Method and apparatus for configuring logical channels in a network

Abstract
Logical channels in a network are automatically be configured by using measured network parameters. The measured network parameters are determined in cooperation with the network elements without interruption of active communication services. The network parameters include upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant (e.g., node location or amplifier cascade depth), network element manufacturer, or type of services provided by the network element (including telephony versus data). An interactive display is provided to an operator which enables analysis of communication parameters, including modulation profiles and channel performance.
Description
FIELD OF THE INVENTION

This disclosure is directed toward configuring logical channels in a network. More particularly, this disclosure is directed toward grouping network elements according to certain parameters to configure logical channels in a network.


BACKGROUND OF THE INVENTION

Coaxial cable television systems have been in widespread use for many years and extensive networks have been developed. The extensive and complex networks are often difficult for a cable operator to manage and monitor. A typical cable network generally contains a headend which includes a cable modem termination system (CMTS). The CMTS contains several receivers, each receiver connects to one or more nodes which are connected to network elements (cable modems, MTAs, etc) of many subscribers, e.g., a single receiver may be connected to hundreds of modems which vary widely in communication characteristics. In many instances several nodes may serve a particular area of a town or city. The CMTS is also usually connected to an IP network from which it obtains content from various sources including the internet, and voice networks. The network elements communicate to the CMTS via upstream communications on a dedicated band of frequency and receive information from the CMTS via downstream communications.


Cable networks are also increasingly carrying signals which require a high quality and reliability of service, such as voice communications or Voice over IP (VoIP) communications. Any disruption of voice or data traffic is a great inconvenience and often unacceptable to a subscriber.


Logical channel operation is a mechanism whereby multiple upstream channels may be configured with different operating parameters while all operating on the same physical channel. DOCSIS 2.0 introduced this concept to support simultaneous operation and therefore backwards compatibility of TDMA, ATDMA, and SCDMA cable modems.


Existing technologies within CMTSs or network management applications do not currently provide a mechanism to differentiate modems and reassigned them to leverage any grouping benefits. If such a technology did exist, it will be limited to physical channel (not logical channel) isolation and therefore would not offer much in the way of benefits as the number of physical channels is a very limited commodity. It is only with the recent creation of logical channels in the DOCSIS 2.0 specification that such benefits have manifested themselves. Current CMTS implementations for configuring logical channels are manual processes where a unique command must generally be entered for each cable modem registered on the system. With a CMTS typically servicing over 20,000 cable modems, clearly no operators are utilizing any such feature. Further, there is no current product offering that provides the operator a mechanism for grouping these modems.


SUMMARY OF THE INVENTION

This disclosure explains an automated process to determine logical channels using network elements (such as MTAs or cable modems) in conjunction with measurements made at the headend, via a CMTS device, and does not require rolling trucks to remote locations within a plant.


In accordance with principles of the invention, an apparatus of the invention may comprise: a microprocessor configured to determine network parameters associated with a selected network element based on communications with the selected network element; and a receiver configured to receive signals indicative of the network parameters from a network element, wherein the microprocessor is configured to assign the network element to a logical channel based on the network parameters. The network parameters may include one of: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data). The microprocessor compares the network parameters with threshold values and assigns the network elements to a logical channel based on the comparison.


In accordance with the invention, a method for configuring logical channels in a network may comprise the steps of: determining network parameters associated with a selected network element based on communications with the selected network element; analyzing the network parameters; and assigning network elements to logical channels based on the network parameters. The step of providing instructions to the network elements to realign includes receiving instructions from an operator to realign the network elements. The step of assigning network elements to a logical channel may include an operator providing selected network elements to be assigned or unassigned to or from a logical channel.


In accordance with the principles of the invention, a computer readable medium may carrying instructions for a computer to perform a method for configuring logical channels in a network comprising the steps of: determining network parameters associated with a selected network element based on communications with the selected network element; analyzing the network parameters; and assigning network elements to logical channels based on the network parameters.


The invention enables a network operator to optimize the performance of the network by assigning network elements to logical channels cheaply and quickly at a central location, such as the headened such as by using the Motorola BSR64000, thus increasing the overall through-put achievable on the network and therefore the number of devices which may be serviced within a single upstream channel, without necessitating the upgrading of a cable plant of the upgrading of cable modem or MTA devices. The invention also enables the optimal configuration to be determined and implemented without impacting active services. All measurements may be made through the use of the existing terminal network element devices (specifically, DOCSIS terminal devices such as MTAs and cable modems) as well as headend equipment (specifically a DOCSIS CMTS).





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings serve to illustrate the principles of the invention.



FIG. 1 illustrates an exemplary network in accordance with the principles of the invention.



FIG. 2 illustrates a logical architecture of an exemplary CMTS 10 to facilitate an understanding of the invention.



FIG. 3 illustrates an exemplary network element 8, such as a cable modem.



FIG. 4 illustrates an exemplary process for measuring network parameters in accordance with the principles of the present invention.



FIG. 5 illustrates an exemplary process for reconfiguring logical channels in accordance with the principles of the present invention.



FIG. 6 illustrates an exemplary panel display from a computer operation associated with the invention.





DETAILED DESCRIPTION OF THE INVENTION

This disclosure provides for a CMTS supporting application (PC Application) and a process which allows the network operator to easily group network elements (e.g. cable modems, media terminal adaptor (MTA) and other customer premise equipment) based upon common parametrics and performance similarities. These groupings may then be used to configure logical channels and subsequently the assignment of the network elements to these logical channels. Such grouping by logical channels provides the operator with many advantages including: the ability to take advantage of unique features common to only a subset of the network elements, increase overall network through-put by optimizing physical layer configuration parameters to network elements grouping, isolation of problematic network elements supporting proactive network maintenance activities, and differentiation by QOS which allows the operator to offer additional premium services.


