. 1, the housing is provided with a first opening 2 adjacent the first location and a second opening 3 adjacent the second location. A viewing window 4 is provided in the housing above the test line 5.


In the preferred embodiment, the first sorbent and second sorbent are separate pieces which overlie one another and the test line is printed on one or both of the sorbent materials at the junction. Alternatively, although not preferred, the first and second sorbents can be integral with each other. The systems preferably also include a control line 6 or site which may be seen from the viewing window 4.


According to one set of embodiments, the sorbents (and the housing in which the sorbents are provided) are laid out in a T shape, where the first location 2 for receiving the buffer or buffer-conjugate solution is located near one end of the top bar of the T, the second location 3 for receiving the sample is located near the end of the stem of the T, and the sorbents overlie each other at the intersection.


According to one disclosed method, a sample of interest is provided to the second opening or location 3. After a desired amount of time, a liquid such as a buffer solution is added to the first opening or location 2. If the sorbent is supporting a conjugate (i.e., in a dry conjugate system), the liquid is preferably simply a buffer solution. If the sorbent is not supporting a conjugate (i.e., in a liquid conjugate system), the liquid is preferably a buffer-conjugate liquid subsystem. In any event, after sufficient time to permit the conjugate to migrate to the test site 5 (and control site 6 if provided), the test site (and control site if provided) is inspected in order to determine whether the sample is “positive” or not.


The disclosed system can be used in conjunction with different types of samples such as blood, urine, saliva, and feces, and can be used to test for the presence of any ligand. Where blood, saliva or feces is to be provided, the blood, saliva or feces may be diluted or mixed with buffer prior to being added through the second hole 3. Alternatively, in some cases, the sample may be added through the hole and then a diluent may be added through the same hole 3.


SUMMARY OF THE INVENTION

The present invention provides a kit and a method for collecting and preparing a biological sample for use with an immunoassay device where the sample is to be mixed with a buffer prior to being added to the device. The kit includes a sterile swab and a dropper bottle assembly containing the buffer solution to which the sample is added. In one embodiment, the dropper bottle assembly includes a dropper cap having a hinged cover and a threaded base and a bottle having a threaded neck. When the kit is delivered for use, the dropper cap is threadably connected to the threaded neck of the bottle and the hinged cover is closed. The sterile swab includes a sorbent mounted on the end of a stick. The stick is preferably long enough so that a sample can be obtained without the person taking the sample contaminating it. The stick is provided with a weakened portion where the stick can be readily broken.


A method according to one embodiment of the invention includes opening the dropper bottle assembly by unscrewing the cap, inserting the swab into the bottle, snapping the swab stick to break it, and screwing the cap back on the bottle. The bottle containing the sorbent end of the swab is then agitated by shaking it. Now the mixed sample and buffer are ready to dispense into the testing device. This is done by opening the hinged cover of the dropper cap, inverting the bottle and dispensing the appropriate number of drops onto the device by gently squeezing the bottle.


From the foregoing, it will be appreciated that the location of the weakened portion of the swab stick is such that when the swab is placed into the bottle and touching the bottom of the bottle, the weakened portion of the stick is directly adjacent to the upper lip of the bottle neck. In this manner, the stick can be broken simply by bending it against the bottle neck with the sorbent end in the bottle.


According to a presently preferred embodiment, the hinged cover on the dripper cap has a lock which prevents it from being inadvertently opened. This prevents contamination and loss of buffer solution. The kit according to the invention preferably also contains a second bottle of buffer solution for use with a test device employing a dual path immunoassay system. Optionally, the kit includes an alcohol swab, a safety lancet, and a bandage. The kit may, and preferably does contain an immunoassay device, preferably a dual path immunoassay device. A blood collection loop is also optionally provided.


A method of testing a blood sample according to one embodiment of the invention includes using the alcohol swab to clean the area of the skin from which the sample will be taken, pricking the skin with the safety lancet, and collecting blood using the collection swab. The method then proceeds as described above.


Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a prior art immunoassay test device;



FIG. 2 is a side elevation view of a swab according to the invention;



FIG. 3 is a side elevation view of a dropper bottle assembly according to the invention;



FIG. 4 is a front elevation view of the dropper bottle assembly;



FIG. 5 is a rear elevation view of the dropper bottle assembly;



FIG. 5a is a front elevation view of an alternative dropper bottle assembly;



FIG. 6 is a side elevation view of the dropper bottle assembly with the cap removed and the swab inserted into the bottle;



FIG. 7 is a side elevation view of the dropper bottle with the sorbent end of the swab and the stick broken;



FIG. 8 is a side elevation view of the dropper bottle assembly with the sorbent end of the swab contained therein and the hinged cover opened;



FIG. 9 is a flow chart illustrating the method steps of the invention; and



FIG. 10 is a plan diagram of an expanded kit containing a dual path test device and related sampling items.





DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

Turning now to FIGS. 2-5, a kit according to the invention includes a sterile swab 10 and a dropper bottle assembly 12 containing the buffer solution 14 to which the sample is to be added. The sterile swab 10 includes a sorbent 16 mounted on the end of a stick 18. The stick 18 is preferably long enough (e.g., six inches long) so that a sample can be obtained without contaminating it. The stick is provided with a weakened portion 20 where the stick 18 can be readily broken. The dropper bottle assembly 12 includes a dropper cap 22 having a dropper spout 23, a hinged cover 24 and a threaded base 26 and a bottle 28 having a threaded neck 30 (FIGS. 6 and 7). When the kit is delivered for use, the dropper cap is threadably connected to the threaded neck of the bottle and the hinged cover is closed as shown in FIGS. 3-5.


Referring now to FIGS. 3-5 and 8, the dropper cap 22 includes a forward projecting finger 32 and two rearward projecting fingers 34, 36. The cover 24 has a rear slot which is bifurcated by a cross member 38 and a front slot which is either bifurcated or terminated by a cross member 40. As seen best in FIGS. 5, 6, and 8, the rearward projecting fingers extend into the rear slot and embrace the cross member 38 thereby forming a hinge. As seen best in FIG. 4, when the cover is closed, the forward projecting finger 32 engages the front slot above the cross member 40 and thereby prevents the cover from accidentally opening. The cover 24 is made of resilient material which can be deformed by squeezing the sides of the cover. Squeezing the sides of the cover deforms it in a manner that causes the cross member 40 to move forward and out from under the finger 32 thereby unlocking the cover and allowing it to be tiredly rotated about cross member 40 thereby opening the cover to the position shown in FIG. 8 with the spout 23 exposed. A dropper bottle assembly of the type described above is also described in U.S. Pat. No. 5,328,058 the complete disclosure of which is incorporated by reference herein.


An alternative dropper bottle assembly 12a useful in of bottle assembly 12 is seen in FIG. 5a. Dropper bottle assembly 12a includes a bottle 28a having a threaded neck 30, a dropper cap 22 having internal threads (not shown) for mating with threaded neck 30 and a spout 23a having a neck 23b with external threads, and a cover 24a with internal threads (not shown) for mating with the threads of neck 23b. As will be appreciated, cap 22a and cover 24a can be removed together from bottle 28a, and cover 24a can be removed separately from cap 22a.


A method according to the invention is illustrated in FIG. 9. The method is preferably performed in a clean room which is free from food, drink, and smoke as illustrated at 100. Optimally, the person performing the method may don protective clothing such as a face mask and rubber gloves as indicated at 102. Before beginning the method, the kit should be examined at 104 to determine whether it has expired or been contaminated through a broken package. The method then proceeds by opening up the kit and then opening the dropper bottle assembly at 106 by unscrewing the cap 22 (or cap 22a plus cover 24a) and preferably placing the bottle and the cap (or cap plus cover) on a sterile surface. The swab is then removed from its sterile package (not shown) at 108 and is used to obtain a sample at 110 which may be oral fluid (e.g., saliva or sputum), blood, urine, stool (feces), epithelia, etc. The sorbent end of the swab is then placed into the open bottle (FIG. 6) and the stick is broken at 112 (FIG. 7) typically by leveraging the stick against the edge of the threaded neck 30 of the bottle 12 so that the weakened portion 20 of the stick is near the leveraged point and snaps. Thus, the weakened portion of the stick is preferably selected to be located at a distance from the end of the sterile swab which is approximately (i.e., plus or minus 10%) the same height as the dropper bottle assembly without its cap. The cap (or cap plus cover) is then screwed back onto the bottle at 114 with the broken-stick-swab therein and the bottle is agitated at 116, preferably by shaking it a number of times, e.g. ten. The hinged cover is then opened (FIG. 8) at 118 (or the cover 24a is removed from the cap 22a) and the bottle inverted at 120 so that the buffer reaches the spout (the bottle may be held at an angle). The bottle is positioned over the test apparatus which has been removed from its sterile package (see 11 in FIG. 10) and an appropriate number of drops are dispensed at 122 through the dropper spout 23 (or 23a) by gently squeezing the bottle. When a dual path immunoassay device is used, at 124, pure buffer from a separate bottle (discussed below) is added to another location of the test apparatus.


