This disclosure is directed toward configuring logical channels in a network. More particularly, this disclosure is directed toward grouping network elements according to certain parameters to configure logical channels in a network.
Coaxial cable television systems have been in widespread use for many years and extensive networks have been developed. The extensive and complex networks are often difficult for a cable operator to manage and monitor. A typical cable network generally contains a headend which includes a cable modem termination system (CMTS). The CMTS contains several receivers, each receiver connects to one or more nodes which are connected to network elements (cable modems, MTAs, etc) of many subscribers, e.g., a single receiver may be connected to hundreds of modems which vary widely in communication characteristics. In many instances several nodes may serve a particular area of a town or city. The CMTS is also usually connected to an IP network from which it obtains content from various sources including the internet, and voice networks. The network elements communicate to the CMTS via upstream communications on a dedicated band of frequency and receive information from the CMTS via downstream communications.
Cable networks are also increasingly carrying signals which require a high quality and reliability of service, such as voice communications or Voice over IP (VoIP) communications. Any disruption of voice or data traffic is a great inconvenience and often unacceptable to a subscriber.
Logical channel operation is a mechanism whereby multiple upstream channels may be configured with different operating parameters while all operating on the same physical channel. DOCSIS 2.0 introduced this concept to support simultaneous operation and therefore backwards compatibility of TDMA, ATDMA, and SCDMA cable modems.
Existing technologies within CMTSs or network management applications do not currently provide a mechanism to differentiate modems and reassigned them to leverage any grouping benefits. If such a technology did exist, it will be limited to physical channel (not logical channel) isolation and therefore would not offer much in the way of benefits as the number of physical channels is a very limited commodity. It is only with the recent creation of logical channels in the DOCSIS 2.0 specification that such benefits have manifested themselves. Current CMTS implementations for configuring logical channels are manual processes where a unique command must generally be entered for each cable modem registered on the system. With a CMTS typically servicing over 20,000 cable modems, clearly no operators are utilizing any such feature. Further, there is no current product offering that provides the operator a mechanism for grouping these modems.
This disclosure explains an automated process to determine logical channels using network elements (such as MTAs or cable modems) in conjunction with measurements made at the headend, via a CMTS device, and does not require rolling trucks to remote locations within a plant.
In accordance with principles of the invention, an apparatus of the invention may comprise: a microprocessor configured to determine network parameters associated with a selected network element based on communications with the selected network element; and a receiver configured to receive signals indicative of the network parameters from a network element, wherein the microprocessor is configured to assign the network element to a logical channel based on the network parameters. The network parameters may include one of: upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data). The microprocessor compares the network parameters with threshold values and assigns the network elements to a logical channel based on the comparison.
In accordance with the invention, a method for configuring logical channels in a network may comprise the steps of: determining network parameters associated with a selected network element based on communications with the selected network element; analyzing the network parameters; and assigning network elements to logical channels based on the network parameters. The step of providing instructions to the network elements to realign includes receiving instructions from an operator to realign the network elements. The step of assigning network elements to a logical channel may include an operator providing selected network elements to be assigned or unassigned to or from a logical channel.
In accordance with the principles of the invention, a computer readable medium may carrying instructions for a computer to perform a method for configuring logical channels in a network comprising the steps of: determining network parameters associated with a selected network element based on communications with the selected network element; analyzing the network parameters; and assigning network elements to logical channels based on the network parameters.
The invention enables a network operator to optimize the performance of the network by assigning network elements to logical channels cheaply and quickly at a central location, such as the headened such as by using the Motorola BSR64000, thus increasing the overall through-put achievable on the network and therefore the number of devices which may be serviced within a single upstream channel, without necessitating the upgrading of a cable plant of the upgrading of cable modem or MTA devices. The invention also enables the optimal configuration to be determined and implemented without impacting active services. All measurements may be made through the use of the existing terminal network element devices (specifically, DOCSIS terminal devices such as MTAs and cable modems) as well as headend equipment (specifically a DOCSIS CMTS).
The following drawings serve to illustrate the principles of the invention.
This disclosure provides for a CMTS supporting application (PC Application) and a process which allows the network operator to easily group network elements (e.g. cable modems, media terminal adaptor (MTA) and other customer premise equipment) based upon common parametrics and performance similarities. These groupings may then be used to configure logical channels and subsequently the assignment of the network elements to these logical channels. Such grouping by logical channels provides the operator with many advantages including: the ability to take advantage of unique features common to only a subset of the network elements, increase overall network through-put by optimizing physical layer configuration parameters to network elements grouping, isolation of problematic network elements supporting proactive network maintenance activities, and differentiation by QOS which allows the operator to offer additional premium services.