This disclosure documents an apparatus and methodology for a PC application that connects to a DOCSIS CMTS and extracts the necessary information to allow the network operator to visualize various parametric relationships for all the registered network elements. The network operator may differentiate groups of these network elements based upon thresholds for these parameters, configure the CMTS with the appropriate logical channels matching these groups, and finally, automatically move each of the modems to the appropriate logical channel.


This disclosure provides for isolating network elements based upon many different parameters (upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data, etc.). The network operator is given the flexibility to exploit these differences to optimize management of the network including configuring logical channels. For example, the operator can differentiate cable modems by upstream Modulation Error Ratio (MER) which is a primary determinant in the modulation rate (QPSK, 16QAM, 32QAM, 64QAM, etc) that may be run, and then set up multiple logical channels, each one with a different modulation rate, and then assign the appropriate network elements to each logical channel based upon which modulation could be supported.



FIG. 1 illustrates an exemplary network in which a plurality of terminal network elements 8 (e.g. cable modems, set top boxes, televisions equipped with set top boxes, or any other element on a network such as an HFC network) are connected to a cable modem termination system (CMTS) 10 located in a headend 14 through nodes 12 and one or more taps (not shown). In an exemplary arrangement, headend 14 also contains an optical transceiver 16 which provides optical communications through an optical fiber to the plurality of nodes 12. The CMTS 10 connects to an IP or PSTN network 6. Those of skill in the art will appreciate that there may be a plurality of nodes 12 connected to a headend, and a headend may contain a plurality of CMTS 10 units, each of which contain a plurality of receivers (e.g. 8 receivers) each of which communicate with a plurality (e.g. 100 s) of network elements 8. The CMTS 10 may also contain a spare receiver which is not continuously configured to network elements 8, but may be selectively configured to network elements 8. Use of a spare receiver is described in commonly assigned U.S. Ser. No. 11/171,066, filed on Jun. 30, 2005 and titled AUTOMATED MONITORING OF A NETWORK, herein incorporated by reference in its entirety.



FIG. 2 illustrates a logical architecture of an exemplary CMTS 10 to facilitate an understanding of the invention. As illustrated in FIG. 2, CMTS 10 may contain a processing unit 100 which may access a RAM 106 and a ROM 104, and may control the operation of the CMTS 10 and RF communication signals to be sent/received to/from the network elements 8. Processing unit 100 preferably contains a microprocessor 102 which may receive information, such as instructions and data, from a ROM 104 or RAM 106. Processing unit 100 is preferably connected to a display 108, such as a CRT or LCD display, which may display status information such as whether a station maintenance (SM) is being performed or a receiver is in need of load balancing. An input keypad 110 may also be connected to processing unit 100 and may allow an operator to provide instructions, processing requests and/or data to processor 100.


RF transceiver (transmitter/receiver) unit preferably contains a plurality of transmitters 4 and receivers 2 to provide bi-directional communication with a plurality of network elements 8 through optical transceivers 16, nodes 12 and a plurality of network taps (not shown). Those of skill in the art will appreciate that CMTS 10 may contain a plurality of RF receivers 2, e.g. 8 RF receivers and a spare RF receiver. Each RF receiver 2 may support over 100 network elements. The RF receiver 2, such as a Broadcom 3140 receiver (receiver), preferably provides the received RF signals to an equalizer 103 which is used to acquire equalizer values and burst modulation error ratio (MER) measurements, packet error rate (PER) and bit error rate (BER). Equalizer 103 is preferably a multiple tap linear equalizer (e.g. a 24 tap linear equalizer), which also may be known as a feed forward equalizer (FFE). Equalizer 103 may be integrally contained in RF receiver 2 or may be a separate device. The communication characteristics of each receiver 2 may be stored on ROM 104 or RAM 106, or may be provided from an external source, such as headend 14. RAM 104 and/or ROM 106 may also carry instructions for microprocessor 102.



FIG. 3 illustrates an exemplary network element 8, such as a cable modem. Network element 8 preferably contains a processor 302 which may communicate with a RAM 306 and ROM 304, and which controls the general operation of the network element, including the pre-equalization parameters and preamble lengths of communications sent by the network element in accordance with instructions from the CMTS 10. Network element 8 also contains a transceiver (which includes a transmitter and receiver) which provides bidirectional RF communication with CMTS 10. Network element 8 may also contain an equalizer unit which may equalize the communications to CMTS 10. Network element 8 may also contain an attenuator 320 which may be controlled by microprocessor to attenuate signals to be transmitted to be within a desired power level. Those of skill in the art will appreciate that the components of network element 8 have been illustrated separately only for discussion purposes and that various components may be combined in practice.


An exemplary process for automatically measuring network element parameters in a service group, which may be associated with a node, is illustrated in FIG. 4. As illustrated in step S1 of FIG. 4, the measurement process is initiated and service group port is chosen, step S3.


As illustrated in FIG. 4, step S3, a service group port, e.g. a receiver on the headend, is chosen for testing. The network elements associated with the selected service group port are tested, step S5. The tests performed may include: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data, etc.


While any suitable technique for determining the location of a network element in the cable network may be used, a methodology for isolating devices which reside on the same optical node or serving group is provided in a commonly assigned disclosure entitled METHOD AND APPARATUS FOR GROUPING TERMINAL NETWORK DEVICES filed on Sep. 5, 2006 and assigned U.S. Ser. No. 11/470,034, herein incorporated by reference in its entirety. Further, while any suitable technique for identifying microreflections associated with network elements may be used, a methodology for determining microreflections is provided in commonly assigned disclosure entitled METHOD AND APPARATUS FOR DETERMINING MICROREFLECTIONS IN A NETWORK, filed on Dec. 7, 2006 and assigned U.S. Ser. No. 11/608,028, herein incorporated by reference in its entirety.


