The subject matter of this application is related to the subject matter of the following applications:
1. Field
This disclosure is generally related to computer networks. More specifically, this disclosure is related to establishing directed routing paths across network nodes of a computer network using database synchronization operations.
2. Related Art
Link-based routing protocols, such as Intermediate System to Intermediate System (IS-IS) and Open Shortest Path First (OSPF), are designed to establish symmetric links between neighboring network nodes. Each network node propagates link state information across a network by sending link-state advertisements (LSAs) to neighboring network nodes. When a network node receives an LSA, the network node can create an updated graph for the map of the network, and updates a routing table to indicate a first node along a shortest path to each network node.
In link-based routing protocols, it is important that all nodes of a computer network operate under the same network map to prevent forwarding packets in a routing loop within the network. To maintain a synchronized network map, network nodes propagate a received LSA to other neighboring nodes of the computer network, which allows other neighboring nodes to update their routing table. Hence, because two network nodes of a computer network store the same network map, they may use the same links to route packets to each other, in opposite directions.
However, some users may not wish their devices to use the same links to send and to receive packets. For example, a user's smartphone may typically download a substantially larger number of packets than it uploads, given that the downloaded packets may typically correspond to media content that can consume significant network bandwidth. On the other hand, the smartphone's uploaded packets may correspond to relatively small pieces of data, such as an email or a Short Messaging Service (SMS) message, a request for content (e.g., a hypertext transfer protocol (HTTP) request to view a website).
If the user's cellular network provider provides a quota to the amount of bandwidth accessed by the user's smartphone, the user may prefer that his smartphone to use a Wi-Fi network connection to receive packets, while allowing his smartphone to use either the Wi-Fi connection or a cellular network connection to send packets. Unfortunately, typical link-state routing protocols do not allow the user to control which links are to be used to send packets to, or to receive packets from, the user's computing device.
One embodiment provides a network-connectivity system that uses one or more local endpoints to establish a set of directed network connections across a set of network domains. During operation, the system can determine a first network domain which is to function as a “via” for devices of a local domain. This via is to route packets from other network devices to a predetermined endpoint of the local domain. The system generates or updates a via-domain description, within a routing-data collection for the local domain, to reference a via-domain description of the first network domain. Updating the via-domain description to reference the via-domain description of the first network domain effectively establishes the first network domain as a via for the local domain.
The system can also determine a second network domain which is to function as a “proxy” for devices of the local domain. This proxy is to communicate data to other network devices from a predetermined endpoint of the local domain. The system generates or updates a proxy-domain description, within a routing-data collection for the local domain, to reference a proxy-domain description of the second network domain, thereby establishing the second network domain as a proxy for the local domain. The system then synchronizes a network-configuration collection, which includes the routing-data collection for the local domain, with at least the first network domain and the second network domain to provide the via-domain description to devices of the first network domain, and to provide the proxy-domain description to devices of the second network domain.
In some embodiments, the first and second network domains are different network domains. Further, while synchronizing the network-configuration collection, the system restricts the via-domain description from being provided to devices of the second network domain, and restricts the proxy-domain description from being provided to devices of the first network domain.
In some embodiments, when the system determines that a third network device has referenced the local device as a via, the system can generate or update a transit-domain description, within a routing-data collection for the local domain, to reference a transit-domain description of the third network domain, thereby establishing the third network domain as a transit destination. The system then synchronizes the routing-data collection for the local domain with devices of other domains to provide the transit configuration to the other network domains.
In some embodiments, the transit configuration indicates an endpoint of the local domain, which devices of the other network domains may use to send packets for the third network domain, and/or indicates a reference to a transit-domain description of the third network domain.
In some embodiments, the via-entities configuration indicates an endpoint of the local domain from which devices of other network domains may receive packets from the local domain, and/or indicates a reference to a proxy-domains description for at least the second network domain.
In some embodiments, the proxy configuration indicates an endpoint of the local domain, which other network domains may use to send packets to devices of the local domain, and/or indicates a reference to a via-domain description of the first network domain.
In some embodiments, the system can configure the local computing device to function as a “supernode” of a computer network. The system selects an endpoint of the local domain to designate as a supernode endpoint that is to function as a network interface for a set of network domains, and assigns the selected endpoint to a supernode-endpoint tier. The system then updates a custodian-to-endpoint table to designate the local endpoint as a supernode endpoint, and to associate the selected endpoint to the corresponding supernode-endpoint tier, and synchronizes the custodian-to-endpoint table with devices of other network domains to advertise the supernode endpoint to the other network domains.
In some embodiments, can update an in-memory custodian-to-endpoint table to reflect changes to a routing-data collection, for example, in response to synchronizing the collection with one or more peer network devices. When the system determines that the routing-data collection for the local domain includes an update to one or more routing-configuration descriptions, the system disseminates an interest directed to the routing-data collection for the local domain. In response to disseminating the interest, the system obtains routing-configuration descriptions for the local domain, and determines a set of endpoint objects referenced by the routing-configuration descriptions. The system can then update an in-memory custodian-to-endpoint table to include the determined set of endpoint objects.
In some embodiments, the system can send a packet to a target remote device using a proxy for the local computing device. The system determines a target network device that is a destination for a data packet, and identifies an endpoint for the target network device using a custodian-to-endpoints table. The system generates a directed network path to the identified endpoint based on via-domain descriptions for a plurality of network domains. Then, the system selects an endpoint for a network domain at the start of the directed network path, and sends the data packet to the selected endpoint.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the present invention provide a network-connectivity system, which solves the problem of efficiently routing packets over directed paths of a structured network. For example, a user can own several devices, and can organize these devices into a device community, known as a Service Enhanced Network (SEN) Virtual Private Community (VPC), that organizes a user's computing devices into a social graph. These devices can establish “Via” or “Proxy” associations to designate other devices to process their incoming or outgoing network traffic, respectively. The network-connectivity system can implement a VPC Connectivity Agent (VCA) that can efficiently synchronize connectivity information across nodes of a device community to form a social graph, which ensures that VPC members remain aware of the available Via and Proxy associations in the VPC. This allows the user's various devices to securely communicate data across the VPC to provide services to the user.
A VPC can have several domain levels: User (VPC domain level “1,” or VPC1); Home (VPC domain level “2,” or VPC2); and Group (VPC domain level “3,” or VPC3). For example, a device belongs to one User, who may have several devices. A User belongs to one Home, which may include several Users. Users and Homes may belong to zero or more Groups. The associations between devices and VPC domains (e.g., devices and users and homes and groups) are authenticated using cryptographic methods to provide secure relationships between these entities.
In a content-centric network (CCN), a packet-forwarding device (e.g., a router) can store a Forwarding Information Base (FIB) to map a location independent structured name for a piece of content (e.g., a Hierarchically Structured Variable-Length Identifier, or HSVLI) to a custodian for the content. When the device receives an interest in a piece of content, the device can perform a lookup operation on the FIB to identify a custodian that provides the content. The packet-forwarding device may also store a custodian-to-endpoint (CE) table, which maps a custodian to one or more endpoints from which the custodian can be reached.
However, as stated above, the VPC can include a set of consumer devices (e.g., a smartphone or a laptop computer), which may be members of the same VPC Group, or different VPC Groups. Devices in the VPC can specify connections to other devices that they can use to communicate outbound traffic, or to receive inbound traffic, and they advertise these directed connections to the other devices in the SEN VPC. For example, a device or VPC domain can designate one or more other VPC domains as a “Via” from which it can receive incoming packets. The network device or VPC domain can also designate other VPC domains as a “Proxy” from which it can send outbound packets.
During operation, the network devices within a SEN VPC need to synchronize their network associations with the other devices in the VPC. For example, if the connectivity state for a directed connection changes (e.g., a Via or Proxy to the device goes offline). A network device synchronizes his updated network associations with the other SEN VPC devices, which allows the other network devices to establish a directed path to a target VPC device using only the directed connections that are operational.
The following terms are used throughout the following sections to describe the network-connectivity system.
Face: “Face” refers to an abstraction of a network interface. A “face” may indicate an application running on a local device, an attached network accessible by the local device, or to a tunnel to a remote system. Each face has one or more prefix registrations. A prefix registration specifies a longest-matching-prefix content name (e.g., an HSVLI) that may be routed over that face. If there are multiple faces with the same prefix, the system may use a load-sharing strategy to distribute the network traffic over the various faces. For example, the system may weight each face by its performance, and favors sending more traffic over faces that provide better performance (e.g., as measured by a content retrieval round-trip-time).