This disclosure documents an apparatus and methodology for a PC application that connects to a DOCSIS CMTS and extracts the necessary information to allow the network operator to visualize various parametric relationships for all the registered network elements. The network operator may differentiate groups of these network elements based upon thresholds for these parameters, configure the CMTS with the appropriate logical channels matching these groups, and finally, automatically move each of the modems to the appropriate logical channel.
This disclosure provides for isolating network elements based upon many different parameters (upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data, etc.). The network operator is given the flexibility to exploit these differences to optimize management of the network including configuring logical channels. For example, the operator can differentiate cable modems by upstream Modulation Error Ratio (MER) which is a primary determinant in the modulation rate (QPSK, 16QAM, 32QAM, 64QAM, etc) that may be run, and then set up multiple logical channels, each one with a different modulation rate, and then assign the appropriate network elements to each logical channel based upon which modulation could be supported.
RF transceiver (transmitter/receiver) unit preferably contains a plurality of transmitters 4 and receivers 2 to provide bi-directional communication with a plurality of network elements 8 through optical transceivers 16, nodes 12 and a plurality of network taps (not shown). Those of skill in the art will appreciate that CMTS 10 may contain a plurality of RF receivers 2, e.g. 8 RF receivers and a spare RF receiver. Each RF receiver 2 may support over 100 network elements. The RF receiver 2, such as a Broadcom 3140 receiver (receiver), preferably provides the received RF signals to an equalizer 103 which is used to acquire equalizer values and burst modulation error ratio (MER) measurements, packet error rate (PER) and bit error rate (BER). Equalizer 103 is preferably a multiple tap linear equalizer (e.g. a 24 tap linear equalizer), which also may be known as a feed forward equalizer (FFE). Equalizer 103 may be integrally contained in RF receiver 2 or may be a separate device. The communication characteristics of each receiver 2 may be stored on ROM 104 or RAM 106, or may be provided from an external source, such as headend 14. RAM 104 and/or ROM 106 may also carry instructions for microprocessor 102.
An exemplary process for automatically measuring network element parameters in a service group, which may be associated with a node, is illustrated in
As illustrated in
While any suitable technique for determining the location of a network element in the cable network may be used, a methodology for isolating devices which reside on the same optical node or serving group is provided in a commonly assigned disclosure entitled METHOD AND APPARATUS FOR GROUPING TERMINAL NETWORK DEVICES filed on Sep. 5, 2006 and assigned U.S. Ser. No. 11/470,034, herein incorporated by reference in its entirety. Further, while any suitable technique for identifying microreflections associated with network elements may be used, a methodology for determining microreflections is provided in commonly assigned disclosure entitled METHOD AND APPARATUS FOR DETERMINING MICROREFLECTIONS IN A NETWORK, filed on Dec. 7, 2006 and assigned U.S. Ser. No. 11/608,028, herein incorporated by reference in its entirety.
The test results associated with each tested network element on the selected port are preferably stored, step S7. The process determines if more ports are available for testing, and if so, step S9, Yes, changes to another port, step S11, and performs testing on network elements associated with the new port. If no more ports are available for testing, step S9, No, then the process ends, step S13.
As illustrated in
The channel configuration window preferably includes a network element list panel 1002 which displays a list of network elements on the CMTS. The operator preferably is able to sort, filter and graph the various network element parameters. While the network element parameters illustrated include the MAC address, the measured SNR and microreflections, the network element or modem type, the CMTS slot, the CMTS port, the spectrum group of the network element, and a “no move” flag, those of skill in the art will appreciate that other network element parameters may be displayed as well. By supporting sorting, filtering, and graphing, the operator is able to quickly visualize the distribution of network elements by various network element parameters and to understand the distribution of modems against various parameter thresholds. For example, the operator may quickly decipher what proportion of the modems (e.g., 75%) possess a network element parameter greater than THRESHOLD1 and less than THRESHOLD2. This understanding is useful in allowing the operator to identify which parameters should be utilized as a basis for grouping network elements into various logical channels and as a basis to select necessary thresholds. The thresholds and the number of thresholds used may also be automatically assigned to best fit the network elements into logical channels based on a network parameter, such as evenly segmenting the network elements based on SNR or microreflection.
The Logical Channel performance display 1002 may also contain various radio buttons to allow an operator to provide several graphical displays, such as Update button 1015, Graph SNR button 1003, and Graph uRefl button 1005. The Update button 1015 may extract information from the CMTS which may include the measured network element parameters. The Graph SNR button 1015 may provide a display, such as a bar chart display, of the SNR associated with network elements on the CMTS or just a designated slot or port on the CMTS. The Graph uRefl button 1005 may provide a display, such as a bar chart display, of the microreflections associated with network elements on the CMTS or just a designated slot or port. Those of skill in the art will appreciate that other radio buttons may be provided which enable display of any of the parameters associated with network elements on the CMTS or on a designated slot or port.