The test results associated with each tested network element on the selected port are preferably stored, step S7. The process determines if more ports are available for testing, and if so, step S9, Yes, changes to another port, step S11, and performs testing on network elements associated with the new port. If no more ports are available for testing, step S9, No, then the process ends, step S13.



FIG. 5 illustrates an exemplary process for reassigning network elements to logical channels in the network. As illustrated in step S50, the process begins by determining the logical channel definitions. This process may be implemented as an automated process whereby the processor determines which parameter to optimize and selects the optimal grouping of modems to be assigned to each of multiple logical channels. From this optimization process, the processor is able to determine the optimal value for thresholds to isolate the various logical channels and the associated channel profile configuration (parameters) for each logical channel. Alternately, the operator may be allowed to select which parameter to optimize and the desired threshold to isolate each logical channel. The measured network element parameters from the process illustrated in FIG. 4 are analyzed in step S52. The measured network parameters may be compared to one or more threshold values for each of the measurement parameters, as illustrated in step S54. The threshold values may be predetermined values or may be dynamically determined based on mathematical techniques such as a mean value of a measured network parameter, or a range of values set by an operator. The network parameters may be sorted in table and displayed in graphical formats, including bar graphs. Various techniques for analyzing the measured network parameters are displayed in an exemplary panel display from a computer operation illustrated in FIG. 6.


As illustrated in FIG. 5, step S56, the network elements are assigned to logical channels based on the comparison of their individual test parameter value with the threshold values in step S54. The process then determines if the operator desires to reconfigure the network to reassign the network elements to the newly determined logical channels, step S58. If the network operator instructs to reconfigure the network, step S58 Yes, then the network elements are moved to the logical channels to which they are designated, step S60. If the network operator does not desire to reassign the network elements to the logical channels, step S58 No, then the process ends. The process preferably uses the UCC or DCC commands as necessary to move the modems to their corresponding logical channels.



FIG. 6 illustrates an example of a channel configuration screen shot which may be used by an operator to configure logical channels. As illustrated in FIG. 6 a three panel window may be used to display 1) a sorting of network element by various parameters 1002, 2) profile/channel parameter definitions 1004, and 3) logical channel definition/performance display 1006.


The channel configuration window preferably includes a network element list panel 1002 which displays a list of network elements on the CMTS. The operator preferably is able to sort, filter and graph the various network element parameters. While the network element parameters illustrated include the MAC address, the measured SNR and microreflections, the network element or modem type, the CMTS slot, the CMTS port, the spectrum group of the network element, and a “no move” flag, those of skill in the art will appreciate that other network element parameters may be displayed as well. By supporting sorting, filtering, and graphing, the operator is able to quickly visualize the distribution of network elements by various network element parameters and to understand the distribution of modems against various parameter thresholds. For example, the operator may quickly decipher what proportion of the modems (e.g., 75%) possess a network element parameter greater than THRESHOLD1 and less than THRESHOLD2. This understanding is useful in allowing the operator to identify which parameters should be utilized as a basis for grouping network elements into various logical channels and as a basis to select necessary thresholds. The thresholds and the number of thresholds used may also be automatically assigned to best fit the network elements into logical channels based on a network parameter, such as evenly segmenting the network elements based on SNR or microreflection.


The Logical Channel performance display 1002 may also contain various radio buttons to allow an operator to provide several graphical displays, such as Update button 1015, Graph SNR button 1003, and Graph uRefl button 1005. The Update button 1015 may extract information from the CMTS which may include the measured network element parameters. The Graph SNR button 1015 may provide a display, such as a bar chart display, of the SNR associated with network elements on the CMTS or just a designated slot or port on the CMTS. The Graph uRefl button 1005 may provide a display, such as a bar chart display, of the microreflections associated with network elements on the CMTS or just a designated slot or port. Those of skill in the art will appreciate that other radio buttons may be provided which enable display of any of the parameters associated with network elements on the CMTS or on a designated slot or port.


Various graphics displays may be provided, such as a display of upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data, etc.).


The Modulation Profile display panel 1004 provides the ability for the operator to configure various profile configuration templates which may later be assigned to an individual logical channel. That is, the operator may view, create and edit modulation profiles 1007 which optimize the specific needs of a subset of the network elements. Additional details of a modulation profile may be displayed as well in an expanded detail window 1009.


The Logical Channel Definition display panel 1006 provides the ability to define each logical channel 1010 for a given CMTS slot/port and select the modulations profiles 1019 viewed in the channel profile/parameter definition panel and associated with various performance parameters and thresholds 1020. Performance parameters 1020 could include: 1) upstream or downstream modulation error ratio (MER), 2) upstream or downstream signal to noise ratio (SNR), 3) upstream or downstream microreflections, 4) upstream transmit level, 5) downstream receive power level, 6) cable modem type (DOCSIS 1.0,1.1,2.0), 7) functional capabilities (e.g., VoIP, 256QAM, etc), 8) network element location with in a cable plant (e.g., node location or amplifier cascade depth), 9) network element manufacturer, 10) type of services provided by the network element (including telephony versus data, and others). A threshold (appropriate to the network element parameter selected) is preferably specified for each logical channel to allow the application to isolate (or group) the various network elements into logical channels based upon the threshold.


