The present invention relates to earth borehole operations such as those involving the drilling and/or lining of earth boreholes in oil and gas wells. More particularly, the present invention relates to methods and apparatus for drilling and/or lining earth boreholes using coiled casing.
In conventional earth borehole operations such as drilling, the casing, liner, or drill string (collectively “tubular string”) is made up of sections or joints of threaded tubular members, generally about 30-40 feet long, which are sequentially threaded together as the tubular string is advanced into an earth borehole. Accordingly, it is necessary for the drilling or casing running operations to be intermittently interrupted so that successive joints of tubular members can be attached, and the drilling or casing running operations continued. When threaded drill pipe or casing is employed and the next joint is ready to be attached, the drilling or casing running operations are stopped, and the tubular string in the earth borehole is suspended with slips or the like forming part of the wellhead assembly. The next joint is then stabbed into the suspended tubular string and made up, and the running operations then continued. Operations such as making and breaking threaded connections are time consuming and, more importantly, inherently dangerous to personnel on the rig floor. Furthermore, during the time when the next joint is being attached to the suspended string, fluid circulation operations involving drilling mud or casing running fluids are stopped. In conventional drilling or casing running operations using jointed tubular members, continuous circulation is thus not practical since, as noted above, during the period when a successive joint is being added, circulation operations are stopped. Continuous circulation is desirable to maintain the annulus between the casing string and the borehole clear and to prevent bridging. It is also desirable, during casing running operations, that the casing string suspended in the earth borehole be kept filled with fluid to prevent excessive fluid pressure differentials across the casing string, and thereby prevent collapse and/or blowouts.
Casing has been used as a drill string such that once the earth borehole has been drilled to the desired depth, the casing forming the drill string can be cemented in place in a conventional manner. This technique eliminates the need for separate drill strings and casing strings. Usually, when the casing string is used as the drill string, the end of the casing string in the earth borehole is attached to a disposable or retrievable bottomhole assembly which includes a motor and a drill bit. When the drilling operation is completed, the bottomhole assembly can be retrieved and the casing string in the borehole then cemented in place in a conventional manner. While drilling with casing clearly has advantages in terms of savings of time and money compared to conventional earth borehole drilling operations involving separate drill strings and casing strings, present methods for drilling with casing employ jointed casing with all the attendant problems discussed above with respect to jointed drill strings and/or casing strings.
Coiled tubing having a size of less than 3 inches or less has been uncoiled from the reel and inserted in threaded casing in a well. Although coiled tubing is not normally used in conjunction with cementing operations, it has been known to uncoil tubing from a reel into a well with a damaged casing, and then to cement the annulus between the tubing and the damaged casing in order to continue recovery from the well.
Those familiar with coiled tubing operations recognize that coiled tubing sizes conventionally extend up to about 3 inches, and that casing sizes typically extend to about 4 inches to about 7 inches or more. Coiled casing according to the present invention will thus typically have a diameter of 4 inches or more, and will commonly have a diameter of 4½ inches or 5½ inches.
U.S. Pat. No. 3,724,567 discloses a system for handling drill pipe or tubing for workover operations. The threaded tubular string may be a continuous piece moved from a storage position to the well U.S. Pat. No. 4,100,968 discloses a technique for running casing using a powered rotating tool. U.S. Pat. No. 5,197,553 discloses a retrievable bit and downhole motor at the lower end of a tubular drill stem, and U.S. Pat. No. 5,271,472 discloses a bit assembly including radially extendable and retractable arms with cutters that may be withdrawn through the drill stem.
U.S. Pat. No. 5,215,151 discloses a drilling technique with a continuous length of jointed coiled tubing. Hydraulic fluid may be pumped through the tubing string, and a wireline used to retrieve the bit. U.S. Pat. No. 5,547,314 discloses a system for storing and running jointed tubulars into a well. U.S. Pat. No. 6,250,395 discloses a system for installing and retrieving threaded pipe in a well. U.S. Pat. No. 5,641,021 discloses a well casing drill tool with closing sleeve.