The apparatus of the invention was tested on one hundred patients known to be infected with HIV. The tests involved collecting oral fluid and performing the procedure described above. Ninety-seven positive test results were obtained and one indeterminate result. This compared favorably with a currently (at the time of the tests) FDA approved test which obtained ninety-eight positive test results from the one hundred patients. The apparatus of the invention was tested on twenty-five patients known to be not infected with HIV. The tests involved collecting oral fluid and performing the procedure described above. All twenty-five patients tested negative or HIV. The FDA approved test achieved the same results.


The above described kit (with bottle 12 or bottle 12a) and method can be used with a single path assay device or with a dual path assay device. FIG. 10 shows a kit which specifically intended for use with a dual path assay device (1 in FIG. 1) which is shown in a sterile package 1. The kit includes the swab 10 which is preferably contained in a sealed sterile package (not shown) bottle assembly 12 (which can be replaced with bottle assembly 12a). The kit may also include the assay device 1 and a second dropper bottle 41 containing the buffer solution to be added to hole 2 in FIG. 1 and as shown in phantom at 124 in FIG. 9. The kit preferably further includes a safety lancet 42, a packaged alcohol swab 44 and a bandage 46. Thus, the kit contains all that is needed to test several different kinds of samples, including blood. If desired, the kit may also include a blood collection loop 48. All elements of the kit may be provided in a container or bag 50.


A method of testing a blood sample includes using the alcohol swab 44 to dean the area of the skin from which the sample will be taken, pricking the skin with the safety lancet 42, collecting blood using the collection swab 10, and bandaging the collection site with the bandage 46. The method then proceeds as described above with reference to FIG. 9. While the presently preferred embodiment of the kit and method are designed for use with a dual path immunoassay device, a kit and method for use with a single path device are also contemplated by the invention. When applied to a single path device, the kit need not contain the second dropper bottle 41.


As previously mentioned, if desired the kit of FIG. 10 may also include a blood collection loop 48. If a blood collection loop is used to collect a blood sample, the blood sample in the loop may be transferred to the assay device by touching the loop with blood collected therein to the sample pad at the sample opening. One or more drops of buffer may then be added. If the assay device is a dual path assay device, the blood sample is applied at the sample opening 3. Buffer from the second dropper bottle 41 (i.e., the pure or “running” buffer) is then added to the sample pad at the sample opening 3. After a period of time, a desired number of drops of buffer from bottle 41 are then added to opening 2 of the assay device 1.