Endpoint: An “Endpoint” refers to a network identity of a node. Hence, an Endpoint may indicate an IP address, a SIP address, or some other connection method, such as a Direct Interface. Each network node stores an Endpoints table, which includes a list of the network node's Endpoints, along with attributes for each Endpoint. An Endpoint attribute can indicate, for example, a restriction on which other nodes can use the Endpoint, a preference value for using the Endpoint compared to other Endpoints, or other attributes now known or later developed.
Domain: A VPC “domain” can include a social group, which can include one or more devices that share data over the VPC. These domains can include several devices that belong to a single user, or to multiple users. For example, a single-user domain can include the user's smartphone, laptop, and/or a home-media computer. As another example, a multi-user domain can include devices that belong to several different people, such as in a “Home” domain, or in an “Office” domain.
VPC Association: The VPC Association provides a strong cryptographic association, or cryptographic binding, between a pair of VPC domains. For example, two endpoint devices may communicate with each other when they have established a VPC Association, and they may communicate over a directed path of devices to which they may or may not have a VPC association.
Via: The Via relationship is an explicit, directed network association between two domains, where one domain grants another domain the ability to route inbound traffic “via” the other domain. For example, a local domain can establish a Via relationship with a network peer, which makes the network peer a “Transit” for the local domain. The Via relationship is a non-VPC association between the two domains, which does not provide a cryptographic binding, and does not imply any “browsing” privileges of domain content. However, two domains that have a VPC association can establish a directed network connection though one or more Vias, even if the two domains do not have a VPC binding to the Vias, or if the Vias do not have a VPC association with each other.
Proxy: Similar to a Via, the Proxy relationship is an explicit, directed network association between two domains. However, a local domain establishes a Proxy relationship with another domain to grant the other domain the ability to route outbound traffic for the local domain. The Proxy relationship is also a non-VPC association, which does not provide a cryptographic binding and does not imply any “browsing” privileges of domain content.
Supernode: The supernode relationship is an intra-domain organization similar to a hub, where routing within the domain is done through these peering points. However, unlike in a “hub,” a supernode Endpoint does not require devices (e.g., phones) to adopt a static hub-centric routing behavior.
In some embodiments, supernodes provide a performance optimization for a domain that includes a large and flat namespace collection (e.g., a namespace collection with minimal hierarchy), such as in a VPC3 network. For example, a given VP3 domain (e.g., a “Group” domain) may include devices that belong to a set of users, and/or devices from various physical networks. However, these individual devices may belong to different VPC2 networks, and the number of devices may require an undesirably large custodian-to-endpoint (CE) table to be stored in memory for mapping a device's name to its endpoints. Hence, by using supernodes as a hub between devices in different VPC2 networks, the devices in one VPC2 network can reduce the CE table to include entries for devices in its local VPC2 network, and to include an entry for a supernode for each of the other VPC2 networks.
Vias may also be useful for VPC3 memberships. For example, a VPC1 entity that belongs to a VPC3 group can use Vias to configure inbound traffic to flow through hubs in a certain VPC2 domain, even when these VPC2 hubs are not a member of the VP3 group. As another example, a set of devices can use Vias to realize symmetric routing paths in a VPC domain, which facilitates routing packets through paths similar to the Open Shortest Path First (OSPF) routing protocol or the Border Gateway Protocol (BGP).
Proxies can be useful for routing outbound traffic for VPC3 members. For example, a VPC1 member that also belongs to a VPC3 domain can establish a Proxy to route its outbound traffic through a VPC2 hub, even when the VPC2 hub is not a member of the VPC3 domain. As another example, a device in a Direct network (e.g., a home Wi-Fi network) can configure a Proxy to route its outbound traffic through a local hub that is not the device's home hub.
In some embodiments, when a hub has an unsatisfied Interest for a foreign VPC2, the hub can directly contact a set of hubs in the foreign VPC2 (e.g., at most 2 hubs) to satisfy the interest. Alternatively, if a VPC2 specifies one or more Vias, the hub with the unsatisfied Interest can connect to a set of devices (e.g., at most 2 devices) in the Via domain to route to the destination. The Via lookup is recursive, so the hub would connect to the last Via in a Via chain (e.g., domain A may specify domain B as its Via, which in turn specifies domain C as its Via, etc.), or to the first Via that specifies the hub's domain as a Via. The hub would maintain performance data for the Vias, and for specific Endpoints of the Vias, and can use this performance data to select with which devices in the Via domain to connect.
For example, network 100 can include a computing device 108, which may be a mobile end-host device (e.g., a user's mobile phone, laptop, or any other personal computing device). When computing device 108 connects to network node 102, network device 102 can detect reachability information to device 108 and updates its local routing-data collection to reflect the reachability information. Then, to propagate the reachability information, node 102 can synchronize its routing-data collection for network 100 with other nodes of network 100. Network node 102 does not have to send a network-configuration item directly to other nodes of network 100, and does not have to keep track of which network-configuration items have been communicated to which neighboring nodes. After synchronizing their routing-data collection for network 100, network nodes 102-1106 can use the reachability information of their local routing-data collection to update their local forwarding table to determine a shortest path for routing data to device 108.
Similarly, network 120 can include an end-host computing device 126, which may be a file-server, or a home-media server. Network 120 can also include a set of data-forwarding devices 114, 122, and 124, such as network routers or switches. The devices of network 120 form a network “Area 2.” Computing device 126 can connect to network device 124 to send data, or to receive data from other devises (e.g., from device 108). Network device 124 can detect reachability information to device 126, updates its local routing-data collection to reflect the reachability information, and can synchronize its routing-data collection with other nodes of network 100 to propagate the reachability information.
Network 110 can include a plurality of network nodes (e.g., routers) 106, 112, and 114 that form a network area 110 (e.g., “Area 3”), such as routers for an Internet Service Provider (ISP). Each of these network nodes stores a local copy of a routing-data collection that includes configuration information for network 120. Notice that network nodes 106 and 114 are border routers that belong to both network 100 and network 120. Thus, network nodes 106 and 114 may be Supernodes that facilitate creating network connections between “Area 1,” “Area 2,” and/or “Area 3.” The other network nodes of network 120 (e.g., network node 112) belong only to “Area 2,” and can only synchronize the collection for domain “Area 2” with the border routers (nodes 106 and 114).
In some embodiments, networks 100, 110, and 120 can belong to a VPC3 domain, such that nodes 106 and 114 are designated as supernodes for routing packets between networks 100, 110, and 120. The supernode relationship provides an intra-domain organization, similar to a hub, where routing within the domain is done through these peering points. Using supernodes facilitates a network node to reduce an average node degree when routing a data packet, while increasing deterministic behavior. A supernode, however, does not experience side effects associated with hubs. For example, having a hub means that phones may adopt a hub-centric routing behavior, or may use different Via configurations. If supernodes are not available or not reachable, a forwarding member of a VPC3 domain can revert to forwarding data packets using a Graph Search mechanism that determines a path through a set of Vias.
In addition to supernodes, a VPC3 domain can also include forwarding members and non-forwarding members. The non-forwarding members can include content producers, and/or content consumers, such as device 108 of network 100, or device 126 of network 120. The forwarding members, on the other hand, are configured to forward data packets to a target entity. For example, the VPC3 domain can include an Intelligent Mobile Device (IMD), such as a smartphone. The IMD is normally a non-forwarding member, and so it will not be contacted during a Graph Search operation. IMDs can also be “do-not-call” members, so forwarding members would not call these IMDs to find content. The IMD can participate in the VPC3 when the IMD makes a connection to a forwarding member, such as by calling a forwarding member.
For example, a VCA3 member device can specify, in its Endpoints table, if the member device is a forwarder or an end host (also called a non-forwarder). If the member device is a forwarder, the device can relay Interests to remote VCA devices. However, if the device is an end host, it only forwards Interests to local faces (e.g., to a local application). The end host may not be running an IP forwarder, so packets only go to local applications. The Interests received on the end host's local faces can be forwarded to the end host's remote faces (e.g., to disseminate an Interest), and Interests received on the end host's remote faces may only be forwarded to the end host's local faces (e.g., to process an incoming Interest locally).
Network-data collection 206 can include information which describes a Service-enhanced Network (SEN), which can be synchronized with other members of the SEN to disseminate or receive changes to the SEN configuration. For example, when network node 202 creates a Via association or a Proxy association, network node 202 can update network-data collection 206 to reflect the association, and synchronizes network-data collection 206 with other network nodes of a local VPC domain and/or other VPC domains. Similarly, network node 202 can learn about new Via or Proxy associations (or any other changes to the SEN configuration) for other network nodes when node 202 synchronizes network-data collection 206 with the other nodes.