Various graphics displays may be provided, such as a display of upstream or downstream modulation error ratio (MER), upstream or downstream signal to noise ratio (SNR), upstream or downstream microreflections, upstream transmit level, downstream receive power level, cable modem type (DOCSIS 1.0,1.1,2.0), functional capabilities (e.g., VoIP, 256QAM, etc), network element location with in a cable plant, network element manufacturer, or type of services provided by the network element (including telephony versus data, etc.).
The Modulation Profile display panel 1004 provides the ability for the operator to configure various profile configuration templates which may later be assigned to an individual logical channel. That is, the operator may view, create and edit modulation profiles 1007 which optimize the specific needs of a subset of the network elements. Additional details of a modulation profile may be displayed as well in an expanded detail window 1009.
The Logical Channel Definition display panel 1006 provides the ability to define each logical channel 1010 for a given CMTS slot/port and select the modulations profiles 1019 viewed in the channel profile/parameter definition panel and associated with various performance parameters and thresholds 1020. Performance parameters 1020 could include: 1) upstream or downstream modulation error ratio (MER), 2) upstream or downstream signal to noise ratio (SNR), 3) upstream or downstream microreflections, 4) upstream transmit level, 5) downstream receive power level, 6) cable modem type (DOCSIS 1.0,1.1,2.0), 7) functional capabilities (e.g., VoIP, 256QAM, etc), 8) network element location with in a cable plant (e.g., node location or amplifier cascade depth), 9) network element manufacturer, 10) type of services provided by the network element (including telephony versus data, and others). A threshold (appropriate to the network element parameter selected) is preferably specified for each logical channel to allow the application to isolate (or group) the various network elements into logical channels based upon the threshold.
Logical Channel performance display 1008 may contain a bar chart 1008 (e.g. within the logical channel definition panel) which compares the theoretical performance of the channel as currently configured with the performance achieved if the logical channel configuration were implemented. This bar chart may be a color coded stacked bar which allows the operator to visualize the contributions to resulting from each of the logical channels. The Logical Channel performance display 1008 may also contain various radio buttons to an allow an operator to provide several graphical displays, such as Analyze button 1017, Graph SNR button 1012, Graph URefl button 1014, and Configure button 1011. The Graph SNR button 1012 may provide a display, such as a bar chart display, of the SNR associated with network elements on a designated slot or port. The Graph URefl button 1014 may provide a display, such as a bar chart display, of the microreflections associated with network elements on a designated slot or port. Those of skill in the art will appreciate that other radio buttons may be provided which enable display of any of the parameters associated with network elements on a designated slot or port.
The system preferably allows an operator to automatically configure the CMTS to fit the logical channel definition defined with the thresholds. This process will preferably reconfigure the settings for a receiver 2, or the selected slot and port of receiver 2 to match the logical channels defined. When the operator initiates the configuration process, the system preferably configures each of the logical channel profiles and moves each network element to the appropriate logical channel as dictated by the selected parameter and threshold settings. The primary goal of logical channel assignment is to optimize system performance as measured by each network element. System performance may include many things including: maximum through-put, maximum number of network elements supported, quality of service (QOS) performance, ease of manageability from the service provider perspective, and others. As such, the system may automatically determine the optimum value for the threshold settings or it may allow an operator to analyze his network and manually select the desired threshold settings.
In the described embodiment here the operator may trigger the logical channel configuration process. However, an alternate approach is to integrate an algorithm within the CMTS and to allow it to automatically rerun the logical channel optimization process at regular intervals (e.g. two times per day, once per day/week/month or year, etc.) in order to provide an optimal system performance while simultaneously dealing with any variations that might be encountered for some parameters over time. For example, MER and SNR parameters will vary over time because of such conditions as climate, temperature, and network degradation and maintenance.
The system preferably has the agility to manually override logical channel assignment for various modems which are configured with the automatic threshold process described above. The system preferably provides a mechanism for the operator to view the lists of modems categorized by logical channel and manually reassign them as desired prior to analyzing or configuring the channel, such as by using drag-and-drop function to minimize the efforts of the operator when undertaking any manual overrides.
The processes in
The invention enables a network operator to optimize the performance of the network by assigning network elements to logical channels cheaply and quickly at a central location, such as the headened such as by using the Motorola BSR64000. The network operator may manually assign the network elements to logical channels or may use an automated process.