There have been described and illustrated herein methods and apparatus for the collection and preparation of biological samples for testing. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, depending upon the assay device which is included in the kit, or with which the kit is to be used, different numbers of bottles of buffer, and different types of buffers or different types of solutions might be utilized, and the methods of use might vary. Also, depending upon the technique of the technician using the kit, it will be appreciated that different steps can performed in different order. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Claims
  • 1. A method for collecting and preparing a biological sample to be tested, comprising: obtaining a kit comprising a sterile swab separate and distinct from a dropper bottle assembly, wherein the sterile swab has a stick with a sorbent fixed to the stick at one end of the stick, said stick having a weakened portion at a pre-selected location to facilitate breaking the stick, wherein the dropper bottle assembly comprises a dropper cap having a spout and a threaded base, a squeezable bottle with a threaded neck, and a cover that is manually removable from the dropper cap to expose the spout of the dropper cap, said bottle containing a liquid buffer and said dropper cap being coupled to said threaded neck, wherein length of the sterile swab is greater than height of the bottle without the dropper cap, and wherein the weakened portion of the stick is located a distance from the end of the sorbent, the distance being 90% to 100% of the height of the bottle without the dropper cap;obtaining the sample with the sterile swab;opening the dropper bottle assembly by unscrewing and removing the dropper cap from the threaded neck of the bottle;inserting the one end of the sterile swab with the sorbent fixed thereto into the bottle;breaking the stick of the sterile swab at the pre-selected location leaving the sorbent and a portion of the stick disposed inside in the bottle and not extending above the top of the bottle;closing the dropper bottle assembly by re-screwing the dropper cap onto the threaded neck of the bottle with the stick of the swab disengaged from the dropper cap;agitating the bottle to mix the sample with the liquid buffer contained within the bottle;after closing the dropper bottle assembly and agitating the bottle, removing the cover from the dropper cap to expose the spout of the dropper cap; androtating the bottle so that mixed sample and liquid buffer contents of the bottle reach the spout of the dropper cap, and squeezing the bottle to dispense at least one drop of the mixed sample and liquid buffer contents of the bottle through the spout of the dropper cap.
  • 2. A method according to claim 1, wherein: said agitating is accomplished by shaking the bottle multiple times.
  • 3. A method according to claim 1, wherein: the cover is connected to the dropper cap by a hinge that permits the cover to rotate about the hinge relative to the dropper cap, wherein said removing the cover from the dropper cap comprises rotating the cover about the hinge.
  • 4. A method according to claim 1, wherein: the cover is connected to the dropper cap by a thread interface, wherein said removing the cover from the dropper cap comprises rotating the cover relative to the dropper cap to remove the cover from the dropper cap.
  • 5. A method according to claim 1, wherein: said sample is a blood sample.
  • 6. A method according to claim 1, wherein: said sample is one of oral fluid, blood, urine, stool, and epithelia.
  • 7. A method according to claim 1, wherein: said squeezing the bottle dispenses at least one drop of the mixed sample and liquid buffer contents of the bottle to a predefined location of a test device.
  • 8. A method according to claim 7, wherein: the test device comprises an immunoassay device having an opening at the predefined location, wherein the opening of the immunoassay device is configured to receive the mixed sample and liquid buffer contents of the bottle.
  • 9. A method according to claim 1, further comprising: obtaining an additional bottle containing buffer solution; anddispensing at least a portion of the buffer solution of the additional bottle.
  • 10. A method according to claim 9, wherein: said squeezing the bottle dispenses at least one drop of the mixed sample and liquid buffer contents of the bottle to a predefined first location of a test device; andsaid dispensing at least a portion of the buffer solution of the additional bottle supplies the buffer solution of the additional bottle to a predefined second location of the test device, wherein the second location is spaced from the first location.
  • 11. A method according to claim 10, wherein: the test device comprises an immunoassay device having a first opening at the first location and a second opening at the second location, wherein the first opening of the immunoassay device is configured to receive the mixed sample and liquid buffer contents of the bottle, and wherein the second opening of the immunoassay device is configured to receive the buffer solution of the additional bottle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Ser. No. 13/055,536, filed Mar. 31, 2011, which is a 371 national phase application of PCT/US09/51335, filed Jul. 22, 2009, which is a continuation-in-part of U.S. Ser. No. 12/179,248, filed Jul. 24, 2008, all of which are hereby incorporated by reference herein in their entireties. This application is related to co-owned U.S. Pat. No. 7,189,522, entitled “Dual Path Immunoassay Device,” the complete disclosure of which is hereby incorporated by reference herein.