Logical Channel performance display 1008 may contain a bar chart 1008 (e.g. within the logical channel definition panel) which compares the theoretical performance of the channel as currently configured with the performance achieved if the logical channel configuration were implemented. This bar chart may be a color coded stacked bar which allows the operator to visualize the contributions to resulting from each of the logical channels. The Logical Channel performance display 1008 may also contain various radio buttons to an allow an operator to provide several graphical displays, such as Analyze button 1017, Graph SNR button 1012, Graph URefl button 1014, and Configure button 1011. The Graph SNR button 1012 may provide a display, such as a bar chart display, of the SNR associated with network elements on a designated slot or port. The Graph URefl button 1014 may provide a display, such as a bar chart display, of the microreflections associated with network elements on a designated slot or port. Those of skill in the art will appreciate that other radio buttons may be provided which enable display of any of the parameters associated with network elements on a designated slot or port.


The system preferably allows an operator to automatically configure the CMTS to fit the logical channel definition defined with the thresholds. This process will preferably reconfigure the settings for a receiver 2, or the selected slot and port of receiver 2 to match the logical channels defined. When the operator initiates the configuration process, the system preferably configures each of the logical channel profiles and moves each network element to the appropriate logical channel as dictated by the selected parameter and threshold settings. The primary goal of logical channel assignment is to optimize system performance as measured by each network element. System performance may include many things including: maximum through-put, maximum number of network elements supported, quality of service (QOS) performance, ease of manageability from the service provider perspective, and others. As such, the system may automatically determine the optimum value for the threshold settings or it may allow an operator to analyze his network and manually select the desired threshold settings.


In the described embodiment here the operator may trigger the logical channel configuration process. However, an alternate approach is to integrate an algorithm within the CMTS and to allow it to automatically rerun the logical channel optimization process at regular intervals (e.g. two times per day, once per day/week/month or year, etc.) in order to provide an optimal system performance while simultaneously dealing with any variations that might be encountered for some parameters over time. For example, MER and SNR parameters will vary over time because of such conditions as climate, temperature, and network degradation and maintenance.


The system preferably has the agility to manually override logical channel assignment for various modems which are configured with the automatic threshold process described above. The system preferably provides a mechanism for the operator to view the lists of modems categorized by logical channel and manually reassign them as desired prior to analyzing or configuring the channel, such as by using drag-and-drop function to minimize the efforts of the operator when undertaking any manual overrides.


The processes in FIGS. 5-6 may be implemented in hard wired devices, firmware or software running in a processor. A processing unit for a software or firmware implementation is preferably contained in the CMTS. Any of the processes illustrated in FIGS. 5-7 may be contained on a computer readable medium which may be read by microprocessor 102. A computer readable medium may be any medium capable of carrying instructions to be performed by a microprocessor, including a CD disc, DVD disc, magnetic or optical disc, tape, silicon based removable or non-removable memory, packetized or non-packetized wireline or wireless transmission signals.


The invention enables a network operator to optimize the performance of the network by assigning network elements to logical channels cheaply and quickly at a central location, such as the headened such as by using the Motorola BSR64000. The network operator may manually assign the network elements to logical channels or may use an automated process.

Claims
  • 1. An apparatus for configuring logical channels in a network which provides communications using physical channels and logical channels comprising: multiple logical channel inputs from the same physical channel configurable with different operating parameters;a receiver configured to receive signals indicative of the network parameters from a plurality of network elements;a microprocessor configured to: identify at least one group of network elements within the plurality of network elements based on a common parametric,compare the common parametric to the logical channel operating parameters, andassign the at least one group of network elements to at least one of the multiple logical channels based on the comparison of parameters.
  • 2. The apparatus of claim 1, wherein the network parameters include one of: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type, functional capabilities, network element location with in a cable plant, network element manufacturer, or type of services provided by the network element.
  • 3. The apparatus of claim 1, wherein the microprocessor compares the network parameters with threshold values and assigns the network elements to a logical channel based on the comparison.
  • 4. The apparatus of claim 1, wherein the microprocessor provides instructions to the network elements to realign the network elements according to the logical channels.
  • 5. A method for configuring logical channels in a network which provides communications using physical channels and logical channels, the method comprising: determining network parameters associated with a selected network element based on communications with the selected network element;analyzing the network parameters;identifying at least one group of network elements within the plurality of network elements based on a common parametric;identifying operating parameters corresponding to respective multiple logical channel configurable in a physical channel;comparing the common parametric to the logical channel operating parameters; andassigning the at least one group of network elements to at least one of the multiple logical channels based on the comparison of parameters.
  • 6. The method of claim 5, wherein the network parameters include one of: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type, functional capabilities, network element location with in a cable plant, network element manufacturer, or type of services provided by the network element.
  • 7. The method of claim 5, wherein assigning network elements to logical channels includes comparing the network parameters with threshold values and assigning the network elements to a logical channel based on the comparison.
  • 8. The method of claim 5, further including providing instructions to the network elements to realign the network elements according to the logical channels.
  • 9. The method of claim 8, wherein providing instructions to the network elements to realign includes receiving instructions from an operator to realign the network elements.
  • 10. The method of claim 5, wherein assigning network elements to a logical channel includes an operator providing selected network elements to be assigned or unassigned to or from a logical channel.
  • 11. A non-transitory computer readable medium carrying instructions for a computer to perform a method for configuring logical channels in a network which provides communications using physical channels and logical channels comprising: determining network parameters associated with a selected network element based on communications with the selected network element;analyzing the network parameters;identifying at least one group of network elements within the plurality of network elements based on a common parametric;identifying operating parameters corresponding to respective multiple logical channel configurable in a physical channel;comparing the common parametric to the logical channel operating parameters; andassigning the at least one group of network elements to at least one of the multiple logical channels based on the comparison of parameters.
  • 12. The non-transitory computer readable medium of claim 11, wherein the network parameters include one of: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type, functional capabilities, network element location with in a cable plant, network element manufacturer, or type of services provided by the network element.
  • 13. The non-transitory computer readable medium of claim 11, wherein assigning network elements to logical channels includes comparing the network parameters with threshold values and assigning the network elements to a logical channel based on the comparison.
  • 14. The non-transitory computer readable medium of claim 11, further including providing instructions to the network elements to realign the network elements according to the logical channels.
  • 15. The non-transitory computer readable medium of claim 14, wherein providing instructions to the network elements to realign includes receiving instructions from an operator to realign the network elements.
  • 16. The non-transitory computer readable medium of claim 11, wherein assigning network elements to a logical channel includes an operator providing selected network elements to be assigned or unassigned to or from a logical channel.
Parent Case Info