This application claims the benefit of U.S. Provisional Application 60/785,647 filed on Mar. 24, 2006, herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3838221 | Schmidt et al. | Sep 1974 | A |
4245342 | Entenman | Jan 1981 | A |
4385392 | Angell et al. | May 1983 | A |
4811360 | Potter | Mar 1989 | A |
4999787 | McNally et al. | Mar 1991 | A |
5228060 | Uchiyama | Jul 1993 | A |
5251324 | McMullan | Oct 1993 | A |
5271060 | Moran et al. | Dec 1993 | A |
5278977 | Spencer et al. | Jan 1994 | A |
5347539 | Sridhar et al. | Sep 1994 | A |
5390339 | Bruckert et al. | Feb 1995 | A |
5463661 | Moran et al. | Oct 1995 | A |
5532865 | Utsumi et al. | Jul 1996 | A |
5557603 | Barlett et al. | Sep 1996 | A |
5606725 | Hart | Feb 1997 | A |
5631846 | Szurkowski | May 1997 | A |
5694437 | Yang et al. | Dec 1997 | A |
5732104 | Brown et al. | Mar 1998 | A |
5790523 | Ritchie et al. | Aug 1998 | A |
5862451 | Grau et al. | Jan 1999 | A |
5867539 | Koslov | Feb 1999 | A |
5870429 | Moran et al. | Feb 1999 | A |
5886749 | Williams et al. | Mar 1999 | A |
5939887 | Schmidt et al. | Aug 1999 | A |
5943604 | Chen et al. | Aug 1999 | A |
6032019 | Chen et al. | Feb 2000 | A |
6061393 | Tsui et al. | May 2000 | A |
6108351 | Hardy et al. | Aug 2000 | A |
6154503 | Strolle | Nov 2000 | A |
6229792 | Anderson et al. | May 2001 | B1 |
6230326 | Unger et al. | May 2001 | B1 |
6233274 | Tsui et al. | May 2001 | B1 |
6240553 | Son et al. | May 2001 | B1 |
6272150 | Hrastar et al. | Aug 2001 | B1 |
6278730 | Tsui et al. | Aug 2001 | B1 |
6308286 | Richmond et al. | Oct 2001 | B1 |
6310909 | Jones | Oct 2001 | B1 |
6321384 | Eldering | Nov 2001 | B1 |
6330221 | Gomez | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6377552 | Moran et al. | Apr 2002 | B1 |
6385773 | Schwartzman et al. | May 2002 | B1 |
6389068 | Smith et al. | May 2002 | B1 |
6434583 | Dapper et al. | Aug 2002 | B1 |
6445734 | Chen et al. | Sep 2002 | B1 |
6456597 | Bare | Sep 2002 | B1 |
6459703 | Grimwood et al. | Oct 2002 | B1 |
6477197 | Unger | Nov 2002 | B1 |
6480469 | Moore et al. | Nov 2002 | B1 |
6483033 | Simoes et al. | Nov 2002 | B1 |
6498663 | Farhan et al. | Dec 2002 | B1 |
6512616 | Nishihara | Jan 2003 | B1 |
6526260 | Hick et al. | Feb 2003 | B1 |
6546557 | Ovadia | Apr 2003 | B1 |
6556239 | Al Araji et al. | Apr 2003 | B1 |
6556562 | Bhagavath et al. | Apr 2003 | B1 |
6556660 | Li et al. | Apr 2003 | B1 |
6559756 | Al Araji et al. | May 2003 | B2 |
6563868 | Zhang et al. | May 2003 | B1 |
6570394 | Williams | May 2003 | B1 |
6570913 | Chen | May 2003 | B1 |
6574797 | Naegeli et al. | Jun 2003 | B1 |
6588016 | Chen et al. | Jul 2003 | B1 |
6606351 | Dapper et al. | Aug 2003 | B1 |
6611795 | Cooper | Aug 2003 | B2 |
6646677 | Noro et al. | Nov 2003 | B2 |
6662135 | Burns et al. | Dec 2003 | B1 |
6662368 | Cloonan et al. | Dec 2003 | B1 |
6671334 | Kuntz et al. | Dec 2003 | B1 |
6687632 | Rittman | Feb 2004 | B1 |
6690655 | Miner et al. | Feb 2004 | B1 |
6700875 | Schroeder et al. | Mar 2004 | B1 |
6700927 | Esliger et al. | Mar 2004 | B1 |
6711134 | Wichelman et al. | Mar 2004 | B1 |
6741947 | Wichelman et al. | May 2004 | B1 |
6748551 | Furudate et al. | Jun 2004 | B2 |
6757253 | Cooper et al. | Jun 2004 | B1 |
6772388 | Cooper et al. | Aug 2004 | B2 |
6772437 | Cooper et al. | Aug 2004 | B1 |
6816463 | Cooper et al. | Nov 2004 | B2 |
6839829 | Daruwalla et al. | Jan 2005 | B1 |
6853932 | Wichelman et al. | Feb 2005 | B1 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6895043 | Naegeli et al. | May 2005 | B1 |
6895594 | Simoes et al. | May 2005 | B1 |
6906526 | Hart et al. | Jun 2005 | B2 |