US Referenced Citations (383)
Number Name Date Kind
3815580 Oster Jun 1974 A
3960488 Giaever Jun 1976 A
4041146 Giaever Aug 1977 A
4042335 Clement Aug 1977 A
4059405 Sodickson et al. Nov 1977 A
4094647 Deutsch et al. Jun 1978 A
4144306 Figueras Mar 1979 A
4235601 Deutsch et al. Nov 1980 A
4323536 Columbus Apr 1982 A
4361537 Deutsch et al. Nov 1982 A
4522786 Ebersole Jun 1985 A
4532107 Siddigi Jul 1985 A
4588555 Provonchee May 1986 A
4595654 Reckel et al. Jun 1986 A
4632901 Valkirs et al. Dec 1986 A
4668619 Greenquist et al. May 1987 A
4740468 Weng et al. Apr 1988 A
4785796 Mattson Nov 1988 A
4786595 Arai et al. Nov 1988 A
4803998 Kezes Feb 1989 A
4826759 Guire et al. May 1989 A
4855240 Rosenstein et al. Aug 1989 A
4857453 Ullman et al. Aug 1989 A
4870003 Kortright et al. Sep 1989 A
4886742 Kortright et al. Dec 1989 A
4906439 Grenner Mar 1990 A
4912034 Kalra et al. Mar 1990 A
4920046 McFarland et al. Apr 1990 A
4943522 Eisinger et al. Jul 1990 A
4956275 Zuk et al. Sep 1990 A
4956302 Gordon et al. Sep 1990 A
4960691 Gordon et al. Oct 1990 A
4960710 Lau Oct 1990 A
4981785 Nayak Jan 1991 A
4981786 Dafforn et al. Jan 1991 A
5004584 Rayman Apr 1991 A
5006464 Chu et al. Apr 1991 A
5006474 Horstman et al. Apr 1991 A
5075077 Durley, III et al. Dec 1991 A
5087556 Ertinghausen Feb 1992 A
5091153 Bachand Feb 1992 A
5104793 Buck Apr 1992 A
5104811 Berger et al. Apr 1992 A
5110550 Schlipfenbacher et al. May 1992 A
5132208 Freitag et al. Jul 1992 A
5137808 Ullman et al. Aug 1992 A
5147780 Pouletty et al. Sep 1992 A
5156952 Litman et al. Oct 1992 A
5162238 Eikmeier et al. Oct 1992 A
5169789 Bernstein Dec 1992 A
5173433 Bachand Dec 1992 A
5200321 Kidwell Apr 1993 A
5202268 Kuhn et al. Apr 1993 A
5217905 Marchand et al. Jun 1993 A
5219762 Katamine et al. Jun 1993 A
5223436 Freitag et al. Jun 1993 A
RE34312 Geiger et al. Jul 1993 E
5232835 Litman et al. Aug 1993 A
5238649 Nason Aug 1993 A
5240735 Lau Aug 1993 A
5244631 Morikawa Sep 1993 A
5244788 Hubscher Sep 1993 A
RE34405 Gould et al. Oct 1993 E
5275785 May et al. Jan 1994 A
5281540 Merkh et al. Jan 1994 A
5296192 Carroll et al. Mar 1994 A
5300439 Charlton Apr 1994 A
5306623 Kiser et al. Apr 1994 A
5308775 Donovan et al. May 1994 A
5320809 Dunn et al. Jun 1994 A
5328058 Leoncavallo et al. Jul 1994 A
5332548 Moore Jul 1994 A
5334502 Sangha Aug 1994 A
5338513 Schllipfenbacher et al. Aug 1994 A
5340748 Baugher et al. Aug 1994 A
5356782 Moorman et al. Oct 1994 A
5362654 Pouletty Nov 1994 A
5369007 Kidwell Nov 1994 A
5384264 Chen et al. Jan 1995 A
5391478 Greene et al. Feb 1995 A
5399316 Yamada Mar 1995 A
5411858 McGeehan et al. May 1995 A
5418136 Miller et al. May 1995 A
5418142 Kiser et al. May 1995 A
5418167 Matner et al. May 1995 A
5424215 Albarella et al. Jun 1995 A
5424220 Goerlach-Graw et al. Jun 1995 A
5435970 Mamenta et al. Jul 1995 A
5451504 Fitzpatrick et al. Sep 1995 A
5468648 Chandler Nov 1995 A
5470713 El Shami et al. Nov 1995 A
5474902 Uylen et al. Dec 1995 A
5477863 Grant Dec 1995 A
5482830 Bpogart et al. Jan 1996 A
5494830 Hubscher Feb 1996 A
5500350 Baker et al. Mar 1996 A
5501985 Baugher et al. Mar 1996 A
5514557 Moghaddam May 1996 A
5521102 Boehringer et al. May 1996 A
5532133 Barnwell Jul 1996 A
