1. Field
This disclosure relates generally to coupling laser light in fibers and, more particularly, a method and apparatus for combining laser light in a fiber bundle.
2. Description of Related Art
In the fields of optical communication and lasers, particularly high power lasers, it is desirable to provide apparatus and methods for combining multiple optical sources into a single optical output and/or to provide multiple optical outputs from a single optical source. In this specification, the term “optical” is given the meaning used by those skilled in the art, that is, “optical” generally refers to that part of the electromagnetic spectrum which is generally known as the visible region together with those parts of the infrared and ultraviolet regions at each end of the visible region which are capable of being transmitted by dielectric optical waveguides such as optical fibers.
Combining multiple optical sources into a single optical output having optical power nearly equal to the sum of the powers of the individual sources can be accomplished through the combination of the optical sources. One apparatus known in the art for combining N sources is a 1×N fiber coupler. U.S. Pat. No. 5,175,779, issued Dec. 29, 1992 to Mortimore, describes a 1×N single-mode star coupler configured to couple light into multiple fibers at two wavelengths. In Mortimore, multiple single mode fibers are stripped of their primary coating and constrained around a single central fiber, which is also a single mode fiber stripped of its primary coating. All fibers are inserted into a tight fitting silica base glass capillary tube. The fiber and the tube are heated and pulled to form a tapered coupler. During the pulling process, light transmitted through the central fiber and at least one of the multiple fibers disposed around the central fiber is measured. When the light in the central fiber and the fiber disposed around the central fiber is nearly equal at the two desired wavelengths, the pulling process is terminated.
The 1×N star coupler disclosed by Mortimore and other similar apparatus known in the art provide the capability to combine optical sources at relatively lower powers. Furthermore, as the optical power in each fiber is increased, this prior art has the disadvantage that the combined power must propagate in the core of the single central fiber. When the combined optical power is high, undesirable nonlinear effects in, or damage to, the single central fiber may occur. For example, at high optical powers, Stimulated Brillouin Scattering (SBS) may arise. This nonlinear optical effect-results from the interaction of the light in the central fiber with acoustic waves in the fiber medium through which the light is propagating, producing inelastic backscattering of the light with a frequency shift equal to the frequency of the acoustic waves. The backward propagating light is amplified at the expense of the forward propagating light. Further, the acoustic waves may also be amplified by this effect, generating an acoustic intensity that can easily damage the single central fiber.
Splitting a single optical source into multiple optical outputs may also be provided by the 1×N star coupler described above, but the power handling capabilities of the coupler are again limited by the single central fiber. Further, if the optical source is a single plane wave, additional optical devices are needed to couple the plane wave into the single central fiber.
Devices are known in the art which allow an optical plane wave to be coupled to multiple fibers without using a single central fiber. For example, U.S. Pat. No. 5,852,699, issued Dec. 22, 1998 to Lissotschenko et al., discloses a coupling element having an array of lenses where each lens focuses an incident light beam onto a specific fiber in a fiber bundle. Hence, the coupling element splits the incident plane wave into multiple light beams, each of which are directed to a separate optical fiber.
The coupling efficiency for coupling an optical plane wave into multiple fibers using the approach disclosed by Lissotschenko (or other similar techniques known in the art) is generally limited to about 30%. Even assuming perfect alignment, the coupling efficiency is limited by the packing of both the fibers in the fiber bundle and the lenses in the array of lenses. The coupling efficiency is further limited by clipping that occurs at the edge of each lens in the array. Finally, the coupling efficiency is reduced because the fiber modes only accept a Gaussian-profiled fraction of the input beam. Therefore, even though the optical plane wave may be a high power optical beam, a significant portion of that power is lost when coupling the beam into multiple fibers using apparatus and methods known in the art.
U.S. 5,408,556 to Wong discloses a 1×N splitter for single-mode optical fiber that includes an individual single-mode optical fiber having its junction end juxtaposed, through a focusing lens/junction element, to the end of a bundle of arbitrarily arranged single-mode fibers which are fused together along a portion of their lengths and which have a total diameter approximately equal to the diameter of the first single-mode fiber. The 1×N splitter is formed by trimming a limited portion of the cladding from and fusing together in a bundle a plurality of parallel but randomly arranged optical fibers at a fuse region with substantially uniform heat while controllably drawing all the fibers in the bundle at the same time monitoring crosstalk from a single input fiber to all output fibers to draw down the bundle size and to promote uniform crosstalk, then cleaving the fiber bundle at the fused region, abutting and aligning a single-mode optical fiber having cladding of substantially the same diameter as the fused bundle with the cleaved fused bundle and joining the single-mode optical fiber to the cleaved fused bundle with a spot weld which forms a focusing junction. The matched sizing and focusing junction minimizes return losses due to back reflection.