This application claims the benefit of U.S. Provisional Application 60/785,647 filed on Mar. 24, 2006, herein incorporated by reference in its entirety.

US Referenced Citations (265)
Number Name Date Kind
3838221 Schmidt et al. Sep 1974 A
4245342 Entenman Jan 1981 A
4385392 Angell et al. May 1983 A
4811360 Potter Mar 1989 A
4999787 McNally et al. Mar 1991 A
5228060 Uchiyama Jul 1993 A
5251324 McMullan Oct 1993 A
5271060 Moran et al. Dec 1993 A
5278977 Spencer et al. Jan 1994 A
5347539 Sridhar et al. Sep 1994 A
5390339 Bruckert et al. Feb 1995 A
5463661 Moran et al. Oct 1995 A
5532865 Utsumi et al. Jul 1996 A
5557603 Barlett et al. Sep 1996 A
5606725 Hart Feb 1997 A
5631846 Szurkowski May 1997 A
5694437 Yang et al. Dec 1997 A
5732104 Brown et al. Mar 1998 A
5790523 Ritchie et al. Aug 1998 A
5862451 Grau et al. Jan 1999 A
5867539 Koslov Feb 1999 A
5870429 Moran et al. Feb 1999 A
5886749 Williams et al. Mar 1999 A
5939887 Schmidt et al. Aug 1999 A
5943604 Chen et al. Aug 1999 A
6032019 Chen et al. Feb 2000 A
6061393 Tsui et al. May 2000 A
6108351 Hardy et al. Aug 2000 A
6154503 Strolle Nov 2000 A
6229792 Anderson et al. May 2001 B1
6230326 Unger et al. May 2001 B1
6233274 Tsui et al. May 2001 B1
6240553 Son et al. May 2001 B1
6272150 Hrastar et al. Aug 2001 B1
6278730 Tsui et al. Aug 2001 B1
6308286 Richmond et al. Oct 2001 B1
6310909 Jones Oct 2001 B1
6321384 Eldering Nov 2001 B1
6330221 Gomez Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6377552 Moran et al. Apr 2002 B1
6385773 Schwartzman et al. May 2002 B1
6389068 Smith et al. May 2002 B1
6434583 Dapper et al. Aug 2002 B1
6445734 Chen et al. Sep 2002 B1
6456597 Bare Sep 2002 B1
6459703 Grimwood et al. Oct 2002 B1
6477197 Unger Nov 2002 B1
6480469 Moore et al. Nov 2002 B1
6483033 Simoes et al. Nov 2002 B1
6498663 Farhan et al. Dec 2002 B1
6512616 Nishihara Jan 2003 B1
6526260 Hick et al. Feb 2003 B1
6546557 Ovadia Apr 2003 B1
6556239 Al Araji et al. Apr 2003 B1
6556562 Bhagavath et al. Apr 2003 B1
6556660 Li et al. Apr 2003 B1
6559756 Al Araji et al. May 2003 B2
6563868 Zhang et al. May 2003 B1
6570394 Williams May 2003 B1
6570913 Chen May 2003 B1
6574797 Naegeli et al. Jun 2003 B1
6588016 Chen et al. Jul 2003 B1
6606351 Dapper et al. Aug 2003 B1
6611795 Cooper Aug 2003 B2
6646677 Noro et al. Nov 2003 B2
6662135 Burns et al. Dec 2003 B1
6662368 Cloonan et al. Dec 2003 B1
6671334 Kuntz et al. Dec 2003 B1
6687632 Rittman Feb 2004 B1
6690655 Miner et al. Feb 2004 B1
6700875 Schroeder et al. Mar 2004 B1
6700927 Esliger et al. Mar 2004 B1
6711134 Wichelman et al. Mar 2004 B1
6741947 Wichelman et al. May 2004 B1
6748551 Furudate et al. Jun 2004 B2
6757253 Cooper et al. Jun 2004 B1
6772388 Cooper et al. Aug 2004 B2
6772437 Cooper et al. Aug 2004 B1
6816463 Cooper et al. Nov 2004 B2
6839829 Daruwalla et al. Jan 2005 B1
6853932 Wichelman et al. Feb 2005 B1
6877166 Roeck et al. Apr 2005 B1
6895043 Naegeli et al. May 2005 B1
6895594 Simoes et al. May 2005 B1
6906526 Hart et al. Jun 2005 B2
6928475 Schenkel et al. Aug 2005 B2
6944881 Vogel Sep 2005 B1
6961314 Quigley et al. Nov 2005 B1
6961370 Chappell Nov 2005 B2
6967994 Boer et al. Nov 2005 B2
6973141 Isaksen et al. Dec 2005 B1
6985437 Vogel Jan 2006 B1
6999408 Gomez Feb 2006 B1
7002899 Azenkot et al. Feb 2006 B2
7010002 Chow et al. Mar 2006 B2
7017176 Lee et al. Mar 2006 B1
7032159 Lusky et al. Apr 2006 B2
7039939 Millet et al. May 2006 B1
7050419 Azenkot et al. May 2006 B2
7054554 McNamara et al. May 2006 B1
7058007 Daruwalla et al. Jun 2006 B1
7072365 Ansley Jul 2006 B1
7079457 Wakabayashi et al. Jul 2006 B2
7099412 Coffey Aug 2006 B2
7099580 Bulbul Aug 2006 B1
7139283 Quigley et al. Nov 2006 B2
7142609 Terreault et al. Nov 2006 B2
7152025 Lusky et al. Dec 2006 B2
7158542 Zeng et al. Jan 2007 B1
7164694 Nodoushani et al. Jan 2007 B1
7177324 Choudhury et al. Feb 2007 B1
7197067 Lusky et al. Mar 2007 B2
7222255 Claessens et al. May 2007 B1
7227863 Leung et al. Jun 2007 B1