5541057 Bogart et al. Jul 1996 A
5543115 Karakawa Aug 1996 A
5550063 Bogart Aug 1996 A
5552272 Bogart Sep 1996 A
5558834 Chu et al. Sep 1996 A
5559041 Kang et al. Sep 1996 A
5567594 Calenoff Oct 1996 A
5571667 Chu et al. Nov 1996 A
5591645 Rosenstein Jan 1997 A
5602040 May et al. Feb 1997 A
5604110 Baker et al. Feb 1997 A
5607863 Chandler Mar 1997 A
5616467 Olsen et al. Apr 1997 A
5620845 Gould et al. Apr 1997 A
5622871 May et al. Apr 1997 A
5623942 Pestes et al. Apr 1997 A
5624809 Skold et al. Apr 1997 A
5629164 Rivers May 1997 A
5629214 Crosby May 1997 A
5639671 Bogart et al. Jun 1997 A
5641639 Perry Jun 1997 A
5648274 Chandler Jul 1997 A
5656503 May et al. Aug 1997 A
5658801 Poissant et al. Aug 1997 A
5670381 Jou et al. Sep 1997 A
5686315 Pronovost et al. Nov 1997 A
5695928 Stewart Dec 1997 A
5695930 Weinstein et al. Dec 1997 A
5710005 Rittenburg Jan 1998 A
5714341 Thieme et al. Feb 1998 A
5714389 Charlton et al. Feb 1998 A
5723345 Yamauchi et al. Mar 1998 A
5726010 Clark Mar 1998 A
5728587 Kang et al. Mar 1998 A
5739041 Nazareth et al. Apr 1998 A
5750333 Clark May 1998 A
5766961 Pawlak et al. Jun 1998 A
5766962 Childs et al. Jun 1998 A
5770460 Pawlak et al. Jun 1998 A
5773234 Pronovost et al. Jun 1998 A
5786220 Pronovost et al. Jul 1998 A
5807756 Bauman et al. Sep 1998 A
5814522 Zimmer et al. Sep 1998 A
5824268 Bernstein et al. Oct 1998 A
5827646 Middledorp et al. Oct 1998 A
5846838 Chandler Dec 1998 A
5853670 Bunce Dec 1998 A
5861265 Perry Jan 1999 A
5869272 Bogart et al. Feb 1999 A
5869345 Chandler Feb 1999 A
5872713 Douglas et al. Feb 1999 A
5874216 Mapes Feb 1999 A
5877028 Chandler et al. Mar 1999 A
5879951 Sy Mar 1999 A
5885526 Chu Mar 1999 A
5885527 Buechler Mar 1999 A
5891650 Godowski et al. Apr 1999 A
5900379 Noda et al. May 1999 A
5902722 Di Cesare et al. May 1999 A
5912116 Caldwell Jun 1999 A
5922533 Vallari et al. Jul 1999 A
5922615 Nowakowski et al. Jul 1999 A
5928176 Nakatani Jul 1999 A
5939252 Lennon et al. Aug 1999 A
5939272 Buechler et al. Aug 1999 A
5948695 Douglas et al. Sep 1999 A
5955377 Maul et al. Sep 1999 A
5958790 Cerny Sep 1999 A
5965458 Kouvonen et al. Oct 1999 A
5972720 Nicht et al. Oct 1999 A
5976895 Cipkowski Nov 1999 A
5985675 Charm et al. Nov 1999 A
5989921 Charlton et al. Nov 1999 A
5998220 Chandler Dec 1999 A
5998221 Malick et al. Dec 1999 A
6008056 Thieme Dec 1999 A
6017767 Chandler Jan 2000 A
6027890 Ness et al. Feb 2000 A
6040195 Carroll et al. Mar 2000 A
6046013 Tidey et al. Apr 2000 A
6046057 Nazareth et al. Apr 2000 A
6057166 Childs et al. May 2000 A
6060326 Frank et al. May 2000 A
6063337 Markart May 2000 A
6087184 Magginetti et al. Jul 2000 A
6106732 Johnston et al. Aug 2000 A
6140134 Rittenburg Oct 2000 A
6140136 Lee Oct 2000 A
6168956 Chandler Jan 2001 B1
6171260 Hochmeister et al. Jan 2001 B1
6187268 Albarella et al. Feb 2001 B1
6187598 May et al. Feb 2001 B1
6194220 Malilck et al. Feb 2001 B1
6197494 Oberhardt Mar 2001 B1
6221625 Ashihara et al. Apr 2001 B1
6221678 Chandler Apr 2001 B1
6224831 Stafford et al. May 2001 B1
6228660 May et al. May 2001 B1
6235464 Henderson et al. May 2001 B1
6248598 Bogema Jun 2001 B1
6258548 Buck Jul 2001 B1
6271040 Buechler Aug 2001 B1
6271045 Douglas et al. Aug 2001 B1
6271046 Chandler Aug 2001 B1
