The present invention relates to content display devices. In particular, but not by way of limitation, the present invention relates to apparatus and methods for managing power on content display devices.
Content display devices such as smartphones, netbooks, gaming devices, PDAs, desktop computers, televisions, and laptop computers are now ubiquitous. A common and ongoing issue with these types of devices is power management. More specifically, these types of devices continue to deliver more advanced processing resources and communication systems that demand more and more power. And in addition, users have become accustomed to using content display devices more often, and grown accustomed to using them more often in connection with web browsing activity.
Display power on a computing device typically represents a significant portion of the overall power dissipation. In connection with traditional displays (e.g., TFT and CSTN displays), attempts have been made (especially in the context of mobile computing devices) to increase the perceived contrast while reducing power that is consumed by the backlight. For example, many techniques have been developed to provide adaptive backlight control that basically reduces the intensity of the backlights without severely impacting the visual quality of the image being displayed.
Display technology, however, is quickly transitioning to light-weight, better-performing, and more energy efficient organic light emitting diode (OLED) displays, which do not use power-intensive backlighting. Nonetheless, OLED displays continue to be a substantial portion of the power that is utilized in a content display device. But existing power management techniques (e.g., backlight management techniques) are not applicable to OLED-type devices, and as a consequence, different techniques are necessary to reduce the power demands of OLED-type displays.
Illustrative embodiments of the present invention that are shown in the drawings are summarized below. These and other embodiments are more fully described in the Detailed Description section. It is to be understood, however, that there is no intention to limit the invention to the forms described in this Summary of the Invention or in the Detailed Description. One skilled in the art can recognize that there are numerous modifications, equivalents, and alternative constructions that fall within the spirit and scope of the invention as expressed in the claims.
In accordance with several embodiments, the invention may be characterized as a method for displaying content that includes darkening a subcomponent with the larger color surface of received content to generate at least one darkened background, and adjusting a contrast of selected subcomponents of the content to enable the selected subcomponents to be viewed against the darkened background while other subcomponents are left in their source format. The darkened background, the selected subcomponents, and the subcomponents that are in their source format are composited into a composite view and then displayed.
Another embodiment of the invention may be characterized as a method for displaying content that includes determining an entire pixel area of a composite view of content, determining a pixel area of nonadjustable subcomponents to obtain a nonadjustable pixel area, and subtracting the nonadjustable pixel area from the entire pixel area to obtain an adjustable pixel area. In addition, an anticipated power load of the adjustable pixel area is determined, and a selected color surface of the content is darkened in response to the anticipated power load exceeding a threshold. In addition, a contrast of selected ones of the subcomponents is adjusted so the subcomponents may be viewed against the darkened color surface. For instance, in a simplified example, black text on a white background may become white text on a black background.
Yet another embodiment of the invention may be characterized as a method for displaying content that includes accessing a color table to retrieve permissible background and foreground color-combination data, darkening a selected color surface, and adjusting the contrast of selected ones of the subcomponents in accord with the permissible background and foreground color-combination data. The selected color-combinations may be dependent on the ambient lighting conditions. For example, in bright sunlight, more intensity and contrast are needed than a typical indoor environment with artificial lighting.
Yet another embodiment of the invention may be characterized as a content display device that includes a rendering component disposed to receive and render web page content that includes a plurality of subcomponents. The device also includes a selective object adjustment component that darkens at least one subcomponent with a larger color surface to generate at least one darkened background and adjust, relative to the at least one background, a contrast of selected ones of the subcomponents so as to enable the selected ones of the subcomponents to be viewed against the darkened subcomponent while leaving others of the plurality of subcomponents in their source format. A composition component composites the darkened subcomponent, the selected ones of the subcomponents, and the subcomponents that are in their source format into a composite view, and the composite view is presented on a display.
