This application is a U.S. National Stage Application under 35 U.S.C. §371 of PCT Application No. PCT/GB2009/001220, filed May 15, 2009, which claims priority to Great Britain Application No. 0809003.7, filed May 17, 2008.
This invention relates to a method and apparatus for compensating for off-axis focal spot distortion that arises when a scanner and lens are used in the formation of fine line structures in a substrate by direct write ablation. In particular, it relates to the correction of aberrations of the focal spot over the scan field of the lens in order to control the width of an ablated line pattern. This invention is particularly appropriate for the high resolution, fine line patterning of thin films or layers of materials on glass, polymer, metal or other flat substrates.
The techniques for marking or patterning flat substrates by laser ablation using beam scanners and focussing lenses is extremely well known and many different arrangements for carrying out this operation are used.
The lasers used cover almost all lasers commonly available with wavelengths ranging from the (deep ultra violet) DUV at 193 nm to the (far infra-red) FIR at 10.6 μm, with pulse lengths ranging from the femto-second range to continuous (CW) operation and with average powers ranging from the fraction of a Watt level to many hundreds of Watts.
Laser beam scanner units are commonly based on dual axis oscillating mirrors driven by galvanometer or other motors where the requirement is to mark or pattern over a two dimensional area. For the case where scanning in one axis only is required rotating polygonal mirrors are often used.
A variety of different lenses are used to focus the beam onto the substrate surface. These can range from simple singlet lenses to complex multi-element lenses. The lenses can be located either before or after the scanner unit. For the case where it is situated after the scanner unit, a lens of telecentric type is often used.
A common feature of all these scanning optical systems is that the quality of the focal spot generated on the surface of a flat substrate at off-axis points away from the centre of the scan field is always inferior in terms of minimum size and optimum shape to that generated on axis in the centre of the scan field. These off-axis focal spot distortion effects are due to aberrations induced in the laser beam as it passes at an angle through the scan lens elements. The distortion effects get significantly worse at the extremes of the lens scan field.
One major scan lens aberration is that of field curvature. In this case the smallest focal spots obtainable at off axis points occur at different distances from the lens compared to that for an on axis point. This means that the focal spot formed at an off axis point on a flat substrate is of different diameter to that formed on axis leading to variations in the power and energy density over the scan field. This aberration is readily correctable by the addition of an extra axis to the scanner unit in the form of a dynamically controlled variable telescope. This unit varies the collimation of the beam and causes the beam entering the lens to diverge or converge such that the distance of the focal spot from the lens can be controlled. By this method, the optimum beam focal spot can be arranged to coincide exactly with the surface of a flat substrate at all points over the scan field right up to the extreme edges. Such field flattening techniques are well known and suitable equipment, able to dynamically correct for field curvature, is readily available.
However, other serious off-axis lens aberration effects exist that are not so readily correctable. These are the aberrations that lead to distortion of the focal spot shape as the beam moves from the centre of the field to the extremes. In their very simplest form, these aberrations lead to an increase in the diameter of the Gaussian profile focal spot at the field edges compared to the field centre. In their more usual form, however, these aberrations cause a distortion of the shape of the off axis focal spots with the formation of a comet-like tail. The power or energy density distribution may depart very significantly from a Gaussian distribution. The main effect of these focal spot distorting aberrations is to spread the laser beam power or pulse energy over a larger area and hence reduce the peak power or peak pulse energy density in the off-axis focal spots compared to those in a focal spot on axis.
The process of laser ablation of materials generally has a well defined threshold in terms of laser power or energy density and hence the width of any line structure ablated in a thin film or layer of material depends on the diameter of the focal spot at a power or energy density level equal to the ablation threshold. Hence, any lens aberrations that give rise to a spreading of the laser power or energy over a larger area or a departure from a Gaussian distribution with an enhanced level of energy or power in the wings of the distribution will cause a reduction in the peak power or energy density in the focal spot and can cause a change in the diameter of the focal spot at the level set by the ablation threshold and a corresponding change in the width of the line structure ablated. This line width change can be an increase or a decrease depending on the level of the threshold for ablation compared to the peak power or energy density. In the worst case, where the ablation threshold power or energy density level is close to the peak value and the process window in terms of allowed variation from maximum to minimum power or energy density is small, then any significant reduction in the peak power or energy density in the focal spot can cause the peak level to drop below the ablation threshold and no line will be ablated.
For high resolution line structures in thin and thick film based functional devices such as printed circuit boards, touch screens, displays, sensors, solar panels and other micro-electronic devices, accurate control of the width of the ablated structure is of paramount importance to ensure reliable operation. In this case, a method for overcoming the off axis uncorrectable lens aberrations is required. Adding more elements to the lens reduces the off axis distortion effects and can significantly improve the lens performance but such a solution significantly increases system complexity and cost and does not completely solve the problem.