6928475 | Schenkel et al. | Aug 2005 | B2 |
6944881 | Vogel | Sep 2005 | B1 |
6961314 | Quigley et al. | Nov 2005 | B1 |
6961370 | Chappell | Nov 2005 | B2 |
6967994 | Boer et al. | Nov 2005 | B2 |
6973141 | Isaksen et al. | Dec 2005 | B1 |
6985437 | Vogel | Jan 2006 | B1 |
6999408 | Gomez | Feb 2006 | B1 |
7002899 | Azenkot et al. | Feb 2006 | B2 |
7010002 | Chow et al. | Mar 2006 | B2 |
7017176 | Lee et al. | Mar 2006 | B1 |
7032159 | Lusky et al. | Apr 2006 | B2 |
7039939 | Millet et al. | May 2006 | B1 |
7050419 | Azenkot et al. | May 2006 | B2 |
7054554 | McNamara et al. | May 2006 | B1 |
7058007 | Daruwalla et al. | Jun 2006 | B1 |
7072365 | Ansley | Jul 2006 | B1 |
7079457 | Wakabayashi et al. | Jul 2006 | B2 |
7099412 | Coffey | Aug 2006 | B2 |
7099580 | Bulbul | Aug 2006 | B1 |
7139283 | Quigley et al. | Nov 2006 | B2 |
7142609 | Terreault et al. | Nov 2006 | B2 |
7152025 | Lusky et al. | Dec 2006 | B2 |
7158542 | Zeng et al. | Jan 2007 | B1 |
7164694 | Nodoushani et al. | Jan 2007 | B1 |
7177324 | Choudhury et al. | Feb 2007 | B1 |
7197067 | Lusky et al. | Mar 2007 | B2 |
7222255 | Claessens et al. | May 2007 | B1 |
7227863 | Leung et al. | Jun 2007 | B1 |
7242862 | Saunders et al. | Jul 2007 | B2 |
7246368 | Millet et al. | Jul 2007 | B1 |
7263123 | Yousef | Aug 2007 | B2 |
7274735 | Lusky et al. | Sep 2007 | B2 |
7315573 | Lusky et al. | Jan 2008 | B2 |
7315967 | Azenko et al. | Jan 2008 | B2 |
7400677 | Jones | Jul 2008 | B2 |
7421276 | Steer et al. | Sep 2008 | B2 |
7451472 | Williams | Nov 2008 | B2 |
7492703 | Lusky et al. | Feb 2009 | B2 |
7554902 | Kim et al. | Jun 2009 | B2 |
7573884 | Klimker et al. | Aug 2009 | B2 |
7573935 | Min et al. | Aug 2009 | B2 |
7616654 | Moran et al. | Nov 2009 | B2 |
7650112 | Utsumi et al. | Jan 2010 | B2 |
7672310 | Cooper et al. | Mar 2010 | B2 |
7684315 | Beser | Mar 2010 | B1 |
7684341 | Howald | Mar 2010 | B2 |
7716712 | Booth et al. | May 2010 | B2 |
7739359 | Millet et al. | Jun 2010 | B1 |
7742697 | Cooper et al. | Jun 2010 | B2 |
7742771 | Thibeault | Jun 2010 | B2 |
7778314 | Wajcer et al. | Aug 2010 | B2 |
7787557 | Kim et al. | Aug 2010 | B2 |
7792183 | Massey et al. | Sep 2010 | B2 |
7856049 | Currivan et al. | Dec 2010 | B2 |
7876697 | Thompson et al. | Jan 2011 | B2 |
7953144 | Allen et al. | May 2011 | B2 |
7970010 | Denney et al. | Jun 2011 | B2 |
8000254 | Thompson et al. | Aug 2011 | B2 |
8037541 | Montague et al. | Oct 2011 | B2 |
8040915 | Cummings | Oct 2011 | B2 |
8059546 | Pai et al. | Nov 2011 | B2 |
8081674 | Thompson et al. | Dec 2011 | B2 |
8116360 | Thibeault | Feb 2012 | B2 |
8265559 | Cooper et al. | Sep 2012 | B2 |
8284828 | Cooper et al. | Oct 2012 | B2 |
8345557 | Thibeault et al. | Jan 2013 | B2 |
20010055319 | Quigley et al. | Dec 2001 | A1 |
20020038461 | White et al. | Mar 2002 | A1 |
20020044531 | Cooper et al. | Apr 2002 | A1 |
20020091970 | Furudate et al. | Jul 2002 | A1 |
20020116493 | Schenkel et al. | Aug 2002 | A1 |
20020154620 | Azenkot et al. | Oct 2002 | A1 |
20020168131 | Walter et al. | Nov 2002 | A1 |
20020181395 | Foster et al. | Dec 2002 | A1 |
20030028898 | Howald | Feb 2003 | A1 |
20030043732 | Walton et al. | Mar 2003 | A1 |
20030067883 | Azenkot et al. | Apr 2003 | A1 |
20030101463 | Greene et al. | May 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030120819 | Abramson et al. | Jun 2003 | A1 |
20030138250 | Glynn | Jul 2003 | A1 |
20030149991 | Reidhead et al. | Aug 2003 | A1 |
20030158940 | Leigh | Aug 2003 | A1 |
20030179768 | Lusky et al. | Sep 2003 | A1 |
20030179770 | Reznic et al. | Sep 2003 | A1 |
20030179821 | Lusky et al. | Sep 2003 | A1 |