7242862 Saunders et al. Jul 2007 B2
7246368 Millet et al. Jul 2007 B1
7263123 Yousef Aug 2007 B2
7274735 Lusky et al. Sep 2007 B2
7315573 Lusky et al. Jan 2008 B2
7315967 Azenko et al. Jan 2008 B2
7400677 Jones Jul 2008 B2
7421276 Steer et al. Sep 2008 B2
7451472 Williams Nov 2008 B2
7492703 Lusky et al. Feb 2009 B2
7554902 Kim et al. Jun 2009 B2
7573884 Klimker et al. Aug 2009 B2
7573935 Min et al. Aug 2009 B2
7616654 Moran et al. Nov 2009 B2
7650112 Utsumi et al. Jan 2010 B2
7672310 Cooper et al. Mar 2010 B2
7684315 Beser Mar 2010 B1
7684341 Howald Mar 2010 B2
7716712 Booth et al. May 2010 B2
7739359 Millet et al. Jun 2010 B1
7742697 Cooper et al. Jun 2010 B2
7742771 Thibeault Jun 2010 B2
7778314 Wajcer et al. Aug 2010 B2
7787557 Kim et al. Aug 2010 B2
7792183 Massey et al. Sep 2010 B2
7856049 Currivan et al. Dec 2010 B2
7876697 Thompson et al. Jan 2011 B2
7953144 Allen et al. May 2011 B2
7970010 Denney et al. Jun 2011 B2
8000254 Thompson et al. Aug 2011 B2
8037541 Montague et al. Oct 2011 B2
8040915 Cummings Oct 2011 B2
8059546 Pai et al. Nov 2011 B2
8081674 Thompson et al. Dec 2011 B2
8116360 Thibeault Feb 2012 B2
8265559 Cooper et al. Sep 2012 B2
8284828 Cooper et al. Oct 2012 B2
8345557 Thibeault et al. Jan 2013 B2
20010055319 Quigley et al. Dec 2001 A1
20020038461 White et al. Mar 2002 A1
20020044531 Cooper et al. Apr 2002 A1
20020091970 Furudate et al. Jul 2002 A1
20020116493 Schenkel et al. Aug 2002 A1
20020154620 Azenkot et al. Oct 2002 A1
20020168131 Walter et al. Nov 2002 A1
20020181395 Foster et al. Dec 2002 A1
20030028898 Howald Feb 2003 A1
20030043732 Walton et al. Mar 2003 A1
20030067883 Azenkot et al. Apr 2003 A1
20030101463 Greene et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030120819 Abramson et al. Jun 2003 A1
20030138250 Glynn Jul 2003 A1
20030149991 Reidhead et al. Aug 2003 A1
20030158940 Leigh Aug 2003 A1
20030179768 Lusky et al. Sep 2003 A1
20030179770 Reznic et al. Sep 2003 A1
20030179821 Lusky et al. Sep 2003 A1
20030181185 Lusky et al. Sep 2003 A1
20030182664 Lusky et al. Sep 2003 A1
20030185176 Lusky et al. Oct 2003 A1
20030188254 Lusky et al. Oct 2003 A1
20030200317 Zeitak et al. Oct 2003 A1
20030212999 Cai Nov 2003 A1
20040015765 Cooper et al. Jan 2004 A1
20040042385 Kim et al. Mar 2004 A1
20040047284 Eidson Mar 2004 A1
20040052356 McKinzie et al. Mar 2004 A1
20040062548 Obeda et al. Apr 2004 A1
20040073937 Williams Apr 2004 A1
20040096216 Ito May 2004 A1
20040109661 Bierman et al. Jun 2004 A1
20040139473 Greene Jul 2004 A1
20040163129 Chapman et al. Aug 2004 A1
20040181811 Rakib Sep 2004 A1
20040208513 Peddanarappagari et al. Oct 2004 A1
20040233234 Chaudhry et al. Nov 2004 A1
20040233926 Cummings Nov 2004 A1
20040248520 Miyoshi Dec 2004 A1
20040261119 Williams et al. Dec 2004 A1
20050010958 Rakib et al. Jan 2005 A1
20050025145 Rakib et al. Feb 2005 A1
20050034159 Ophir et al. Feb 2005 A1
20050039103 Azenko et al. Feb 2005 A1
20050058082 Moran et al. Mar 2005 A1
20050064890 Johan et al. Mar 2005 A1
20050097617 Currivan et al. May 2005 A1
20050108763 Baran et al. May 2005 A1
20050122996 Azenkot et al. Jun 2005 A1
20050163088 Yamano et al. Jul 2005 A1
20050175080 Bouillett Aug 2005 A1
20050183130 Sadja et al. Aug 2005 A1
20050198688 Fong Sep 2005 A1
20050226161 Jaworski Oct 2005 A1
20050281200 Terreault Dec 2005 A1
20060013147 Terpstra et al. Jan 2006 A1
20060121946 Walton et al. Jun 2006 A1
20060250967 Miller et al. Nov 2006 A1
20060262722 Chapman et al. Nov 2006 A1
20070002752 Thibeault et al. Jan 2007 A1
20070058542 Thibeault Mar 2007 A1
20070076592 Thibeault et al. Apr 2007 A1
20070076789 Thibeault Apr 2007 A1
20070076790 Thibeault et al. Apr 2007 A1
20070086328 Kao et al. Apr 2007 A1
20070094691 Gazdzinski Apr 2007 A1
20070097907 Cummings May 2007 A1
20070133672 Lee et al. Jun 2007 A1
20070143654 Joyce et al. Jun 2007 A1
20070147489 Sun et al. Jun 2007 A1
20070177526 Siripunkaw et al. Aug 2007 A1
20070184835 Bitran et al. Aug 2007 A1
20070189770 Sucharczuk et al. Aug 2007 A1