Another embodiment of the invention may be characterized as a non-transitory, tangible computer readable storage medium that is encoded with processor readable instructions to perform a method for displaying content. The method includes receiving content that includes a plurality of subcomponents including a subcomponent with a relatively large color surface, and darkening the subcomponent with the relatively large color surface so as to generate at least one darkened background. In addition, a contrast of selected ones of the subcomponents is adjusted so as to enable the selected ones of the subcomponents to be viewed against the darkened subcomponent, and others of the plurality of subcomponents are left in their source format. The darkened subcomponent, the selected ones of the subcomponents, and the subcomponents that are in their source format are composited into a composite view and displayed.
Various objects and advantages and a more complete understanding of the present invention are apparent and more readily appreciated by reference to the following Detailed Description and to the appended claims when taken in conjunction with the accompanying Drawings where like or similar elements are designated with identical reference numerals throughout the several views and wherein:
Referring first to
The depiction of these components is logical and is not intended to be an actual hardware diagram. For example, the division of the browser engine 102 into three components is for exemplary purposes only, and as discussed further herein, each component may be further separated into constituent components, but it should also be recognized that the components may be integrated to such an extent that each component may not be separately recognizable in actual implementation. Moreover, the components may be realized by hardware, software, firmware, or a combination thereof.
The display 112 in this embodiment generally presents dynamic content to a user of the content display device 100 and draws power as a function of the displayed content. For example, the display 112 generally draws less power the darker the content that is being displayed. In other words, the display 112 generally draws more power as the display of content becomes lighter and draws less power as the content that is displayed becomes darker. It should be recognized, however, that the energy savings that is associated with the darkness of the display 112 is not due to backlighting. More specifically, the energy savings associated with darkening the content is derived from the operating characteristics of the individual light emitting components (e.g., organic light emitting diodes) and is not based upon reducing the luminous flux or radiant flux of a backlight.
In several embodiments, the display is realized by organic light-emitting diode (OLED) type technology, but it is contemplated that the selective object adjustment techniques described herein may be utilized in connection with other yet-to-be developed displays that have power load profiles that are similar to OLED displays (e.g., displays without backlights that have power profiles that vary as a function of the content displayed). Moreover, it is contemplated that other adjustments (e.g., to threshold levels discussed further herein) may be made in connection with the methodologies disclosed herein to accommodate variations among displays (e.g., variations in terms of the load characteristics that different types of displays have relative to the colors displayed).
The rendering component 108 generally functions to receive web page content from a web application and transform the received objects into a raster. For example, the rendering component 108 transforms bitmap graphics, vector graphics and text that make up a web page into a raster that can be displayed on screen. A typical web page may have more than 150 objects to render, which may include one or more backgrounds, scripting-language objects (e.g., JavaScript), HTML objects, CSS objects, JPEGs, PNGs, and video objects.
Referring briefly to
In this embodiment, however, the selective object adjustment component 104 darkens one or more subcomponents (e.g., background objects) so that when the web page is displayed (after compositing), the display consumes less power. For example, most often (but not always) web pages (like the web page depicted in
But many foreground objects should not undergo an adjustment because the user's experience would be significantly diminished. For example, inverting or substantially lightening images (e.g., photographs), text boxes, and videos may be especially unappealing to a user. As a consequence, the selective object adjustment component 104 adjusts selected ones of the subcomponents received from the rendering 108 component.
In some embodiments, an assumption is made that a background (e.g., background 760) will generally be lighter than a mid-level gray and objects are adjusted (e.g., inverted) or not based upon object type in advance of any compositing. For example, in some implementations bitmap objects including images (e.g., JPEG, PNG, GIF, TIFF), plug-in-dependent objects (e.g., Flash) and video are not inverted.
And in some variations of these embodiments, an anticipated power load of a web page in its source format is calculated and compared against a threshold level before any adjustments are made to objects. For example, if a web page (in its source format) does not exceed a certain power threshold, it may be assumed that any potential reduction in power that may be attained by darkening a background (and adjusting the contrast of other objects) is not significant enough to warrant the potential unaesthetic effects. By way of further example, if a background is already darker than a mid-level gray, the power load of the displayed webpage may already be near an optimal level—especially when considering desired appearance/aesthetic attributes).