In some embodiments, the content items stored in network-data collection 206 are associated with structured names, such as an HSVLI. For example, network-data collection 206 can be rooted by a namespace “/sen/” (or any other prefix for the service enhanced network), and the content items stored in network-data collection 206 can have namespaces with the prefix “/sen/.”
Network-data collection 206 can store a Sync-data collection 212, whose namespace may be, for example, “/sen/sync/.” Network-data collection 206 can also store a plurality of network-domain collections 214, which store network-configuration information for various VPC domains. For example, a domain-collection 214.1 can correspond to a domain “HomeA.” Hence, the namespace for domain-collection 214.1 may be “/sen/HomeA/.” Similarly, domain collections 214.2 and 214.n may correspond to domains “HomeB” and “HomeC,” and the namespace for collections 218.2 and 218.n may be “/sen/HomeB/” and “/sen/HomeC/,” respectively.
In some embodiments, domain collections 214 can store information associated with their corresponding VPC domains. Domain collection 214.n, for example, can store at least routing-data collection 216, which can have a namespace “/sen/HomeC/%C1.sen.routing/” for domain “HomeC.” Routing-data collection 216 can store a Vias collection 218 and a Proxies collection 220 that store Via objects and Proxy objects, respectively, for a corresponding domain (e.g., HomeC). Routing-data collection 216 can also store a Hubs collection 222 and a Tiers collection 224 for the corresponding domain, which store descriptions for a set of hubs and VPC tiers associated with the corresponding domain.
The “Routine” Collection
Each VPC domain (e.g., domain “HomeA”) can have a corresponding “routing” collection, which includes collection objects that facilitate establishing a connection with a VPC-related domain via a path of other domains. For example, a domain “HomeA” can have a routing-data collection under a namespace “/sen/HomeA/%C1.sen.routing/.” This “routing” collection can store a description for Via domains within a “Vias” nested collection, and can store a description for proxy domains within a “Proxies” nested collection. The Via collection, under the “%C1.sen.routing” sub-namespace, uses collection objects to recursively dereference routing objects for other network devices or domains. These collection objects can be synchronized between various network devices to establish and maintain the Via and Proxy associations.
The Via and Proxy routing information can propagate across network nodes as described in the following example. A VPC network can include a set of domains, which are configured to route packets through each other, using directed paths. For example, a VPC2 domain “HomeA” can receive packets from a domain “HomeB” by having a Via of HomeB (e.g., HomeB is a Transit for HomeA). Also HomeB can receive packets from a domain “HomeC” by having a Via of HomeC (e.g., HomeC is a Transit for HomeB). To establish the Via associations, domains HomeA and HomeB synchronize with each other their Via configuration as described under their “Vias” collection (e.g., under the sub-namespace “%C1.sen.routing/Vias”). Domains HomeB and HomeC also synchronize their Via configuration with each other.
The Vias collection can store configuration information for Via objects, for example, under the sub-namespace “%C1.sen.routing/Vias”. The “via_domains” collection can include recursive links or references to the domains that are used as Vias, as well as to the local domain's relays object. Also, the “transit_domains” collection includes links or references to the domains for which the local domain acts as a Via, and includes a link to the local relays object. The “relays” collection includes links to a set of local Endpoints to use as Vias or transits. The referenced Endpoints objects indicate the identity of the corresponding Endpoint, which may be used for DTLS or during prefix registration.
The “routing” collection can also include a “Proxies” nested collection (e.g., “% C1.sen.routing/Proxies”), which can store a configuration for Proxy objects. This Proxies collection can include a “proxy_domains” collection, a “proxied_domains” collection, and a “relays” collection. The “proxy_domains” collection can include recursive links or references to the domains that are used as proxies, as well as to the local domain's relays object. The “proxied_domains” collection includes recursive links to the domains for which the local domain acts as a proxy, as well as a link to the local relays object. The “relays” collection includes links to a set of local Endpoints to use as proxies.
Tables 1A and 1B present network-configuration information for a set of VPC domains in accordance with an embodiment. Specifically, the network-configuration information establishes directed routing paths using a set of Via and Proxy associations between domains “HomeA,” “HomeB,” and “HomeC.” For example, the collection “/sen/HomeA/%C1.sen.routing/” provides the Vias and Proxy configurations for domain “HomeA,” such that domain “HomeB” is a Via for domain HomeA, and domain “HomeC” is a Proxy for domain HomeA. Also, the collection “/sen/HomeB/% C1.sen.routing/” provides the Vias and Proxy configurations for domain “HomeB,” such that domain “HomeC” is a Via and a Proxy for domain “HomeB.”
Domains HomeB and HomeC use the relays for their Vias as well as for their Proxies. For example, domain HomeB uses relays HubB1 and HubB2 for both the Via and Proxy connections, and domain HomeC uses relays HubC1 and HubC2 for both the Via and Proxy connections. Domain HomeA, on the other hand, uses different relays for its Vias and Proxies. For example, domain HomeA can use relay HubA1 for its Via connection, and can use relay HubA2 for its Proxy connections.
Using the Routine Collection to Establish Cross-Domain Connections
In some embodiments, various VPC2 domains can communicate with each other by becoming members of a common VPC3 domain. For example, a VPC3 domain can include domain “HomeA” and another VPC2 domain “HomeD,” thus providing a cryptographic association which allows devices in HomeA and HomeD to communicate with each other. However, the HomeA and HomeD domains may not have a direct communication channel with each other. HomeA and HomeD can analyze a set of existing Via configurations to determine communication paths to each other.
When HomeA and HomeD first associate, HomeD synchronizes HomeA's routing information. This routing information recursively includes the information for HomeB, and for HomeC. More specifically, HomeA's routing information includes a Vias/via_domains object, which itself includes a set of links to remote via_domain objects and/or to a local “relays” object. The local relays object indicates links for a set of endpoints which can be used to send and/or receive packets. For example, a link in HomeA's via_domains object can point to HomeB's via_domain object (e.g., point to /sen/HomeB/%C1.sen.routing/Vias/via_domains). Likewise, HomeB's via_domains object can point to HomeC's via_domain object (e.g., point to /sen/HomeC/%C1.sen.routing/Vias/via_domains). Hence, when the HomeD domain synchronizes the “Vias” collection from HomeA, the HomeD domain obtains the information for HomeA, HomeB, and HomeC. HomeD can route packets to HomeA by sending them to HomeC's Endpoint objects, as determined from HomeC's “relays” object.
When the HomeC domain receives a packet for HomeA (e.g., from HomeD), HomeC analyzes its via_domain object to determine how it should route data for HomeA. This is done by HomeC determining that HomeB (for which it is a Transit) is also a Transit for HomeA. For example, when HomeC first synchronizes HomeB's routing information, HomeC also recursively copies HomeA's transit object (e.g., “/sen/HomeA/%C1.sen.routing/Vias/transit_object”), which HomeC uses to determine that it should transit packets with a “HomeA” prefix through HomeB. During packet-forwarding, HomeD may connect to HomeC, HomeC may connect to HomeB, and HomeB may connect to HomeA, even though only HomeD and HomeA have a cryptographic VPC association (e.g., via the VPC3 domain).
In some embodiments, the system can also identify a second network domain which is to function as a proxy for the local network domain (operation 406). If the system identifies and selects a proxy, the system generates or updates a proxy-domain description, within a routing-data collection for the local network domain, to reference a proxy-domain description of the second network domain (operation 408).
The system then synchronizes a network-configuration collection with at least the first and second network domains (operation 410). By synchronizing the network-configuration collection, which includes the routing-data collection for the local network domain, the system establishes the via relationship with the first network domain, and establishes the proxy relationship with the second network domain.
The system identifies a target network domain which has designated the local domain as a via (operation 504). The system generates, or updates, a transit-domain description, for the local domain, to reference a transit-domain description of the target network domain (operation 506). For example, the local domain's routing-data collection may store a transit-domain description for the local domain, which indicates a set of network domains to which the local domain functions as a “transit.” The system can update the existing transit-domain description to add a reference, or link, to a transit object for the target network domain that was identified during operation 504. However, if the local device's routing-data collection may not yet store a transit-domain description for the local domain, the system can generate the transit-domain description so that it includes at least the reference to the transit object for the target network domain.