20030181185 | Lusky et al. | Sep 2003 | A1 |
20030182664 | Lusky et al. | Sep 2003 | A1 |
20030185176 | Lusky et al. | Oct 2003 | A1 |
20030188254 | Lusky et al. | Oct 2003 | A1 |
20030200317 | Zeitak et al. | Oct 2003 | A1 |
20030212999 | Cai | Nov 2003 | A1 |
20040015765 | Cooper et al. | Jan 2004 | A1 |
20040042385 | Kim et al. | Mar 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040052356 | McKinzie et al. | Mar 2004 | A1 |
20040062548 | Obeda et al. | Apr 2004 | A1 |
20040073937 | Williams | Apr 2004 | A1 |
20040096216 | Ito | May 2004 | A1 |
20040109661 | Bierman et al. | Jun 2004 | A1 |
20040139473 | Greene | Jul 2004 | A1 |
20040163129 | Chapman et al. | Aug 2004 | A1 |
20040181811 | Rakib | Sep 2004 | A1 |
20040208513 | Peddanarappagari et al. | Oct 2004 | A1 |
20040233234 | Chaudhry et al. | Nov 2004 | A1 |
20040233926 | Cummings | Nov 2004 | A1 |
20040248520 | Miyoshi | Dec 2004 | A1 |
20040261119 | Williams et al. | Dec 2004 | A1 |
20050010958 | Rakib et al. | Jan 2005 | A1 |
20050025145 | Rakib et al. | Feb 2005 | A1 |
20050034159 | Ophir et al. | Feb 2005 | A1 |
20050039103 | Azenko et al. | Feb 2005 | A1 |
20050058082 | Moran et al. | Mar 2005 | A1 |
20050064890 | Johan et al. | Mar 2005 | A1 |
20050097617 | Currivan et al. | May 2005 | A1 |
20050108763 | Baran et al. | May 2005 | A1 |
20050122996 | Azenkot et al. | Jun 2005 | A1 |
20050163088 | Yamano et al. | Jul 2005 | A1 |
20050175080 | Bouillett | Aug 2005 | A1 |
20050183130 | Sadja et al. | Aug 2005 | A1 |
20050198688 | Fong | Sep 2005 | A1 |
20050226161 | Jaworski | Oct 2005 | A1 |
20050281200 | Terreault | Dec 2005 | A1 |
20060013147 | Terpstra et al. | Jan 2006 | A1 |
20060121946 | Walton et al. | Jun 2006 | A1 |
20060250967 | Miller et al. | Nov 2006 | A1 |
20060262722 | Chapman et al. | Nov 2006 | A1 |
20070002752 | Thibeault et al. | Jan 2007 | A1 |
20070058542 | Thibeault | Mar 2007 | A1 |
20070076592 | Thibeault et al. | Apr 2007 | A1 |
20070076789 | Thibeault | Apr 2007 | A1 |
20070076790 | Thibeault et al. | Apr 2007 | A1 |
20070086328 | Kao et al. | Apr 2007 | A1 |
20070094691 | Gazdzinski | Apr 2007 | A1 |
20070097907 | Cummings | May 2007 | A1 |
20070133672 | Lee et al. | Jun 2007 | A1 |
20070143654 | Joyce et al. | Jun 2007 | A1 |
20070147489 | Sun et al. | Jun 2007 | A1 |
20070177526 | Siripunkaw et al. | Aug 2007 | A1 |
20070184835 | Bitran et al. | Aug 2007 | A1 |
20070189770 | Sucharczuk et al. | Aug 2007 | A1 |
20070206600 | Klimker et al. | Sep 2007 | A1 |
20070206625 | Maeda | Sep 2007 | A1 |
20070211618 | Cooper et al. | Sep 2007 | A1 |
20070223920 | Moore et al. | Sep 2007 | A1 |
20070245177 | Cooper et al. | Oct 2007 | A1 |
20080056713 | Cooper et al. | Mar 2008 | A1 |
20080062888 | Lusky et al. | Mar 2008 | A1 |
20080075157 | Allen et al. | Mar 2008 | A1 |
20080101210 | Thompson et al. | May 2008 | A1 |
20080140823 | Thompson et al. | Jun 2008 | A1 |
20080193137 | Thompson et al. | Aug 2008 | A1 |
20080200129 | Cooper et al. | Aug 2008 | A1 |
20080242339 | Anderson | Oct 2008 | A1 |
20080250508 | Montague et al. | Oct 2008 | A1 |
20080274700 | Li | Nov 2008 | A1 |
20080291840 | Cooper et al. | Nov 2008 | A1 |
20090031384 | Brooks et al. | Jan 2009 | A1 |
20090103557 | Hong et al. | Apr 2009 | A1 |
20090103669 | Kolze et al. | Apr 2009 | A1 |
20090249421 | Liu et al. | Oct 2009 | A1 |
20100083356 | Steckley et al. | Apr 2010 | A1 |
20100095360 | Pavlovski et al. | Apr 2010 | A1 |
20100154017 | An et al. | Jun 2010 | A1 |
20100157824 | Thompson et al. | Jun 2010 | A1 |
20100158093 | Thompson et al. | Jun 2010 | A1 |
20100223650 | Millet et al. | Sep 2010 | A1 |