The invention described herein seeks to provide an alternative way to compensate for the off axis, focal spot distorting aberrations found in standard scan lenses.
According to a first aspect of the invention, there is provided apparatus for compensating for off-axis focal spot distortion that arises when a scanner and lens are used in the formation of fine line structures in a substrate by direct write laser ablation, the apparatus comprising:
a laser unit for providing a laser beam;
a scanner unit for scanning the laser beam across a substrate from an on-axis position to off-axis positions;
a focussing lens for focussing the laser beam on the substrate;
power changing means for changing the laser output power or pulse energy; and
a controller unit for controlling the power changing means so as to dynamically change the laser output power or pulse energy in dependence upon the position of the focal spot relative to the on-axis position.
According to a second aspect of the invention, there is provided a method of compensating for off-axis focal spot distortion that arises when a scanner and lens are used in the formation of fine line structures in a substrate by direct write laser ablation, the method comprising the steps of:
providing a laser beam;
scanning the laser beam across a substrate from an on-axis position to off-axis positions;
focussing the laser beam on the substrate; and
dynamically changing the laser output power or pulse energy in dependence upon the position of the focal spot relative to the on-axis position.
This invention relates to the operation of a system involving a laser unit, a laser beam scanner unit and a laser beam focussing lens. The system may be used to ablatively write fine lines in thin films or other layers of material on flat substrates. Examples of appropriate materials for laser processing include thin layers of transparent conductive oxides (eg Indium-tin oxide (ITO), SnO2, ZnO, etc), metals, inorganic semiconductors eg amorphous silicon (α-Si), micro-crystalline silicon (μc-Si), poly-crystalline silicon (poly-Si), copper-indium-gallium-sulphide (CIGS), cadmium telluride (CdTe), etc), organic semiconductors, organic light emitting diodes (OLEDs), etc) and thicker layers of polymers and resins as would be used in printed circuit boards (PCBs).
The laser can operate at any wavelength from the deep UV at 193 nm right up to the far IR at 10.6 μm. It can be of pulsed type and operate in any modulated, Q-switched or mode-locked pulsed mode. Alternatively, the laser can be of continuous (CW) type and operate in continuous, modulated continuous or ultra high repetition rate quasi-continuous mode. The laser beam scanner unit can move the laser beam in either one or two axes and can be of oscillating mirror or rotating polygonal mirror type. The laser beam focussing lens can of any simple or complex type and can be located either before or after the scanner unit.
An important feature of the apparatus described is that means are provided so that the laser power or pulse energy density can be changed at points in the scan field that are off the primary axis where optical distortion effects introduced by the lens cause the focal spot on the substrate to increase in area such that the peak power or energy density is reduced and the width of the ablated line structure in the layer of material on the substrate changes from the value obtained at a point on the primary axis of the lens.
The laser output power or pulse energy is able to be dynamically changed as the laser beam is progressively scanned across the scan area so that at all points in the scan field the power or energy in the beam is maintained at the desired value.
Preferably, the change in the power or pulse energy in the laser beam at each off axis point compared to the on axis position is by such an amount so as to exactly or substantially restore the width of the ablated line structure at that point to the value obtained at a point on the primary lens axis.
Two principal methods are envisaged for changing the laser power or pulse energy. In one case, a laser beam modulator unit of acousto-optic or electro-optic type is positioned after the laser output aperture. This approach is appropriate for all laser types where suitable transmissive modulators exist but is most relevant for lasers that are CW or quasi CW. Such equipment is readily available over the wavelength range from 266 nm to 10.6 μm. Another method for modulating the laser output applies in the case of Q-switched diode pumped solid state lasers that have appropriate electronic functionality to be able to be triggered externally by a train of suitable electrical pulses with the energy level of individual pulses controllable by varying the width of the trigger pulses. Such lasers, operating at wavelengths of 355 nm, 532 nm and 1.06 μm are readily available.
Whatever method is used to change the laser output power or pulse energy it is necessary to drive that device dynamically with a train of suitable electronic signals that relate to the particular value of power or pulse energy needed at each point in the scan field. Clearly, it is desirable to determine the variation in laser power or pulse energy required at any off axis point in order to restore the width of the ablated line to the same value as that on axis. In a preferred arrangement this can be carried out by making a reference fine line pattern over the full scan area of a test sample with the laser operating with constant power or pulse energy and then measuring the variation in ablated line width (compared to that on axis) at selected off axis sites. These measurements are then, used to form the basis of a calibration data set that is incorporated into the scanner control software and is subsequently used to drive the device that controls the laser output power or pulse energy in order to adjust the energy or power in the beam focus to maintain the line width constant over the scan area.