Recall that the network-configuration collection can include the routing-data collection for the local domain, as well as for a set of other network domains in a service-enhanced network. Hence, to disseminate the transit-domain description to the set of network domains, the system synchronizes the network-configuration collection with devices that are members of these domains (operation 508). This reference allows a device of the local domain, or of other network domains that have synchronized the network-configuration collection with the local domain, to identify a directed path to the target network device of the SEN through one or more “transits.”
Via Relationships
A Via is a statement by a VPC domain that the local VPC domain can be reached via a different VPC domain. The Via is a statement of inbound reachability, which does not restrict the outbound connections of the local domain. A standard operation for Vias works as follows. When a domain “A” specifies one or more other domains {V1, V2, . . . , Vk} as its Vias, a third-party domain “B” routing packets to domain A can recursively look up the routing information for the Vias, starting with the Vias for domain A. Domain B can use the recursive routing information to reach A.
If a domain B is listed as a Via for domain A, domain B connects directly to domain A to avoid creating a forwarding loop. In some embodiments, if a domain Vi is configured to function as a Via for domain A, domain A is allowed to connect directly to domain Vi when a critical event occurs (e.g., a state change that makes a device's Endpoints unreachable) or if A is VPC-associated with Vi, even if domain Vi has a set of Vias that do not include domain A. Also, domain A is not required to route outbound packets through its Vias, as domain A may connect directly to any other domain, as permitted by their Vias.
In some embodiments, if all nodes within a given network advertise symmetric Vias (as in an OSPF style network) or bi-directional Vias (as in a BGP style network), the network's graph forms a fixed topology link state graph. For example, domains A and B can establish a symmetric bi-directional connection when domain A specifies domain B as its Via, and domain B specifies domain A as its Via.
In some embodiments, a local domain can make a “call” to another domain using a proof system. One form of proof would include a source end-node presenting proof of its relationship with a destination end-node as a valid reason to call a Via. For example, domain C can include a Via for domain B, and domain B can include a Via for domain A. If domain D is associated with domain A, then it should be possible for a device in domain D to call a Via in domain C to establish the route D→C→B→A. When placing the call to a device in domain C, the domain D device would present a proof of association with domain A to the domain C device. To accept the call, the domain C device performs a recursive lookup to determine whether the domain C device is a valid Via for reaching domain A. For example, the domain C device can determine that it is a Via for domain B, and recursively verifies that domain B is a Via for A, such that domain A would accept the call because domain A knows that domain B is a Via for domain A.
However, if a network domain is configured to route packets without using such a proof system, then each Via may accept a call from any device, and can route traffic for VPC-associated domains and for its Transit domains (the domains for which it is a Via). The verification would be performed by the end host devices (e.g., the devices at the two ends of the network path) to verify that they are configured or provisioned to communicate with each other, either directly or through a set of Vias.
In some embodiments, a domain's VCA registers the appropriate prefixes when connecting to a Via. These registered prefixes are asymmetric, based only on the Via relationships and direct connections. For example, building on the example from above, when domain D calls domain C to reach domain A, domain D registers a prefix of domain A on the face to domain C. Domain D may also register any other prefixes for which domain C is a Via, and may register domain C if domain D is VPC-associated with domain C. If domain C is VPC-associated with domain D, Domain C would register the prefix to domain D.
Furthermore, when domain C calls domain B to reach domain A, domain C registers domain A on the face. Domain C may also register domain B on the face if they are VPC-associated. However, domain B would only register domain C on the face if they are VPC-associated, but domain B does not register domain D on the face.
Then, when domain B calls domain A, domain B registers domain A on the face. Domain A would register domain B on the face if domains A and B are VPC-associated. The result is a directed path D→C→B→A, with the prefixes “/sen/sync” and “/sen/HomeA” registered on the domains along the path. The reverse path does not necessarily exist from domain A to domain D, unless such a path is established using a corresponding set of Vias.
Interests can flow from domain D to domain A, and replies are propagated back to domain D due to reverse path forwarding using a Pending Interest Table (PIT). Each reply indicates a structured name associated with an interest, and the PIT maps a structured name or prefix to a corresponding pending interest. Hence, the domains along a path can use their corresponding PIT to determine a reverse path for forwarding each reply, without having to establish such a communication path using Vias. A path from domain A to domain D would only be built for communicating packets other than replies if the Vias along the path are symmetric (D<->C<->B<->A). If the Vias are asymmetric, then domain A would need to establish its own forwarding path to domain D using these symmetric Vias.
Proxy Relationships
As mentioned above, a Proxy provides an outbound relay for a domain. Proxies can be used to direct outbound traffic through a different path than inbound traffic. An outbound relay is useful in various scenarios, such as to configure a VPC1 domain to use a local hub to route packets to a VPC3 domain of which the hub is not a member. Another example is to configure a device within a Direct network to route packets using a predetermined hub.
Recall that a device A is allowed to connect to a device B if devices A and B are VPC related to each other. For example, device A can connect to device B if both devices A and B belong to the same VPC domain, or if they belong to different domains that are VPC related. In some embodiments, if device A does not communicate with other devices directly, device A can designate a proxy to forward device A's outbound packets. For example, a hub HA is normally not allowed to connect to device B if hub HA is not VPC related to device B. However, if device A designates hub HA as its proxy (e.g., in the “proxy_domains” collection for device A), device B can accept a connection from hub HA as if it were a connection from device A.
When a target device receives a call through a Proxy, the target device can establish the connection after identifying a VCA for the source device being proxied, and determining that the target device is VPC related to the source device. For example, the target device can determine the identity of the source device, as well as the Endpoints for the source device, by performing a recursive link lookup starting from the source device's “Proxy” collection. In some embodiments, the source device's VCA can embed a cryptographic identifier (ID) (e.g., a public key or digital certificate) in its Endpoints table, which allows other devices to obtain the cryptographic ID during the recursive link lookup through the “Routing” collection. Hence, because the cryptographic ID is recursively synchronized, devices that receive a call through a DTLS tunnel can identify the calling device as a proxy for a VPC-related domain, and proceeds to register the VPC-related domain on the face.
Supernode Endpoints
A supernode is a device that specifies one or more of its Endpoints as excellent peering interfaces that may handle the traffic of many other devices. Note that the supernode specification is Endpoint specific. For example, a custodian device can have its Ethernet interface, which has a high-bandwidth Internet connection, configured to be a supernode Endpoint. On the other hand, the custodian device's Wi-Fi interface may not have a high-bandwidth connection, and so the custodian device's Wi-Fi interface may be reserved for use by the custodian device, and not for accepting connections from other devices.
A device's Endpoint(s) can be configured to function as a supernode either manually by an administrator, or automatically (e.g., by a computer without human intervention). An automated system can establish and/or destroy supernode Endpoints within a domain, dynamically at run-time, based on a performance metric computed for the device Endpoints. Once a device's Endpoint is designated as a supernode, the device updates the Endpoints table to indicate which Endpoints are “supernode” Endpoints, and advertises these supernode Endpoints through special Groups Table entries.
In some embodiments, the supernode designation has a Tier parameter, which facilitates multi-level peering. For example, a supernode Endpoint can make a small number of outbound connections to higher-tier devices (e.g. limited to a higher-tier-threshold number of connections), a few outbound connections to same-tier devices (e.g. limited to a same-tier-threshold number of connections). Further, the supernode Endpoint can make many connections to lower-tier devices, such as an unlimited number of connections, or a number of connections limited by a substantially large lower-tier-threshold number.
In some embodiments, Tier 0 members are non-forwarding group members, such as IMDs. Tier 0 devices may not route Interests for the group, and they may be “do-not-call” devices, in which case they only participate in the VPC3 when they call a Tier 1 device. Tier 0 devices can include end host devices, such as telephones and smartphones.
Tier 1 members are forwarding group members, such as hub members, or other unrestricted devices such as laptop computers or desktop computers. Further, Tier 2+ members are supernode members, which have been selected as good relay nodes. Tiers above level 2 can be used to give a logarithmic depth to the supernode configuration. For example, supernodes can be assigned to various different Tier 2+ levels to form a multi-root supernode tree, where a device can have more than one connection to different parents in a higher Tier.
In some embodiments, during operation 602, the system can select the endpoint to use as a supernode endpoint by computing one or more performance metrics for the endpoint. One exemplary performance metric can include a slow-changing performance metric ni for a node i, such by computing an Internet bandwidth times a percent uptime for node i. Another exemplary performance metric can include weighing nodes by their fitness or performance (e.g., a quality of an Internet connection), and designating a predetermined number of highest-weighted nodes as supernodes. A further exemplary performance metric can include a rapid-changing performance metric ki for node i, such as by computing a total number of connections through a device over a predetermined time period (e.g., 30 minutes, or one hour). For example, ki can indicate an actual connection degree of node i, or an object forwarding rate of node i.