20110026577 | Primo et al. | Feb 2011 | A1 |
20110030019 | Ulm et al. | Feb 2011 | A1 |
20110069745 | Thompson et al. | Mar 2011 | A1 |
20110110415 | Cooper et al. | May 2011 | A1 |
20110194418 | Wolcott et al. | Aug 2011 | A1 |
20110194597 | Wolcott et al. | Aug 2011 | A1 |
20110197071 | Wolcott et al. | Aug 2011 | A1 |
20110243214 | Wolcott et al. | Oct 2011 | A1 |
20120054312 | Salinger | Mar 2012 | A1 |
20120084416 | Thibeault et al. | Apr 2012 | A1 |
20120147751 | Ulm | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
69631420 | Dec 2004 | DE |
1235402 | Aug 2002 | EP |
1341335 | Sep 2003 | EP |
55132161 | Oct 1980 | JP |
04208707 | Jul 1992 | JP |
6120896 | Apr 1994 | JP |
6177840 | Jun 1994 | JP |
09008738 | Jan 1997 | JP |
9162816 | Jun 1997 | JP |
10247893 | Sep 1998 | JP |
11230857 | Aug 1999 | JP |
2001-44956 | Feb 2001 | JP |
2003530761 | Oct 2003 | JP |
2004172783 | Jun 2004 | JP |
2004343678 | Dec 2004 | JP |
0192901 | Jun 2001 | WO |
0233974 | Apr 2002 | WO |
2004062124 | Jul 2004 | WO |
2009146426 | Dec 2009 | WO |
Entry |
---|
Japanese Patent Application No. 2008-557531, Notice of Reasons for Rejection, Oct. 5, 2010, 2 pages. |
PCT Search Report and Written Opinion for PCT/US2007/64759, mailed Dec. 20, 2007. |
Office Action, Korean App. No. 10-2008-7023199 (Foreign Text), Apr. 30, 2010. |
Office Action, Korean App. No. 10-2008-7023199 (English Translation), May 20, 2010. |
Extended European Search Report for European Patent Application No. EP07759225, dated Jun. 25, 2012. |
Canadian Office Action for Canadian Patent Application No. 2,646,281, dated May 16, 2012. |
“A Simple Algorithm for Fault Localization Using Naming Convention and Micro-reflection Signature,” Invention Disclosure 60193, Cable Television Laboratories, Inc., Jun. 2008, p. 2. |
“Data-Over-Cable Service Interface Specifications DOCSIS 3.0: MAC and Upper Layer Protocols Interface,” CM-SP-MULPIv3.0-116-110623, Cable Television Laboratories, Inc., Jun. 2011, section 8, pp. 242-266. |
“Data-Over-Cable Service Interface Specifications DOCSIS® 3.0—MAC and Upper Layer Protocols Interface Specification,” CM-SP-MULPIv3.0-117-111117, Cable Television Laboratories, Inc., Nov. 17, 2011, pp. 770. |
“DOCSIS Best Practices and Guidelines; Proactive Network Maintenance Using Pre-Equalization,” CM-GL-PNMP-V01-100415, Cable Television Laboratories, Inc., pp. 123. |
“Pre-Equalization Based Pro-active Network Maintenance Process Model for CMs Transmitting on Multiple Upstream Channels,” Invention Disclosure 60203, Cable Television Laboratories, Inc., May 2009, pp. 2. |
“Pre-Equalization based pro-active network maintenance process model,” Invention Disclosure 60177, Cable Television Laboratories, Inc., Jun. 2008, pp. 2. |
“Proactive Network Maintenance Using Pre-Equalization,” DOCSIS Best Practices and Guidelines, Cable Television Laboratories, Inc., CM-GL-PNMP-V02-110623, Jun. 23, 2011, pp. 133. |
“Radio Frequency Interface Specification,” Cable Television Laboratories, Inc., Data-Over-Cable Service Interface Specifications DOCSIS 2.0, CM-SP-RFIv2.0-106-040804, pp. 524, Aug. 4, 2004. |
Campos, L. A., et al., “Pre-equalization based Pro-active Network Maintenance Methodology,” Cable Television Laboratories, Inc., (presentation), 2012, pp. 32. |
Howald, R. L., et al., “Customized Broadband—Analysis Techniques for Blended Multiplexes,” pp. 12, 2002. |
Howald, R., “Access Networks Solutions: Introduction to S-CDMA,” Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Motorola, Inc., 2009, pp. 15. |
Howald, R., “Upstream Snapshots & Indicators (2009),” Regional Samples, Presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 22. |