20070206600 Klimker et al. Sep 2007 A1
20070206625 Maeda Sep 2007 A1
20070211618 Cooper et al. Sep 2007 A1
20070223920 Moore et al. Sep 2007 A1
20070245177 Cooper et al. Oct 2007 A1
20080056713 Cooper et al. Mar 2008 A1
20080062888 Lusky et al. Mar 2008 A1
20080075157 Allen et al. Mar 2008 A1
20080101210 Thompson et al. May 2008 A1
20080140823 Thompson et al. Jun 2008 A1
20080193137 Thompson et al. Aug 2008 A1
20080200129 Cooper et al. Aug 2008 A1
20080242339 Anderson Oct 2008 A1
20080250508 Montague et al. Oct 2008 A1
20080274700 Li Nov 2008 A1
20080291840 Cooper et al. Nov 2008 A1
20090031384 Brooks et al. Jan 2009 A1
20090103557 Hong et al. Apr 2009 A1
20090103669 Kolze et al. Apr 2009 A1
20090249421 Liu et al. Oct 2009 A1
20100083356 Steckley et al. Apr 2010 A1
20100095360 Pavlovski et al. Apr 2010 A1
20100154017 An et al. Jun 2010 A1
20100157824 Thompson et al. Jun 2010 A1
20100158093 Thompson et al. Jun 2010 A1
20100223650 Millet et al. Sep 2010 A1
20110026577 Primo et al. Feb 2011 A1
20110030019 Ulm et al. Feb 2011 A1
20110069745 Thompson et al. Mar 2011 A1
20110110415 Cooper et al. May 2011 A1
20110194418 Wolcott et al. Aug 2011 A1
20110194597 Wolcott et al. Aug 2011 A1
20110197071 Wolcott et al. Aug 2011 A1
20110243214 Wolcott et al. Oct 2011 A1
20120054312 Salinger Mar 2012 A1
20120084416 Thibeault et al. Apr 2012 A1
20120147751 Ulm Jun 2012 A1
Foreign Referenced Citations (19)
Number Date Country
69631420 Dec 2004 DE
1235402 Aug 2002 EP
1341335 Sep 2003 EP
55132161 Oct 1980 JP
04208707 Jul 1992 JP
6120896 Apr 1994 JP
6177840 Jun 1994 JP
09008738 Jan 1997 JP
9162816 Jun 1997 JP
10247893 Sep 1998 JP
11230857 Aug 1999 JP
2001-44956 Feb 2001 JP
2003530761 Oct 2003 JP
2004172783 Jun 2004 JP
2004343678 Dec 2004 JP
0192901 Jun 2001 WO
0233974 Apr 2002 WO
2004062124 Jul 2004 WO
2009146426 Dec 2009 WO
Non-Patent Literature Citations (41)
Entry
Japanese Patent Application No. 2008-557531, Notice of Reasons for Rejection, Oct. 5, 2010, 2 pages.
PCT Search Report and Written Opinion for PCT/US2007/64759, mailed Dec. 20, 2007.
Office Action, Korean App. No. 10-2008-7023199 (Foreign Text), Apr. 30, 2010.
Office Action, Korean App. No. 10-2008-7023199 (English Translation), May 20, 2010.
Extended European Search Report for European Patent Application No. EP07759225, dated Jun. 25, 2012.
Canadian Office Action for Canadian Patent Application No. 2,646,281, dated May 16, 2012.
“A Simple Algorithm for Fault Localization Using Naming Convention and Micro-reflection Signature,” Invention Disclosure 60193, Cable Television Laboratories, Inc., Jun. 2008, p. 2.
“Data-Over-Cable Service Interface Specifications DOCSIS 3.0: MAC and Upper Layer Protocols Interface,” CM-SP-MULPIv3.0-116-110623, Cable Television Laboratories, Inc., Jun. 2011, section 8, pp. 242-266.
“Data-Over-Cable Service Interface Specifications DOCSIS® 3.0—MAC and Upper Layer Protocols Interface Specification,” CM-SP-MULPIv3.0-117-111117, Cable Television Laboratories, Inc., Nov. 17, 2011, pp. 770.
“DOCSIS Best Practices and Guidelines; Proactive Network Maintenance Using Pre-Equalization,” CM-GL-PNMP-V01-100415, Cable Television Laboratories, Inc., pp. 123.
“Pre-Equalization Based Pro-active Network Maintenance Process Model for CMs Transmitting on Multiple Upstream Channels,” Invention Disclosure 60203, Cable Television Laboratories, Inc., May 2009, pp. 2.
“Pre-Equalization based pro-active network maintenance process model,” Invention Disclosure 60177, Cable Television Laboratories, Inc., Jun. 2008, pp. 2.
“Proactive Network Maintenance Using Pre-Equalization,” DOCSIS Best Practices and Guidelines, Cable Television Laboratories, Inc., CM-GL-PNMP-V02-110623, Jun. 23, 2011, pp. 133.
“Radio Frequency Interface Specification,” Cable Television Laboratories, Inc., Data-Over-Cable Service Interface Specifications DOCSIS 2.0, CM-SP-RFIv2.0-106-040804, pp. 524, Aug. 4, 2004.