The system then updates a custodian-to-endpoint (CE) table to designate the selected endpoint as a supernode endpoint, and to associate the selected endpoint to the corresponding supernode tier (operation 606). Further, the system identifies a set of network domains with which to synchronize the updated CE table (operation 608), and synchronizes the CE table with member devices of the identified network domains to advertise the supernode endpoint to these network domains (operation 610).
Using Configuration Information from the Routing Collection
In some embodiments, the system stores a description for a plurality of local endpoints for a local device, such as under the device's “routing” collection that stores the routing-configuration information (e.g., under the namespace /sen/DeviceA/%C1.sen.routing/). The device may have one or more Endpoints, such that each Endpoint provides a method by which another network node may contact the custodian, such as using SIP/DTLS or Direct Broadcast. The local device may use the communication method on one network interface, or a set of network interfaces. For example, the system may use the same SIP rendezvous on both a Wi-Fi interface and a Cellular interface. As another example, the system may use a Direct Broadcast method only on an Ethernet connection.
The local device's “routing” collection may also store the Vias and Proxies properties, for example, as global properties for the device. This allows any application running on the local device to communicate with other devices using the globally-configured Vias and Proxies properties. In some embodiments, the system may store additional information in the Vias and Proxies properties to indicate a set of Domains that are allowed to use the Vias and Proxies properties. For example, these additional properties may restrict access to the Vias and Proxies to a given set of applications running on the local device. Also, these additional properties may restrict which data packets (or types of data packets) may be sent through a given Proxy or received through a given Via.
Further, a Vias or Proxies property may specify a <Metric> measure per Endpoint, which indicates a measure of its quality, such as its Object throughput or bandwidth. Further, Vias or Proxies property can also specify a global property <CommunityDegree>, which indicates a number of other VPC3 domains to which the local domain is a member. The system can use the CommunityDegree property, for example, when performing the multi-community Watts-Strogatz algorithm to weight a node's fitness to be a peering point, or when performing the dynamic supernode-election analysis to elect a supernode endpoint.
In some embodiments, the system can also use information stored under the local domain's “routing” collection (also referred to as the routing-data collection) to maintain a CE table. The system may update the CE table when the connectivity state has changed for a local endpoint, or when a remote VPC domain has synchronized its routing-data collection to advertise a change in a connectivity state for one of its endpoints.
Packet Forwarding
The system then generates a directed network path to the identified endpoint based on the routing-configuration information (operation 906). For example, the system may identify the set of device endpoints that form the directed network path based on the CE table and/or using via-domain descriptions from the network-configuration collection for the local domain or other network domains.
Once the system has identified the network path to the target device, the system can select an endpoint for a network domain at the start of the directed path (operation 908). This endpoint is a peering endpoint configured to forward packets from the local device toward the target network device, such as a proxy to the local network device. The system then sends the data packet to the selected endpoint (operation 910).
During operation 906, when the system needs to forward a packet to a target device, the system may search through the “routing” collection associated with the local domain to identify supernodes, Vias, or hubs that can be used as constraints during a graph search operation. If no such entities are found, the system performs an unconstrained or randomized graph search on an unstructured network graph, which requires the system to obtain connectivity information from a large set of device endpoints until a path is found that reaches the target device. Hence, this randomized graph search operation is not the most efficient, and may consume an undesirably-large amount of memory as the connectivity information for the large set of network peers is kept in active memory by the graph-search operation.
However, if the system identifies supernodes, Vias, and/or hubs, the system can use these entities to create a topological constraint when searching for a path to the remote device. For example, recall that the CE table can indicate which endpoints are elected to function as supernodes, and may indicate a tier level for each of these supernodes. In some embodiments, the system can retain the information associated with these supernode endpoints in active memory (e.g., random access memory, or RAM), while storing the information for other endpoints in a non-volatile storage (e.g., in the “routing” collection).
Hence, if the in-memory supernodes can form a path to a target domain, the system can successfully perform graph search using only the in-memory supernode endpoints (e.g., a small number of graph nodes), which can minimize the computation and memory overhead associated with performing the graph search operation. However, even if the in-memory supernodes are not capable of forming a complete path to a given target domain, the system can access the “routing” collection (e.g., in non-volatile storage) to identify other non-supernode endpoints which can complete the path to the target domain.
The graph search operation exploits the multi-community social graph structure of VPC3 domains. For small groups, say under 16 nodes, the system can use an average node degree of λ=2 during the graph search, and still preserve the average path lengths within a desirable length. For larger graphs, the system can use an average node degree of 4 during the graph search to keep the average path length under 4, even for substantially large graphs (e.g., thousands of members). The actual average node degree distribution traversed to detect a path resembles a Poisson distribution with a peak at λ=2 or λ=4, depending on the graph size.
Supernodes use explicit designations of certain distinguished members as supernodes. For example, members with stable, high bandwidth Internet connections could be elected as supernodes. The system allows an arbitrary number of supernode Tiers to create a tree structure. The system can also allow a small number of same-tier connections to provide shortcuts for the graph search operation, and provide resiliency to the supernode tree structure.
The top-level of the tree would be Graph Search connected to keep the VPC3 domains connected. The shortcuts between nodes at the same Tier levels can also use the Graph Search mechanisms. As with hub-based routing in a VPC2 domain, devices would keep performance data for their supernode endpoints and exploit this data to select and use at least one good supernode to route packets, and randomly probes this supernode and/or other supernodes over time with a second connection to maintain recent performance data.
Recall that non-forwarding nodes belong to Tier 0, forwarding nodes belong to Tier 1, and supernodes belong to Tier 2+. In some embodiments, a non-forwarding node only needs to store data for members that belong to its immediately above Tier (e.g., for a set of forwarding members in Tier 1). A forwarding node only needs to store data for members of its own Tier, and the adjacent Tiers (e.g., members of Tiers 0, 1, and 2).
In some embodiments, the system can present the user with an alert message if a domain experiences a configuration error that prevents establishing a routing path, such as when all domain members are non-forwarders or are “do-not-call” members. A device's VCA can present the alert message, for example, through a Short Messaging Service (SMS) text message on the phone, or using a modal window (e.g., an Android Toast pop-up message). If two smartphones, for example, are creating a VPC3× domain between them, one or both devices should explicitly make itself at least a “call-allowed” member, even if they remain non-forwarding for the namespace.
In some embodiments, communication module 1002 can send and/or receive packets for apparatus 1000. Network-configuring module 1004 can select other domains or endpoints to use as Vias, Proxies, hubs, and/or Supernodes for a VPC domain to which apparatus 1000 is a member. Collection-managing module 1006 can access or update a network-domain collection associated with apparatus 1000. For example, collection-managing module 1006 can update a routing-data collection for apparatus 1000 to designate a Via, Proxy, hub, or Supernode for the local domain.
Endpoint-managing module 1008 can access or update a custodian-to-endpoint table for apparatus 1000. Collection-synchronizing module 1010 can synchronize the network-data collection with one or more member devices of other network domains. Path-determining module 1012 can access the routing-data collection, a prefix-to-custodian table, and/or the custodian-to-endpoint table to generate a directed network path to a target endpoint of the computer network.
Network-connectivity system 1118 can include instructions, which when executed by computer system 1102, can cause computer system 1102 to perform methods and/or processes described in this disclosure. Specifically, network-connectivity system 1118 may include instructions for sending and/or receiving packets for computer system 1102 (communication module 1120). Further, network-connectivity system 1118 can include instructions for selecting other domains or endpoints to use as Vias, Proxies, hubs, and/or Supernodes for a VPC domain to which computer system 1102 is a member (network-configuring module 1122). Network-connectivity system 1118 can also include instructions for accessing or updating a network-domain collection associated with computer system 1102, such as to update a routing-data collection to designate a Via, Proxy, hub, or Supernode for the local domain (collection-managing module 1124).
Network-connectivity system 1118 can also include instructions for accessing or updating a custodian-to-endpoint table for computing device 1102 (endpoint-managing module 1126). Network-connectivity system 1118 can also include instructions for synchronizing the network-data collection with one or more member devices of other network domains (collection-synchronizing module 1128). Network-connectivity system 1118 can also include instructions generating a directed network path to a target endpoint of the computer network based on the routing-data collection, a prefix-to-custodian table, and/or the custodian-to-endpoint table to (path-determining module 1130).
Data 1126 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 1126 can store at least data which can be synchronized with other network devices, such as a network-data collection, a prefix-to-custodian table, and a custodian-to-endpoint table.