U.S. Pat. No. 6,419,033 discloses a system for drilling a well with a bit and an underreamer. U.S. Pat. No. 6,439,866 discloses a downhole motor with a sealed bearing. U.S. Pat. No. 6,443,245 discloses a casing shoe. U.S. Pat. No. 6,513,223 and 6,585,052 disclose tubing centralizers. U.S. Pat. No. 6,564,868 disclose a tool and method for cutting a tubular. U.S. Pat. No. 6,705,413 discloses a technique for drilling with casing using a retrievable bit.
The prior art has not disclosed techniques for significantly reducing the cost of running casing in a well, and accordingly significant costs and risks are incurred both in running a casing in a well and in retrieving the casing string from a well.
The disadvantages of the prior art are overcome by the present invention, and improved equipment and techniques for running casing in a well is hereinafter disclosed.
In one embodiment, a method of drilling an earth borehole includes providing a reel of continuous coiled casing having a free hand, and an injector for moving the coiled casing. A bottomhole assembly including at least a downhole motor and a drill bit is connected to the free end of the continuous coiled casing to form a coiled casing drill string. A coiled casing drill string is injected into the earth while circulating fluid through the coiled casing to form a drilled earth borehole having a borehole wall. The coiled casing drill string is retrieved to the surface from the borehole, and the bottomhole assembly may be removed from the free end of the coiled casing, which may then be reinjected into the earth borehole and suspended from a wellhead assembly. The suspended coiled casing may be severed to form a suspended coiled casing string in the earth borehole, with an annulus being formed between the borehole wall and an exterior surface of the suspended coiled casing string. A cementitious material or other bonding agent may then be injected into the suspended coiled casing string and into the annulus.
In another embodiment, a retrievable bottomhole assembly is connected to the free end of the coiled casing to form a coiled casing drill string, and the earth borehole is drilled by injecting the coiled casing string into the earth while circulating fluid through the coiled casing to the bottomhole assembly. The coiled casing drill string is suspended in a wellhead assembly, and severed at a location above the suspension by the wellhead assembly. The bottomhole assembly may then be retrieved through the suspended coiled casing drill string.
In yet another embodiment, the free end of the coiled casing is connected to a disposable bottomhole assembly, and the coiled casing drill string is injected into the earth and suspended from a wellhead assembly. The coiled casing drill string is severed at a location above the suspension by the wellhead assembly, and a bonding agent injected into the suspended coiled casing drill string and about the bottomhole assembly, and upwardly into the annulus between the coiled casing drill string and the drill borehole.
In another embodiment of the invention includes an apparatus for drilling an earth borehole, including a reel of continuous coiled casing, a bottomhole assembly attached to the free end of the coiled casing and including at least a drill bit and a downhole motor, and an injector for injecting the coiled casing in the bottomhole assembly into the earth to form a drilled earth borehole with an annulus formed between the borehole wall and an exterior surface of the coiled casing. One or more pumps circulate fluid through the coiled casing and the bottomhole assembly and into the annulus between the borehole wall and the coiled casing.
In yet another embodiment, a method of installing a liner into a drilled earth borehole includes providing a reel of continuous coiled casing and an injector for moving the coiled casing. The coiled casing is injected into the drilled earth borehole, and an annulus formed between a wall of a drilled earth borehole and an exterior surface of the coiled casing injected into the drilled earth borehole. Fluid is circulated through the coiled casing as the coiled casing is injected, with the fluid passing upwardly through the annulus.
In yet another embodiment of installing a liner in an earth drilled borehole, coiled casing is injected into the drilled earth borehole while circulating fluid through the coiled casing, and the coiled casing is suspended in the borehole in a wellhead assembly. Coiled casing is severed at a length above the suspension by the wellhead assembly.