Campos, L. A., et al., “Pre-equalization based Pro-active Network Maintenance Methodology,” Cable Television Laboratories, Inc., (presentation), 2012, pp. 32.
Howald, R. L., et al., “Customized Broadband—Analysis Techniques for Blended Multiplexes,” pp. 12, 2002.
Howald, R., “Access Networks Solutions: Introduction to S-CDMA,” Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Motorola, Inc., 2009, pp. 15.
Howald, R., “Upstream Snapshots & Indicators (2009),” Regional Samples, Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 22.
Howald, R., et al., “Characterizing and Aligning the Hfc Return Path for Successful DOCSIS 3.0 Rollouts,” Society of Cable Telecommunications Engineers (SCTE) Cable Tee Expo, Oct. 2009, pp. 66.
Howald, R., et al., “Docsis 3.0 Upstream: Readiness & Qualification,” pp. 17, Oct. 2009.
Howald, R., et al., “The Grown-Up Potential of a Teenage Phy,” pp. 65, May 2012.
Howald, R.,“DOCSIS 3.0 Upstream: Technology, RF Variables & Case Studies,” Access Networks Solutions, 2009, presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 23.
Hranac, R., “Linear Distortions, Part 1,” Communication Technology, Jul. 1, 2005, accessed at www.cable360.net/print/ct/operations/testing/15131.html, pp. 6.
Liu, X., and Bernstein, A., “Variable Bit Rate Video Services in DOCSIS 3.0 Networks,” NCTA Technical Papers, 2008, pp. 12.
Motorola., “White Paper: Expanding Bandwidth Using Advanced Spectrum Management,” Sep. 25, 2003, pp. 12.
Newton's Telecom Dictionary, Sep. 1995, Flatiron Publishing, 9th Edition, pp. 216 and 1023, definitions of “carrier to noise ratio” and “signal to noise ratio”.
Patrick, M., and Joyce, G., “Delivering Economical IP Video over DOCSIS by Bypassing the M-CMTS with DIBA,” SCTE 2007 Emerging Technologies, Topic Subject: Service Velocity & Next Generation Architectures: How Do We Get There?, 2007, pp. 17.
Popper, A., et al, “An Advanced Receiver with Interference Cancellation for Broadband Cable Networks,” Juniper Networks, International Zurich Seminar on Broadband Communications Access 2002, pp. 23-1-23-6.
Popper, A., et al, “Ingress Noise Cancellation for the Upstream Channel in Broadband Cable Access Systems,” Juniper Networks, IEEE International Conference on Communications 2002, vol. 3, pp. 1808-1812.
Qureshi, S. U. H., “Adaptive Equalization,” IEEE, Volume. 73, No. 9, Sep. 1985, pp. 1349-1387.
Ramakrishnan, S., “Scaling the DOCSIS Network for IPTV,” Cisco Systems, Inc., SCTE Conference on Emerging Technologies and the NCTA Cable Show, 2009, pp. 19.
Shelke, Y. R., “Knowledge Based Topology Discovery and Geo-localization,” Thesis, 2010, pp. 173.
Thompson, R., et al., “256-QAM for Upstream HFC,” Spring Technical Forum Proceedings, 2010, pp. 142-152.
Thompson, R., et al., “256-QAM for Upstream HFD Part Two,” SCTE Cable Tec Expo 2011, Technical Paper, pp. 22.
Thompson, R., et al., “Multiple Access Made Easy,” SCTE Cable Tec Expo 2011, Technical Paper, pp. 23.
Thompson, R., et al., “Optimizing Upstream Throughput Using Equalization Coefficient Analysis,” National Cable & Telecommunications Association (NCTA) Technical Papers, Apr. 2009, pp. 35.
Thompson, R., et al., “Practical Considerations for Migrating the Network Toward All-Digital,” Society of Cable Telecommunications Engineers (SCTE) Cable-Tec Expo, Oct. 2009, pp. 22.
Thompson, R., et al., “64-QAM, 6.4MHz Upstream Deployment Challenges,” SCTE Canadian Summit, Toronto, Canada, Technical Paper, Mar. 2011, pp. 25.
Volpe, B., and Miller, W., “Cable-Tec Expo 2011: Advanced Troubleshooting in a DOCSIS© 3.0 Plant,” Nov. 14-17, 2011, pp. 17.
Wolcott, L., “Modem Signal Usage and Fault Isolation,” U.S. Appl. No. 61/301,835, filed Feb. 5, 2010.
Zhao, F., et al., “Techniques for minimizing error propagation in decision feedback detectors for recording channels,” IEEE Transactions on Magnetics, vol. 37, No. 1, Jan. 2001, pp. 12.
Related Publications (1)
Number Date Country
20070223512 A1 Sep 2007 US
Provisional Applications (1)
Number Date Country
60785647 Mar 2006 US