The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.
The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.
Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.
The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
817441 | Niesz | Apr 1906 | A |
4309569 | Merkle | Jan 1982 | A |
4921898 | Lenney | May 1990 | A |
5070134 | Oyamada | Dec 1991 | A |
5110856 | Oyamada | May 1992 | A |
5506844 | Rao | Apr 1996 | A |
5629370 | Freidzon | May 1997 | A |
5870605 | Bracho | Feb 1999 | A |
6052683 | Irwin | Apr 2000 | A |
6091724 | Chandra | Jul 2000 | A |
6173364 | Zenchelsky | Jan 2001 | B1 |
6226618 | Downs | May 2001 | B1 |
6233646 | Hahm | May 2001 | B1 |
6332158 | Risley | Dec 2001 | B1 |
6366988 | Skiba | Apr 2002 | B1 |
6574377 | Cahill | Jun 2003 | B1 |
6654792 | Verma | Nov 2003 | B1 |
6667957 | Corson | Dec 2003 | B1 |
6681220 | Kaplan | Jan 2004 | B1 |
6681326 | Son | Jan 2004 | B2 |
6769066 | Botros | Jul 2004 | B1 |
6772333 | Brendel | Aug 2004 | B1 |
6862280 | Bertagna | Mar 2005 | B1 |
6901452 | Bertagna | May 2005 | B1 |
6917985 | Madruga | Jul 2005 | B2 |
6968393 | Chen | Nov 2005 | B1 |
6981029 | Menditto | Dec 2005 | B1 |
7013389 | Srivastava | Mar 2006 | B1 |
7031308 | Garcia-Luna-Aceves | Apr 2006 | B2 |
7061877 | Gummalla | Jun 2006 | B1 |
7206860 | Murakami | Apr 2007 | B2 |
7257837 | Xu | Aug 2007 | B2 |
7287275 | Moskowitz | Oct 2007 | B2 |
7315541 | Housel | Jan 2008 | B1 |
7339929 | Zelig | Mar 2008 | B2 |
7350229 | Lander | Mar 2008 | B1 |
7382787 | Barnes | Jun 2008 | B1 |
7444251 | Nikovski | Oct 2008 | B2 |
7466703 | Arunachalam | Dec 2008 | B1 |
7472422 | Agbabian | Dec 2008 | B1 |
7496668 | Hawkinson | Feb 2009 | B2 |
7509425 | Rosenberg | Mar 2009 | B1 |
7523016 | Surdulescu | Apr 2009 | B1 |
7543064 | Juncker | Jun 2009 | B2 |
7552233 | Raju | Jun 2009 | B2 |
7555482 | Korkus | Jun 2009 | B2 |
7555563 | Ott | Jun 2009 | B2 |
7567547 | Mosko | Jul 2009 | B2 |
7567946 | Andreoli | Jul 2009 | B2 |
7580971 | Gollapudi | Aug 2009 | B1 |
7623535 | Guichard | Nov 2009 | B2 |
7647507 | Feng | Jan 2010 | B1 |
7660324 | Oguchi | Feb 2010 | B2 |
7685290 | Satapati | Mar 2010 | B2 |
7698463 | Ogier | Apr 2010 | B2 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7779467 | Choi | Aug 2010 | B2 |
7801177 | Luss | Sep 2010 | B2 |
7816441 | Elizalde | Oct 2010 | B2 |
7831733 | Sultan | Nov 2010 | B2 |
7908337 | Garcia-Luna-Aceves | Mar 2011 | B2 |
7924837 | Shabtay | Apr 2011 | B1 |
7953885 | Devireddy | May 2011 | B1 |
8000267 | Solis | Aug 2011 | B2 |
8010691 | Kollmansberger | Aug 2011 | B2 |
8074289 | Carpentier | Dec 2011 | B1 |
8117441 | Kurien | Feb 2012 | B2 |
8160069 | Jacobson | Apr 2012 | B2 |
8204060 | Jacobson | Jun 2012 | B2 |
8214364 | Bigus | Jul 2012 | B2 |
8224985 | Takeda | Jul 2012 | B2 |
8225057 | Zheng | Jul 2012 | B1 |
8271578 | Sheffi | Sep 2012 | B2 |
8312064 | Gauvin | Nov 2012 | B1 |
8386622 | Jacobson | Feb 2013 | B2 |
8467297 | Liu | Jun 2013 | B2 |
8553562 | Allan | Oct 2013 | B2 |
8572214 | Garcia-Luna-Aceves | Oct 2013 | B2 |
8654649 | Vasseur | Feb 2014 | B2 |
8665757 | Kling | Mar 2014 | B2 |
8667172 | Ravindran | Mar 2014 | B2 |
8677451 | Bhimaraju | Mar 2014 | B1 |
8688619 | Ezick | Apr 2014 | B1 |
8699350 | Kumar | Apr 2014 | B1 |
8750820 | Allan | Jun 2014 | B2 |
8761022 | Chiabaut | Jun 2014 | B2 |
8762477 | Xie | Jun 2014 | B2 |
8762570 | Qian | Jun 2014 | B2 |
8762707 | Killian | Jun 2014 | B2 |
8767627 | Ezure | Jul 2014 | B2 |
8817594 | Gero | Aug 2014 | B2 |
8826381 | Kim | Sep 2014 | B2 |
8832302 | Bradford | Sep 2014 | B1 |
8836536 | Marwah | Sep 2014 | B2 |
8862774 | Vasseur | Oct 2014 | B2 |
8903756 | Zhao | Dec 2014 | B2 |
8937865 | Kumar | Jan 2015 | B1 |
9071498 | Beser | Jun 2015 | B2 |
9112895 | Lin | Aug 2015 | B1 |
20020010795 | Brown | Jan 2002 | A1 |
20020048269 | Hong | Apr 2002 | A1 |
20020054593 | Morohashi | May 2002 | A1 |
20020077988 | Sasaki | Jun 2002 | A1 |
20020078066 | Robinson | Jun 2002 | A1 |
20020138551 | Erickson | Sep 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020188605 | Adya | Dec 2002 | A1 |
20020199014 | Yang | Dec 2002 | A1 |
20030046437 | Eytchison | Mar 2003 | A1 |
20030048793 | Pochon | Mar 2003 | A1 |
20030051100 | Patel | Mar 2003 | A1 |
20030074472 | Lucco | Apr 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030140257 | Peterka | Jul 2003 | A1 |
20040024879 | Dingman | Feb 2004 | A1 |
20040030602 | Rosenquist | Feb 2004 | A1 |
20040073715 | Folkes | Apr 2004 | A1 |
20040139230 | Kim | Jul 2004 | A1 |
20040221047 | Grover | Nov 2004 | A1 |
20040225627 | Botros | Nov 2004 | A1 |
20040252683 | Kennedy | Dec 2004 | A1 |
20050003832 | Osafune | Jan 2005 | A1 |
20050028156 | Hammond | Feb 2005 | A1 |
20050043060 | Brandenberg | Feb 2005 | A1 |
20050050211 | Kaul | Mar 2005 | A1 |
20050074001 | Mattes | Apr 2005 | A1 |
20050149508 | Deshpande | Jul 2005 | A1 |
20050159823 | Hayes | Jul 2005 | A1 |
20050198351 | Nog | Sep 2005 | A1 |
20050249196 | Ansari | Nov 2005 | A1 |
20050259637 | Chu | Nov 2005 | A1 |
20050262217 | Nonaka | Nov 2005 | A1 |
20050289222 | Sahim | Dec 2005 | A1 |
20060010249 | Sabesan | Jan 2006 | A1 |
20060029102 | Abe | Feb 2006 | A1 |
20060039379 | Abe | Feb 2006 | A1 |
20060051055 | Ohkawa | Mar 2006 | A1 |
20060072523 | Richardson | Apr 2006 | A1 |
20060099973 | Nair | May 2006 | A1 |
20060129514 | Watanabe | Jun 2006 | A1 |
20060133343 | Huang | Jun 2006 | A1 |
20060173831 | Basso | Aug 2006 | A1 |
20060193295 | White | Aug 2006 | A1 |
20060203804 | Whitmore | Sep 2006 | A1 |
20060206445 | Andreoli | Sep 2006 | A1 |
20060215684 | Capone | Sep 2006 | A1 |
20060223504 | Ishak | Oct 2006 | A1 |
20060256767 | Suzuki | Nov 2006 | A1 |
20060268792 | Belcea | Nov 2006 | A1 |
20070019619 | Foster | Jan 2007 | A1 |
20070073888 | Madhok | Mar 2007 | A1 |
20070094265 | Korkus | Apr 2007 | A1 |
20070112880 | Yang | May 2007 | A1 |
20070124412 | Narayanaswami | May 2007 | A1 |
20070127457 | Mirtorabi | Jun 2007 | A1 |
20070160062 | Morishita | Jul 2007 | A1 |
20070162394 | Zager | Jul 2007 | A1 |
20070189284 | Kecskemeti | Aug 2007 | A1 |
20070195765 | Heissenbuttel | Aug 2007 | A1 |
20070204011 | Shaver | Aug 2007 | A1 |
20070209067 | Fogel | Sep 2007 | A1 |
20070239892 | Ott | Oct 2007 | A1 |
20070240207 | Belakhdar | Oct 2007 | A1 |
20070245034 | Retana | Oct 2007 | A1 |
20070253418 | Shiri | Nov 2007 | A1 |
20070255699 | Sreenivas | Nov 2007 | A1 |
20070255781 | Li | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070276907 | Maes | Nov 2007 | A1 |
20070294187 | Scherrer | Dec 2007 | A1 |
20080005056 | Stelzig | Jan 2008 | A1 |
20080010366 | Duggan | Jan 2008 | A1 |
20080037420 | Tang | Feb 2008 | A1 |
20080043989 | Furutono | Feb 2008 | A1 |
20080046340 | Brown | Feb 2008 | A1 |
20080059631 | Bergstrom | Mar 2008 | A1 |
20080080440 | Yarvis | Apr 2008 | A1 |
20080101357 | Iovanna | May 2008 | A1 |
20080107034 | Jetcheva | May 2008 | A1 |
20080123862 | Rowley | May 2008 | A1 |
20080133583 | Artan | Jun 2008 | A1 |
20080133755 | Pollack | Jun 2008 | A1 |
20080151755 | Nishioka | Jun 2008 | A1 |
20080159271 | Kutt | Jul 2008 | A1 |
20080186901 | Itagaki | Aug 2008 | A1 |
20080200153 | Fitzpatrick | Aug 2008 | A1 |
20080215669 | Gaddy | Sep 2008 | A1 |
20080216086 | Tanaka | Sep 2008 | A1 |
20080243992 | Jardetzky | Oct 2008 | A1 |
20080256359 | Kahn | Oct 2008 | A1 |
20080270618 | Rosenberg | Oct 2008 | A1 |
20080271143 | Stephens | Oct 2008 | A1 |
20080287142 | Keighran | Nov 2008 | A1 |
20080288580 | Wang | Nov 2008 | A1 |
20080320148 | Capuozzo | Dec 2008 | A1 |
20090013324 | Gobara | Jan 2009 | A1 |
20090022154 | Kiribe | Jan 2009 | A1 |
20090024641 | Quigley | Jan 2009 | A1 |
20090030978 | Johnson | Jan 2009 | A1 |
20090037763 | Adhya | Feb 2009 | A1 |
20090052660 | Chen | Feb 2009 | A1 |
20090067429 | Nagai | Mar 2009 | A1 |
20090077184 | Brewer | Mar 2009 | A1 |
20090092043 | Lapuh | Apr 2009 | A1 |
20090097631 | Gisby | Apr 2009 | A1 |
20090103515 | Pointer | Apr 2009 | A1 |
20090113068 | Fujihira | Apr 2009 | A1 |
20090144300 | Chatley | Jun 2009 | A1 |
20090157887 | Froment | Jun 2009 | A1 |
20090185745 | Momosaki | Jul 2009 | A1 |
20090193101 | Munetsugu | Jul 2009 | A1 |
20090222344 | Greene | Sep 2009 | A1 |
20090228593 | Takeda | Sep 2009 | A1 |
20090254572 | Redlich | Oct 2009 | A1 |