To determine the anticipated power draw of a particular web page in its source format, calibration data (based upon prior power measurements of the display 112 taken in connection with potential color and shade combinations) may be utilized. It is anticipated that the power load profiles of displays are likely to vary from display manufacturer to display manufacturer and from model to model and perhaps even from manufacturing lot to lot; furthermore, the power load profile may not be linear; thus display-specific calibration data may provide a more accurate basis for assessing whether to darken background(s) and lighten foreground objects. Although many examples are provided herein in which a background subcomponent is darkened, in general, a subcomponent with a relatively large color surface (e.g., the largest color surface) may be darkened while other ones of the subcomponents are not darkened. A color surface in this context refers to a subcomponent (e.g., an object) which is visible (not obscured by other objects) and spans a large number of pixels once rendered and composited.
In some variations, to arrive at a more accurate assessment of whether it makes sense to darken the background(s) and adjust foreground objects, the total pixel area of those objects that are nonadjustable (e.g., images and video) is subtracted from the total web page pixel area to arrive at a total adjustable area, and an assessment of only the content in the adjustable area is considered to determine whether darkening the background and adjusting (e.g., lightening) foreground objects in the adjustable area is warranted.
In yet other embodiments, a color table is utilized to arrive at visually acceptable (e.g., subjectively acceptable) combinations of background and foreground object color combinations. In some modes of operation for example, the color table may be accessed to determine whether one or more of the background and foreground object colors may be utilized together to provide an overall darker screen with aesthetically acceptable appearance, given the current ambient lighting conditions.
In some variations, a color table is accessed during composition and after a determination is made to darken background(s) and lighten foreground objects to arrive at an acceptable combination of contrast and/or color combinations. And in yet other variations, the color tables may be utilized in connection with the initial assessment whether or not to adjust the background and foreground objects at all. For example, the potential color combinations that may be utilized may affect the threshold that is utilized in connection with the power profile of the display. More specifically, the color tables may define what adjustments may be made to the objects and; thus may affect whether any power savings may be obtained in view of the color-table constraints. Note that this composition mode can be utilized either when inverting or darkening. In the case of the e-book example, inverting will convert white background to black and black text to white, and this generally produces the largest power savings. However, it also produces the most extreme visual difference from the source, but the visual quality can be enforced by careful consideration of the color tables so the best color font is put on a background with a particular shade of gray, for example. A more subtle approach is simply to slightly darken the light background, for example, from bright white to a pearl white. This doesn't produce the optimum power savings, but it does maintain roughly the same visual experience and still provides some power savings.
It is also contemplated that OEMs, carriers, and device (e.g., smartphone, netbook, laptop, etc) manufacturers may dictate the potential color combinations that may be utilized, and a color table enables the permissible color-combinations to be varied based upon subjective assessments and based upon physical capabilities of particular displays. An example might be in an area where fonts are complex, such as Hindi, Konji or Arabic fonts, the users tend to like a sharper contrast in order to make out the characters more clearly without having to zoom in too much. Additionally, viewing in bright sunlight requires more contrast and intensity than in darker environments, so input from an ambient light sensor is important to adjust the visual quality to the user's environment.
Moreover, all of the previously discussed embodiments may also incorporate a user input that enables a user to configure the selective adjustment of background(s) and foreground objects to their preferences. For example, a user may set the selective object adjustment component 104 to adjust only particular types of subcomponents (e.g., the user may desire that only text objects be adjusted), or the user may set the selective object adjustment component 104 so that, when the availability of power on the mobile computing device falls below a threshold, either default objects are adjusted or user-selected objects are adjusted. Moreover, the user may also select a darkness level that a background defaults to.