Mounted on a pad 26 is a spool 28 for housing coiled casing 30, coiled casing 30 being played off of reel 28 through an arched guide 31 into injector head 20, through wellhead 22 and then into a drilled earth borehole 32. As shown, earth borehole 32 has an upper section 34 in which has been installed surface casing 36 which is cemented in place by cement 38. As shown, the portion of the coiled casing suspended below the wellhead 22, referred to as the suspended casing string, is provided at its free end with a casing shoe 40 through which cement or other bonding agent can be pumped in a conventional fashion to cement the suspended casing string in the wellbore 32. Cementing fluid may thus pass down the casing string and up the annulus 42 between the suspended casing string and the wall 44 of the earth borehole 32. Since the coiled casing 30 is unjointed, it will be appreciated that a primary borehole liner can be continuously installed into the earth borehole 32, there being no need for intermittent stops to connect successive joints of casing as is typically done in jointed casing running operations.
A source 46 of commonly used fluids, such as brine, fresh water, drilling mud, etc., can be supplied to the coiled casing as desired through line 47 during the running operations to facilitate injection of the casing string into the borehole. The returns from annulus may be directed to mud pit 48 through line 50. In this regard, connection systems used to connect coiled tubing to such fluid suspensions can also be employed in the coiled casing operations of the present invention. When the desired length of casing string is in the borehole, the casing string may be engaged by the slips in the wellhead assembly 22 and the coiled casing severed at a location above the securing of string 30 to the wellhead 22. Thereafter, a bonding agent such as cement can be pumped down the casing string to cement the casing string in place in the borehole.
The lower portion of
In the
In the
In the
In the
As shown in the
In the
Circulation of fluid through the coiled tubing casing string occurs during drilling, with the circulating fluid flowing between the interior of the casing string and the annulus. Circulation when installing a liner is preferable in order to better convey the liner into the well and to provide proper hole cleaning. Circulation of a bonding agent, such as a cementitious fluid, is required if the liner is to be cemented in the open hole.
For each of the embodiments discussed herein, the coiled casing once installed in the well provides the primary barrier between the formation and the interior of the casing. Coiled casing may be perforated after it is installed, so that formation fluid will flow into the interior of the casing string. In other embodiments, the coiled casing is not a solid tubular, and instead may be slotted or perforated for preventing collapse of a formation wall while allowing fluid to flow into the interior of the casing string.
The coiled casing of the present invention may be made from various materials, including a carbon alloy steel or a carbon fiber material. Various types of guide devices, cementing stage tools, driver shoes, packers, perforating guns, correlation indicators, and cross-over tools may be used in conjunction with the coiled casing string. The bottomhole assembly may include drill collars, drill pipe, heavy weight drill pipe, shock subs, jars, hole openers, stabilizers, reamers, cross-over subs, and various types of drill bits. Whipstocks, bent subs, and various types of downhole motors with bent housings may be conveyed on the bottomhole assembly of the coiled casing string. Wellbore production tools may also be used with a coiled casing string, including side bore extensions and lateral extension placements.
The coiled casing may be drilled or conveyed into a wellbore vertically, directionally, or in a substantially horizontal plane. The techniques of the present invention may be used to recover various types of hydrocarbons, including oil and gas, and may also be used for geothermal applications, or to recover water. Applied internal pressure within the coiled casing may be produced with an energized fluid or gas. Air, nitrogen, natural gas, water, compatible liquid hydrocarbons, drilling muds, and other mediums may be used for pumping into the coiled casing string utilizing pumps or compressors common in the oilfield industry.
Although specific embodiments of the invention have been described herein in some detail, this has been done solely for the purposes of explaining the various aspects of the invention, and is not intended to limit the scope of the invention as defined in the claims which follow. Those skilled in the art will understand that the embodiment shown and described is exemplary, and various other substitutions, alterations and modifications, including but not limited to those design alternatives specifically discussed herein, may be made in the practice of the invention without departing from its scope.