Determination of the correct calibration data set for a particular thin film sample may require several test sample production iterations since the line width dependence on the laser power or energy density may be either a positive or a negative function and in both cases is unlikely to be linear. Hence the final degree to which the power or pulse energy needs to be changed to hold the line width exactly constant can best be determined experimentally.
Other preferred and optional features of the invention will be apparent from the following description and from the subsidiary claims of the specification.
The invention will now be further described, merely by way of example, with reference to the accompanying drawings, in which:
From
The arrangement described above thus provides a method for compensating for off-axis focal spot distortion errors that occur when using a laser scanning lens to create fine line structures in layers of materials on flat substrates by direct write ablation so that the line-width of the structures is maintained substantially over the full scan area, the method comprising of:
The apparatus described for carrying out this method consists of:
Number | Date | Country | Kind |
---|---|---|---|
0809003.7 | May 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2009/001220 | 5/15/2009 | WO | 00 | 11/16/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/141584 | 11/26/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4430549 | Macken | Feb 1984 | A |
4928284 | Burns | May 1990 | A |
4970600 | Garnier | Nov 1990 | A |
5204867 | Koschmann | Apr 1993 | A |
5386427 | Zayhowski | Jan 1995 | A |
5466904 | Pfeiffer | Nov 1995 | A |
5517349 | Sandstrom | May 1996 | A |
5541731 | Freedenberg et al. | Jul 1996 | A |
5561544 | Macken | Oct 1996 | A |
5593606 | Owen | Jan 1997 | A |
5670069 | Nakai | Sep 1997 | A |
5854803 | Yamazaki et al. | Dec 1998 | A |
5916461 | Costin et al. | Jun 1999 | A |
5925271 | Pollack | Jul 1999 | A |
6195164 | Thompson | Feb 2001 | B1 |
6370171 | Horn | Apr 2002 | B1 |
6462301 | Scott et al. | Oct 2002 | B1 |
6615099 | Muller et al. | Sep 2003 | B1 |
6944111 | Nakamura | Sep 2005 | B2 |
7145710 | Holmes | Dec 2006 | B2 |
7176407 | Hunter | Feb 2007 | B2 |
7888621 | Abrott | Feb 2011 | B2 |
20020125231 | Hunter | Sep 2002 | A1 |
20030090562 | Kubota | May 2003 | A1 |
20030137656 | Fuse | Jul 2003 | A1 |
20030179430 | Kurosawa | Sep 2003 | A1 |
20040065643 | Tanaka | Apr 2004 | A1 |
20040074881 | Oishi | Apr 2004 | A1 |
20040188402 | Horsting | Sep 2004 | A1 |
20060180581 | Swaringen et al. | Aug 2006 | A1 |
20060256181 | Ehrmann et al. | Nov 2006 | A1 |
20080017619 | Yamakawa | Jan 2008 | A1 |
20080023455 | Idaka | Jan 2008 | A1 |
20080078751 | Abrott | Apr 2008 | A1 |
20080095968 | Semon | Apr 2008 | A1 |
20080116183 | Curry | May 2008 | A1 |
20090095722 | Ehrmann | Apr 2009 | A1 |
20090314751 | Manens | Dec 2009 | A1 |
20100065537 | Watatani | Mar 2010 | A1 |
20100078419 | Johansen et al. | Apr 2010 | A1 |
20110127697 | Milne | Jun 2011 | A1 |
20120273472 | Unrath | Nov 2012 | A1 |
20160187646 | Ehrmann | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2354845 | Apr 2001 | GB |
WO 2008069099 | Jun 2008 | WO |
Entry |
---|
Website: http://en.wikipedia.org/wiki/Nd:YAG—laser. |
Geusic, J. E.; Marcos, H. M.; Van Uitert, L. G. (1964). “Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets”. Applied Physics Letters 4 (10): 182. Bibcode:1964ApPhL...4..182G. doi:10.1063/1.1753928. |
Webb, Colin & Julian Jones, eds., Handbook of Laser Technology and Applications, vol. III, Institute of Physics Publishing, 2003. |
Dickley, Fred, Scott Holswade, eds. , Laser Beam Shaping: Theory and Techniques, Marcel Decker, Inc., 2000. |
Livingston, F.E., et al.; “Tailoring Light Pulse Amplitudes for Optimal Laser Processing and Material Modification”; Applied Surface Science; Elsevier; Amsterdam, Netherlands; vol. 253, No. 19, Jul. 18, 2007; pp. 8015-8021 (XP-022156145). |
PCT International Search Report dated Oct. 9, 2009 issued in Application No. PCT/KR2009/001220. |
Number | Date | Country | |
---|---|---|---|
20110127241 A1 | Jun 2011 | US |