20090268905 | Matsushima | Oct 2009 | A1 |
20090285209 | Stewart | Nov 2009 | A1 |
20090287835 | Jacobson | Nov 2009 | A1 |
20090288163 | Jacobson | Nov 2009 | A1 |
20090292743 | Bigus | Nov 2009 | A1 |
20090293121 | Bigus | Nov 2009 | A1 |
20090300079 | Shitomi | Dec 2009 | A1 |
20090300407 | Kamath | Dec 2009 | A1 |
20090307333 | Welingkar | Dec 2009 | A1 |
20090323632 | Nix | Dec 2009 | A1 |
20100005061 | Basco | Jan 2010 | A1 |
20100027539 | Beverly | Feb 2010 | A1 |
20100046546 | Ram | Feb 2010 | A1 |
20100057929 | Merat | Mar 2010 | A1 |
20100088370 | Wu | Apr 2010 | A1 |
20100094767 | Miltonberger | Apr 2010 | A1 |
20100094876 | Huang | Apr 2010 | A1 |
20100098093 | Ejzak | Apr 2010 | A1 |
20100100465 | Cooke | Apr 2010 | A1 |
20100103870 | Garcia-Luna-Aceves | Apr 2010 | A1 |
20100124191 | Vos | May 2010 | A1 |
20100125911 | Bhaskaran | May 2010 | A1 |
20100131660 | Dec | May 2010 | A1 |
20100150155 | Napierala | Jun 2010 | A1 |
20100165976 | Khan | Jul 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100169503 | Kollmansberger | Jul 2010 | A1 |
20100180332 | Ben-Yochanan | Jul 2010 | A1 |
20100182995 | Hwang | Jul 2010 | A1 |
20100185753 | Liu | Jul 2010 | A1 |
20100195653 | Jacobson | Aug 2010 | A1 |
20100195654 | Jacobson | Aug 2010 | A1 |
20100195655 | Jacobson | Aug 2010 | A1 |
20100217874 | Anantharaman | Aug 2010 | A1 |
20100232402 | Przybysz | Sep 2010 | A1 |
20100232439 | Dham | Sep 2010 | A1 |
20100235516 | Nakamura | Sep 2010 | A1 |
20100246549 | Zhang | Sep 2010 | A1 |
20100250497 | Redlich | Sep 2010 | A1 |
20100250939 | Adams | Sep 2010 | A1 |
20100268782 | Zombek | Oct 2010 | A1 |
20100272107 | Papp | Oct 2010 | A1 |
20100284309 | Allan | Nov 2010 | A1 |
20100284404 | Gopinath | Nov 2010 | A1 |
20100293293 | Beser | Nov 2010 | A1 |
20100322249 | Thathapudi | Dec 2010 | A1 |
20110013637 | Xue | Jan 2011 | A1 |
20110019674 | Iovanna | Jan 2011 | A1 |
20110022812 | van der Linden et al. | Jan 2011 | A1 |
20110055392 | Shen | Mar 2011 | A1 |
20110055921 | Narayanaswamy | Mar 2011 | A1 |
20110090908 | Jacobson | Apr 2011 | A1 |
20110106755 | Hao | May 2011 | A1 |
20110145597 | Yamaguchi | Jun 2011 | A1 |
20110145858 | Philpott | Jun 2011 | A1 |
20110153840 | Narayana | Jun 2011 | A1 |
20110161408 | Kim | Jun 2011 | A1 |
20110202609 | Chaturvedi | Aug 2011 | A1 |
20110231578 | Nagappan | Sep 2011 | A1 |
20110239256 | Gholmieh | Sep 2011 | A1 |
20110258049 | Ramer | Oct 2011 | A1 |
20110264824 | Venkata Subramanian | Oct 2011 | A1 |
20110265174 | Thornton | Oct 2011 | A1 |
20110271007 | Wang | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110286459 | Rembarz | Nov 2011 | A1 |
20110295783 | Zhao | Dec 2011 | A1 |
20110299454 | Krishnaswamy | Dec 2011 | A1 |
20120011170 | Elad | Jan 2012 | A1 |
20120011551 | Levy | Jan 2012 | A1 |
20120036180 | Thornton | Feb 2012 | A1 |
20120066727 | Nozoe | Mar 2012 | A1 |
20120106339 | Mishra | May 2012 | A1 |
20120114313 | Phillips | May 2012 | A1 |
20120120803 | Farkas | May 2012 | A1 |
20120136676 | Goodall | May 2012 | A1 |
20120136936 | Quintuna | May 2012 | A1 |
20120136945 | Lee | May 2012 | A1 |
20120141093 | Yamaguchi | Jun 2012 | A1 |
20120155464 | Kim | Jun 2012 | A1 |
20120158973 | Jacobson | Jun 2012 | A1 |
20120163373 | Lo | Jun 2012 | A1 |
20120179653 | Araki | Jul 2012 | A1 |
20120197690 | Agulnek | Aug 2012 | A1 |
20120198048 | Ioffe | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120224487 | Hui | Sep 2012 | A1 |
20120257500 | Lynch | Oct 2012 | A1 |
20120284791 | Miller | Nov 2012 | A1 |
20120290669 | Parks | Nov 2012 | A1 |
20120290919 | Melnyk | Nov 2012 | A1 |
20120291102 | Cohen | Nov 2012 | A1 |
20120314580 | Hong | Dec 2012 | A1 |
20120317307 | Ravindran | Dec 2012 | A1 |
20120331112 | Chatani | Dec 2012 | A1 |
20130041982 | Shi | Feb 2013 | A1 |
20130051392 | Filsfils | Feb 2013 | A1 |
20130060962 | Wang | Mar 2013 | A1 |
20130073552 | Rangwala | Mar 2013 | A1 |
20130074155 | Huh | Mar 2013 | A1 |
20130091539 | Khurana | Apr 2013 | A1 |
20130110987 | Kim | May 2013 | A1 |
20130111063 | Lee | May 2013 | A1 |
20130151584 | Westphal | Jun 2013 | A1 |
20130163426 | Beliveau | Jun 2013 | A1 |
20130166668 | Byun | Jun 2013 | A1 |
20130173822 | Hong | Jul 2013 | A1 |
20130182568 | Lee | Jul 2013 | A1 |
20130185406 | Choi | Jul 2013 | A1 |
20130197698 | Shah | Aug 2013 | A1 |
20130198119 | Eberhardt, III | Aug 2013 | A1 |
20130219038 | Lee | Aug 2013 | A1 |
20130219081 | Qian | Aug 2013 | A1 |
20130219478 | Mahamuni | Aug 2013 | A1 |
20130223237 | Hui | Aug 2013 | A1 |
20130227166 | Ravindran | Aug 2013 | A1 |
20130242996 | Varvello | Sep 2013 | A1 |
20130250809 | Hui | Sep 2013 | A1 |
20130282854 | Jang | Oct 2013 | A1 |
20130282860 | Zhang | Oct 2013 | A1 |
20130282920 | Zhang | Oct 2013 | A1 |
20130304937 | Lee | Nov 2013 | A1 |
20130329696 | Xu | Dec 2013 | A1 |
20130336103 | Vasseur | Dec 2013 | A1 |
20130336323 | Srinivasan | Dec 2013 | A1 |
20130343408 | Cook | Dec 2013 | A1 |
20140003232 | Guichard | Jan 2014 | A1 |
20140006565 | Muscariello | Jan 2014 | A1 |
20140029445 | Hui | Jan 2014 | A1 |
20140032714 | Liu | Jan 2014 | A1 |
20140040505 | Barton | Feb 2014 | A1 |
20140074730 | Arensmeier | Mar 2014 | A1 |
20140075567 | Raleigh | Mar 2014 | A1 |
20140082135 | Jung | Mar 2014 | A1 |
20140089454 | Jeon | Mar 2014 | A1 |
20140096249 | Dupont | Apr 2014 | A1 |
20140129736 | Yu | May 2014 | A1 |
20140136814 | Stark | May 2014 | A1 |
20140140348 | Perlman | May 2014 | A1 |
20140143370 | Vilenski | May 2014 | A1 |
20140146819 | Bae | May 2014 | A1 |
20140149733 | Kim | May 2014 | A1 |
20140156396 | deKozan | Jun 2014 | A1 |
20140172783 | Suzuki | Jun 2014 | A1 |
20140172981 | Kim | Jun 2014 | A1 |
20140173034 | Liu | Jun 2014 | A1 |
20140192717 | Liu | Jul 2014 | A1 |
20140195328 | Ferens | Jul 2014 | A1 |
20140195666 | Dumitriu | Jul 2014 | A1 |
20140233575 | Xie | Aug 2014 | A1 |
20140237085 | Park | Aug 2014 | A1 |
20140280823 | Varvello | Sep 2014 | A1 |
20140281489 | Peterka | Sep 2014 | A1 |
20140281505 | Zhang | Sep 2014 | A1 |
20140282816 | Xie | Sep 2014 | A1 |
20140289325 | Solis | Sep 2014 | A1 |
20140289790 | Wilson | Sep 2014 | A1 |
20140314093 | You | Oct 2014 | A1 |
20140365550 | Jang | Dec 2014 | A1 |
20150006896 | Franck | Jan 2015 | A1 |
20150018770 | Baran | Jan 2015 | A1 |
20150032892 | Narayanan | Jan 2015 | A1 |
20150063802 | Bahadur | Mar 2015 | A1 |
20150095481 | Ohnishi | Apr 2015 | A1 |
20150095514 | Yu | Apr 2015 | A1 |
20150188770 | Naiksatam | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
1720277 | Jun 1967 | DE |
19620817 | Nov 1997 | DE |
0295727 | Dec 1988 | EP |
0757065 | Jul 1996 | EP |
1077422 | Feb 2001 | EP |
1384729 | Jan 2004 | EP |
2124415 | Nov 2009 | EP |
2214357 | Aug 2010 | EP |
03005288 | Jan 2003 | WO |
03042254 | May 2003 | WO |
03049369 | Jun 2003 | WO |
03091297 | Nov 2003 | WO |
2007113180 | Oct 2007 | WO |
2007144388 | Dec 2007 | WO |
2011049890 | Apr 2011 | WO |
Entry |
---|
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9. |
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192. |
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering. |
Biradar et al., “Review of multicast routing mechanisms in mobile ad hoc networks”, Aug. 16, Journal of Network$. |
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702. |
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium. |
Hogue et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20. |
lshiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium. |
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012. |
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140. |
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1. |
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009. |
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ACM Transactions on Networking {Feb. 2009). |
B. Lynn$2E. |
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002). |
D. Boneh, C. Gentry, and B. Waters, 'Collusi. |
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001). |
G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved Proxy Reencryption Schemes with Applications to Secure Distributed Storage. In the 12th Annual Network and Distributed System Security Sympo. |
H. Xiong, X. Zhang, W. Zhu, and D. Yao. CloudSeal: End-to$2. |
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334. |