Therefore, there is a need in the art for a method and apparatus for combining the optical power of multiple optical fibers to provide a single high power optical output. There is also a need in the art for a method and apparatus for coupling an optical beam into multiple optical fibers at a greater coupling efficiency than other methods and apparatus known in the art. Further, there is a need in the art for efficiently coupling an optical beam in free space into multiple optical fibers, and coupling optical beams propagating in multiple optical fibers into free space.
Embodiments of the present invention provide a method and apparatus for providing for the coherent combination of the optical power in multiple optical fibers into a single optical output and provide for the coupling of the light of an optical source into multiple optical fibers. Embodiments of the present invention may be fabricated using materials and techniques well known in the art.
Embodiments of the present invention provide a controlled amount of interconnectivity between a controlled number of neighboring optical fibers, while also providing a relatively collimated beam from the fiber ensemble. The fibers may all have the same core size and/or refractive index or the core sizes and/or refractive indices of the fibers in the fiber ensemble may vary. In preferred embodiments of the present invention, the fibers in the fiber ensemble are bundled together, fused and stretched. The stretching decreases the core size of the fibers, which increases the size of the optical mode guided by the core. The stretching simultaneously decreases the spacing between the cores.
By controllably decreasing the core size and spacing, the optical power originally guided exclusively by any one of the cores may be controllably coupled to the neighboring cores. As discussed above, power coupling between adjacent optical fibers by stretching the fibers is known in the art. However, unlike the known prior art, the fused bundle in embodiments of the present invention is cut and polished (or cleaved) at a selected position along the necked-down bundle, where the fibers are stretched and fused. The point at which the fused bundle is cut and polished (or cleaved) provides a facet to which an optical beam may be coupled or from which an optical beam can be output.
When the multiple fibers are connected to multiple optical sources, an optical beam will emerge from the facet. The optical beam will consists of beamlets, each larger (10's of microns) than the normal size (˜6 microns diameter) of fiber-optic beams, and thus not as prone to damage the output facet.
The features and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Further, the dimensions of certain elements shown in the accompanying drawings may be exaggerated to more clearly show details. The present invention should not be construed as being limited to the dimensional relations shown in the drawings, nor should the individual elements shown in the drawings be construed to be limited to the dimensions shown.
The preferred embodiment of the present invention is fabricated by assembling the optical fibers 100 in the fiber bundle in a regular array. Such arrays include hexagonal close packing, square packing, and a three-nearest-neighbor packing. Although manufacturing tolerances may result in a certain amount of randomness in the array, the device is still useful even if the optical fibers 100 are not perfectly arranged. This array of fibers is then fused together and stretched using techniques well known in the art, such as those techniques used for the fabrication of tapered fiber couplers. After the bundle of fibers has been fused and stretched, the bundle is cut and polished, or cleaved, at a selected location to provide the facet 110. The facet 110 provides for the entrance of a single beam into the apparatus and the distribution of that beam among the optical fibers in the array. The facet 110 also provides for the exit of a single beam from the apparatus, which may be fed by optical sources coupled to the multiple fibers 100.
To make fabrication of the device simpler, to facilitate assembly and maintenance of specific array patterns throughout the fabrication procedure, or to improve the device's performance, several techniques used in the glass fabrication art may be used. For example, the bundle of fibers 100, in an array with the desired configuration, can be first assembled inside a tube 190 (as shown in
The degree to which the fused portion of the array is stretched is a matter of design. Typically, the fused portion of the array is stretched to give the desired mode size and degree of coupling between fibers. In general, when the array of fibers 100 is stretched, the cross-sectional shape of each fiber 100 can be preserved, except that the fiber 100 is proportionately miniaturized. Shown in
The procedure used to calculate the coupling of the fibers to their neighbors consists of selecting a packing arrangement, a ratio of core size to cladding size (that is, the particular type or specifications of the fiber), and a degree of stretch and length of the stretched region, that produces the desired coupling. What makes coupling to neighbors possible is the fact that the size of the mode propagating through the fiber increases as the V-number of the fiber gets smaller and a greater fraction of the power propagates outside the core, overlapping adjacent cores. The V-number is a well-known fiber parameter and is defined as:
V=ρk(ncore2−nclad2)1/2
where ρ is the radius of the core, k is the wavenumber of the light, ncore is the refractive index of the fiber core, and nclad is the refractive index of the fiber cladding.