Howald, R., et al., “Characterizing and Aligning the Hfc Return Path for Successful DOCSIS 3.0 Rollouts,” Society of Cable Telecommunications Engineers (SCTE) Cable Tee Expo, Oct. 2009, pp. 66. |
Howald, R., et al., “Docsis 3.0 Upstream: Readiness & Qualification,” pp. 17, Oct. 2009. |
Howald, R., et al., “The Grown-Up Potential of a Teenage Phy,” pp. 65, May 2012. |
Howald, R.,“DOCSIS 3.0 Upstream: Technology, RF Variables & Case Studies,” Access Networks Solutions, 2009, presentation to Society of Cable Telecommunications Engineers (SCTE) South Florida Chapter, Jan. 2010, pp. 23. |
Hranac, R., “Linear Distortions, Part 1,” Communication Technology, Jul. 1, 2005, accessed at www.cable360.net/print/ct/operations/testing/15131.html, pp. 6. |
Liu, X., and Bernstein, A., “Variable Bit Rate Video Services in DOCSIS 3.0 Networks,” NCTA Technical Papers, 2008, pp. 12. |
Motorola., “White Paper: Expanding Bandwidth Using Advanced Spectrum Management,” Sep. 25, 2003, pp. 12. |
Newton's Telecom Dictionary, Sep. 1995, Flatiron Publishing, 9th Edition, pp. 216 and 1023, definitions of “carrier to noise ratio” and “signal to noise ratio”. |
Patrick, M., and Joyce, G., “Delivering Economical IP Video over DOCSIS by Bypassing the M-CMTS with DIBA,” SCTE 2007 Emerging Technologies, Topic Subject: Service Velocity & Next Generation Architectures: How Do We Get There?, 2007, pp. 17. |
Popper, A., et al, “An Advanced Receiver with Interference Cancellation for Broadband Cable Networks,” Juniper Networks, International Zurich Seminar on Broadband Communications Access 2002, pp. 23-1-23-6. |
Popper, A., et al, “Ingress Noise Cancellation for the Upstream Channel in Broadband Cable Access Systems,” Juniper Networks, IEEE International Conference on Communications 2002, vol. 3, pp. 1808-1812. |
Qureshi, S. U. H., “Adaptive Equalization,” IEEE, Volume. 73, No. 9, Sep. 1985, pp. 1349-1387. |
Ramakrishnan, S., “Scaling the DOCSIS Network for IPTV,” Cisco Systems, Inc., SCTE Conference on Emerging Technologies and the NCTA Cable Show, 2009, pp. 19. |
Shelke, Y. R., “Knowledge Based Topology Discovery and Geo-localization,” Thesis, 2010, pp. 173. |
Thompson, R., et al., “256-QAM for Upstream HFC,” Spring Technical Forum Proceedings, 2010, pp. 142-152. |
Thompson, R., et al., “256-QAM for Upstream HFD Part Two,” SCTE Cable Tec Expo 2011, Technical Paper, pp. 22. |
Thompson, R., et al., “Multiple Access Made Easy,” SCTE Cable Tec Expo 2011, Technical Paper, pp. 23. |
Thompson, R., et al., “Optimizing Upstream Throughput Using Equalization Coefficient Analysis,” National Cable & Telecommunications Association (NCTA) Technical Papers, Apr. 2009, pp. 35. |
Thompson, R., et al., “Practical Considerations for Migrating the Network Toward All-Digital,” Society of Cable Telecommunications Engineers (SCTE) Cable-Tec Expo, Oct. 2009, pp. 22. |
Thompson, R., et al., “64-QAM, 6.4MHz Upstream Deployment Challenges,” SCTE Canadian Summit, Toronto, Canada, Technical Paper, Mar. 2011, pp. 25. |
Volpe, B., and Miller, W., “Cable-Tec Expo 2011: Advanced Troubleshooting in a DOCSIS© 3.0 Plant,” Nov. 14-17, 2011, pp. 17. |
Wolcott, L., “Modem Signal Usage and Fault Isolation,” U.S. Appl. No. 61/301,835, filed Feb. 5, 2010. |
Zhao, F., et al., “Techniques for minimizing error propagation in decision feedback detectors for recording channels,” IEEE Transactions on Magnetics, vol. 37, No. 1, Jan. 2001, pp. 12. |
Number | Date | Country | |
---|---|---|---|
20070223512 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60785647 | Mar 2006 | US |