6277650 Nazareth et al. Aug 2001 B1
6284550 Carroll et al. Sep 2001 B1
6287875 Geisberg Sep 2001 B1
6297020 Brock Oct 2001 B1
6297060 Nowakowski et al. Oct 2001 B1
6300142 Andrewes et al. Oct 2001 B1
RE37437 Friesen et al. Nov 2001 E
6316205 Guan et al. Nov 2001 B1
6316264 Corey et al. Nov 2001 B1
6319676 Nazareth et al. Nov 2001 B1
6326214 Liu et al. Dec 2001 B1
6335205 Bausback Jan 2002 B1
6352862 Davis et al. Mar 2002 B1
6362008 Kohn et al. Mar 2002 B1
6368875 Geisberg Apr 2002 B1
6368876 Huang et al. Apr 2002 B1
6372514 Lee Apr 2002 B1
6372515 Casterlin et al. Apr 2002 B1
6372516 Sun Apr 2002 B1
6376195 Mapes Apr 2002 B1
6383804 Ward, Jr. et al. May 2002 B1
6399398 Cunningham et al. Jun 2002 B1
6403383 Casterlin et al. Jun 2002 B1
6403384 Lea Jun 2002 B1
6406922 Casterlin et al. Jun 2002 B2
6413473 Bacon Jul 2002 B1
6413784 Lundsgaard et al. Jul 2002 B1
6436722 Clark et al. Aug 2002 B1
6455324 Douglas Sep 2002 B1
6472226 Barradine et al. Oct 2002 B1
6475805 Charm et al. Nov 2002 B1
6485982 Charlton Nov 2002 B1
6489129 Faatz et al. Dec 2002 B1
6492127 Goodell et al. Dec 2002 B2
6500629 Cleaver et al. Dec 2002 B1
6503702 Stewart Jan 2003 B1
6503722 Valkirs Jan 2003 B1
6511814 Carpenter Jan 2003 B1
6514769 Lee Feb 2003 B2
6514773 Klein et al. Feb 2003 B1
6528321 Fitzgerald et al. Mar 2003 B1
6528322 Carlsson et al. Mar 2003 B1
6528323 Thayer et al. Mar 2003 B1
6528325 Hubscher et al. Mar 2003 B1
6534324 Zin Mar 2003 B1
6544474 Douglas Apr 2003 B2
6548309 Moore et al. Apr 2003 B1
6551842 Carpenter Apr 2003 B1
6592815 Zimmer Jul 2003 B1
6593085 Bamett et al. Jul 2003 B1
6602719 Carpenter Aug 2003 B1
6617116 Guan et al. Sep 2003 B2
6623955 Matner et al. Sep 2003 B2
6627459 Tung et al. Sep 2003 B1
6632202 Hagele Oct 2003 B1
6632681 Chu Oct 2003 B1
6645732 Faatz et al. Nov 2003 B2
6649418 Geisberg Nov 2003 B1
6656744 Pronovost et al. Dec 2003 B2
6656745 Cole Dec 2003 B1
6660469 Wright et al. Dec 2003 B1
6663833 Stave et al. Dec 2003 B1
6673628 Freitag et al. Jan 2004 B2
RE38430 Rosenstein Feb 2004 E
6686167 Bagaria Feb 2004 B2
6699722 Bauer et al. Mar 2004 B2
6703196 Klepp et al. Mar 2004 B1
6706539 Nelson et al. Mar 2004 B2
6713309 Anderson et al. Mar 2004 B1
6727073 Moore et al. Apr 2004 B1
6737277 Kang et al. May 2004 B1
6750031 Ligler et al. Jun 2004 B1
6753190 Okada et al. Jun 2004 B1
6767710 DiNello et al. Jul 2004 B2
6767714 Nazareth et al. Jul 2004 B2
6780651 Douglas et al. Aug 2004 B2
6790611 Lassen et al. Sep 2004 B2
6797481 Ullman et al. Sep 2004 B1
6808889 Fitzpatrick et al. Oct 2004 B2
6808937 Ligler et al. Oct 2004 B2
6812038 Mendel-Hartvig et al. Nov 2004 B1
6818180 Douglas et al. Nov 2004 B2
6818455 May et al. Nov 2004 B2
6824975 Hubscher et al. Nov 2004 B2
6824997 Moore et al. Nov 2004 B1
6828110 Le et al. Dec 2004 B2
RE38688 Friesen et al. Jan 2005 E
6844200 Brock Jan 2005 B2
6846635 Anderson et al. Jan 2005 B1
6849414 Guan et al. Feb 2005 B2
6855561 Jerome et al. Feb 2005 B2
6863866 Kelly et al. Mar 2005 B2
6867051 Anderson et al. Mar 2005 B1
6887701 Anderson et al. May 2005 B2
6905835 Gomez et al. Jun 2005 B2
6924153 Boehringer et al. Aug 2005 B1
6927068 Simonson et al. Aug 2005 B2
6991940 Carroll et al. Jan 2006 B2