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management using Broadcast Encryption. Proceedings of the IEEE 92.6 (2004). |
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer Sciencevol. 5443 (2009). |
M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. EUROCRYPT 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144. |
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008). |
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf. |
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010). |
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010). |
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf. |
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/. |
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012). |
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012. |
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09. |
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117. |
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171. |
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835. |
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48. |
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015. |
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content—delivery—network&oldid=465077460. |
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital—signature. |
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015. |
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015. |
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015. |
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015. |
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53. |
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999. |
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013. |
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36. |
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53. |
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279. |
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009. |
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014. |
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004. |
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583. |
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013. |
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009. |
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015. |
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015. |
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010. |
Dabirmoghaddam, Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks,’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014. |
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4. |
Dijkstra, Edsger W., Wim HJ Feijen, and A—J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512. |
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006. |
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983. |
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. {Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM. |
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7. |
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737. |
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013. |
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012. |
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989. |
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014. |
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014. |
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011. |
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011. |
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004. |
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995. |
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 {2012). |
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012). |
https://code.google.com/p/ccnx-trace/. |
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91. |
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000. |
J. Aumasson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012. |
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013. |
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843). |
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011. |
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25. |
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187. |
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013. |
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010. |
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093. |
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306. |
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40. |
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20. |
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul 2014. |
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997. |
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737. |
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007. |
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006. |
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221. |
Matted Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012. |
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005). |
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015. |
Narasimhan, Sriram, and Lee Brownston. “HyDE-A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169. |
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015. |
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286. |
P. Mahadevan, E.Uzun, S. Sevilla, and J. Garcia-Luna-Aceves, “CCN-krs: A key resolution service for ccn,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154. |
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988. |
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996. |
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415. |
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149. |
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564. |
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78. |
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9. |
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002. |
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015. |
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005. |
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51. |
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322. |
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29. |
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008. |
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993. |
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988. |
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008. |
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007. |
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98. |
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12. |
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002. |
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999. |
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224. |
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002. |
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003. |
Wang, Jiangzhe et al., “DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56. |
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049. |
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791. |
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67. |
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395. |
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report. |
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73. |
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012. |
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7. |
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011. |
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006. |
Hogue et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13. |
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est. |
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79. |
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142. |
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012. |
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013. |
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012). |
Number | Date | Country | |
---|---|---|---|
20150036535 A1 | Feb 2015 | US |