Mode shapes of light propagating within an optical fiber can be calculated and
If this same fiber is now contemplated as being stretched so that its diameter is 60 micrometers (2X stretching) then the calculated mode shape is as shown by curve 321, with the profile inside the now-smaller core being shown by curve 322 (roughly the portion of the curve 321 located between the points ±1.5 μm distance from the core).
If the fiber is further stretched so that its diameter is only 42 μm (about 3X stretching), the mode shape calculates to be curve 331, with the profile inside the core being shown by curve 332 (roughly the portion of the curve 331 located between the points ±0.75 μm distance from the core).
If the device is to be used to couple a free space beam into an ensemble of fibers 100 as shown in
Alternatively, the device may be used to combine multiple optical inputs into a single combined optical output as shown in
From the foregoing description, it will be apparent that the present invention has a number of advantages, some of which have been described herein, and others of which are inherent in the embodiments of the invention described or claimed herein. Also, it will be understood that modifications can be made to the apparatus and method described herein without departing from the teachings of subject matter described herein. As such, the invention is not to be limited to the described embodiments except as required by the appended claims.
The present application is related to and claims the benefit of co-pending U.S. Provisional Patent Application Ser. No. 60/441,026, filed on Jan. 17, 2003 and titled “Method and Apparatus for Combining Laser Light.” The disclosure of U.S. Provisional Patent Application No. 60/441,026 is incorporated herein by reference in its entirety. The subject matter of the present application may also be related to co-pending U.S. patent application Ser. No. 60/441,027, filed on Jan. 17, 2003 and titled “Method and Apparatus for Coherently Combining Multiple Laser Oscillators.” The disclosure of U.S. Provisional Patent Application Ser. No. 60/441,027 is incorporated herein by reference in its entirety. The subject matter of the present application may also be related to co-pending U.S. patent application Ser. No. 10/759,510 filed of even date herewith. The disclosure of this U.S. patent application Ser. No. 10/750,510 is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3912362 | Hudson | Oct 1975 | A |
4360372 | Maciejko | Nov 1982 | A |
4757268 | Abrams et al. | Jul 1988 | A |
4915467 | Berkey | Apr 1990 | A |
4932747 | Russell et al. | Jun 1990 | A |
4954152 | Hsu et al. | Sep 1990 | A |
5045100 | Smith et al. | Sep 1991 | A |
5150439 | Hill et al. | Sep 1992 | A |
5175779 | Mortimore | Dec 1992 | A |
5303373 | Harootian, Jr. | Apr 1994 | A |
5396506 | Ball | Mar 1995 | A |
5408556 | Wong | Apr 1995 | A |
5566196 | Scifres | Oct 1996 | A |
5852699 | Lissotschenko et al. | Dec 1998 | A |
5881189 | Carberry et al. | Mar 1999 | A |
5936980 | Espindola et al. | Aug 1999 | A |
5946130 | Rice | Aug 1999 | A |
6134362 | Au-Yeung et al. | Oct 2000 | A |
6208678 | King | Mar 2001 | B1 |
6272155 | Sekiguchi | Aug 2001 | B1 |
6366356 | Brosnan et al. | Apr 2002 | B1 |
6385371 | Li | May 2002 | B1 |
6400871 | Minden | Jun 2002 | B1 |
6411323 | Waarts et al. | Jun 2002 | B1 |
6411762 | Anthon et al. | Jun 2002 | B1 |
6434302 | Fidric et al. | Aug 2002 | B1 |
6477301 | Anthon et al. | Nov 2002 | B1 |
6515257 | Jain et al. | Feb 2003 | B1 |
6600765 | Evans et al. | Jul 2003 | B2 |
6827500 | Basavanhally et al. | Dec 2004 | B2 |
6862386 | Corio et al. | Mar 2005 | B2 |
7068949 | Jung et al. | Jun 2006 | B2 |
7274717 | Minden et al. | Sep 2007 | B1 |
7342947 | Minden et al. | Mar 2008 | B1 |
20030031415 | Gonthier et al. | Feb 2003 | A1 |
20030123801 | Rolston | Jul 2003 | A1 |
20040057475 | Frankel et al. | Mar 2004 | A1 |
20040165620 | Rogers et al. | Aug 2004 | A1 |
20050163443 | Antos et al. | Jul 2005 | A1 |
Number | Date | Country |
---|---|---|
0 547 335 | Jun 1993 | EP |
2 154 364 | Sep 1985 | GB |
2 191 873 | Dec 1987 | GB |
2001001919 | Dec 2003 | WO |
2004001919 | Dec 2003 | WO |
2004068652 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040165827 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60441026 | Jan 2003 | US | |
60441027 | Jan 2003 | US |