7018847 Mendel-Hartvig et al. Mar 2006 B2
7045342 Nazareth et al. May 2006 B2
7049130 Carroll et al. May 2006 B2
7109042 May et al. Sep 2006 B2
7175057 Mutterle Feb 2007 B2
7178703 Spada et al. Feb 2007 B2
7189522 Esfandiari Mar 2007 B2
7374949 Kuriger May 2008 B2
20010007926 Trudil Jul 2001 A1
20010012637 Casterlin et al. Aug 2001 A1
20010026942 Carpenter et al. Oct 2001 A1
20010026944 Chung et al. Oct 2001 A1
20010034068 Spivey et al. Oct 2001 A1
20010039057 Douglas et al. Nov 2001 A1
20010048893 Norris et al. Dec 2001 A1
20020001853 Obremski et al. Jan 2002 A1
20020015663 Goldstein et al. Feb 2002 A1
20020019062 Lea et al. Feb 2002 A1
20020031839 McNeirney et al. Mar 2002 A1
20020046614 Alley Apr 2002 A1
20020048819 Alley Apr 2002 A1
20020052050 Douglas et al. May 2002 A1
20020057991 Kelly et al. May 2002 A1
20020058330 Carroll et al. May 2002 A1
20020110803 Dhar et al. Aug 2002 A1
20020119497 Wild et al. Aug 2002 A1
20020142291 Bauer et al. Oct 2002 A1
20020155028 Wong Oct 2002 A1
20020173050 DiNello et al. Nov 2002 A1
20020192839 Mink et al. Dec 2002 A1
20030045001 Burgess et al. Mar 2003 A1
20030118480 Kaylor et al. Jun 2003 A1
20030124740 Bachand Jul 2003 A1
20030138351 Etes et al. Jul 2003 A1
20030138971 D'Aurora Jul 2003 A1
20030143639 Matsushita et al. Jul 2003 A1
20030180967 Shigetoh Sep 2003 A1
20030199004 Fong Oct 2003 A1
20040014237 Sugiyama Jan 2004 A1
20040087036 Chung et al. May 2004 A1
20040142495 Hartman et al. Jul 2004 A1
20040161859 Guo et al. Aug 2004 A1
20040170536 Daykin Sep 2004 A1
20040184954 Guo et al. Sep 2004 A1
20040219694 Chittock et al. Nov 2004 A1
20040235189 Lu Nov 2004 A1
20040241779 Paisio et al. Dec 2004 A1
20040248322 Charlton Dec 2004 A1
20050059161 Anderson Mar 2005 A1
20050074900 Morgan et al. Apr 2005 A1
20050079629 Guo et al. Apr 2005 A1
20050106753 Wu May 2005 A1
20050112779 Wei et al. May 2005 A1
20050112780 Song May 2005 A1
20050112782 Buechler May 2005 A1
20050130293 Blatt et al. Jun 2005 A1
20050130310 Wandell et al. Jun 2005 A1
20050130319 Biegelsen et al. Jun 2005 A1
20050136500 Yang et al. Jun 2005 A1
20050142032 Hoenes et al. Jun 2005 A1
20050164404 Marlborugh et al. Jul 2005 A1
20050170527 Boehringer et al. Aug 2005 A1
20050208677 Owens et al. Sep 2005 A1
20050227371 Gokhan Oct 2005 A1
20050232813 Karmali Oct 2005 A1
20050244985 Freitag et al. Nov 2005 A1
20050244986 May et al. Nov 2005 A1
20060099719 Curcio May 2006 A1
20060115385 Jon Meyer Jun 2006 A1
20060121626 Imrich Jun 2006 A1
20060134803 Esfandiari Jun 2006 A1
20060205059 Esfandiari Sep 2006 A1
20060245977 Bodner Nov 2006 A1
20070167900 Kanjilal et al. Jul 2007 A1
20070208275 Vinogradov et al. Sep 2007 A1
20070299364 Sangha Dec 2007 A1
20080139962 Jehlani et al. Jun 2008 A1
20080254550 Nathaniel Oct 2008 A1
20090004688 McIver Jan 2009 A1
20090156962 Yong Jun 2009 A1
20090311032 Kurek Dec 2009 A1
Non-Patent Literature Citations (1)
Entry
International Search Report of International Application No. PCT/US 09/51335 dated Sep. 1, 2009.
Related Publications (1)
Number Date Country
20190261961 A1 Aug 2019 US
Divisions (1)
Number Date Country
Parent 13055536 US
Child 16373445 US
Continuation in Parts (1)
Number Date Country
Parent 12179248 Jul 2008 US
Child 13055536 US