Referring next to
As shown, a selective adjustment component 204 in this embodiment is coupled between a display 212 and the rendering component 208, and the selective adjustment component 204 includes an adjustment controller 220 that receives inputs from a page power component 222, a user input 224 and a color table 226, and an ambient light sensor 227. In addition, the adjustment controller 220 receives objects from a render tree 228 and directs whether the objects are adjusted by an adjustment block 230 or passed through to a compositing component 232.
Again, the depicted arrangement of components in
In general, the adjustment controller 220 controls the adjustment of web page objects based upon inputs from the page power component 222, user input 224, and the color tables 226. Although some embodiments (e.g., some of the embodiments discussed with reference to
With respect to the page power component 222, it is generally configured to calculate, based upon the content of each pixel, an anticipated power load of a particular web page if the web page were to be displayed in its source format. Because the power characteristics of the display 212 may vary based upon the manufacturer, resolution, and other factors, the page power component 222 may be calibrated for each platform. For example, calibration data 223 may be gathered in advance of use to determine the power characteristics of the display 212 as a function of the potential color and shade combinations.
Although not required, the page power component 222 in this embodiment is disposed to communicate with a layout portion 234 so that the page power component 222 may calculate the anticipated power of only the area of a web page that is amenable to adjustment. For example, the page power component 222 may subtract the total pixel area of those objects that are nonadjustable from the total web page pixel area to arrive at a total adjustable area, and only the content in the adjustable area is utilized to calculate the anticipated page power. As discussed further herein, the anticipated page power enables a determination to be made as to whether the potential exists to obtain power savings by darkening a background and lightening objects in the foreground of the adjustable area. As a consequence, the adjustment controller 220 may compare the output of the page power component 222 to a threshold to determine whether it makes sense to make any adjustments at all to the adjustable objects.
Although many variations of the page power component 222 provide an indication of an anticipated power load of a given web page, the output 225 of the page power component 222 may vary. For example, the output 225 may be in terms of power (e.g., Watts), Amps, page intensity, or page brightness, but generally these terms are indicative of power, and for simplicity, the output 225 of the page power component 222 is generally discussed herein in terms of power.
When adjustments are made to selected objects, the color table 226 enables the adjustment controller 220 to direct particular adjustments to be made to background objects(s) and foreground objects based upon permissible color-combination data in the color table 226. Although other viable embodiments simply invert one or more backgrounds and invert one or more foreground objects, in the embodiment depicted in
Referring next to
This display portion 312 generally operates to provide a presentation of content to a user, and in several implementations, the display is realized by an OLED display. But it is contemplated that the methodologies and constructs disclosed herein may be used in connection with other types of displays that include discrete pixel-sized light emitting components that draw power as a function of the content that is displayed.
In general, the nonvolatile memory 320 functions to store (e.g., persistently store) data and executable code including code that is associated with the functional components depicted in
In many implementations, the nonvolatile memory 320 is realized by flash memory (e.g., NAND or ONENAND™ memory), but it is certainly contemplated that other memory types may be utilized as well. Although it may be possible to execute the code from the nonvolatile memory 320, the executable code in the nonvolatile memory 320 is typically loaded into RAM 324 and executed by one or more of the N processing components in the processing portion 326.
The N processing components in connection with RAM 324 generally operate to execute the instructions stored in nonvolatile memory 320 to effectuate the functional components depicted in
The depicted transceiver component 328 includes N transceiver chains, which may be used for communicating with external devices via wireless networks. Each of the N transceiver chains may represent a transceiver associated with a particular communication scheme.
Referring next to
As shown in
As shown, if the anticipated consumption does not exceed a threshold, the subcomponents of the web page are left in the source format (Block 408), composited into a web view (Block 410), and the web view is displayed (Block 412). But if the anticipated power consumption exceeds a threshold (Block 404), a subcomponent with a larger color surface than other ones of the subcomponents (e.g., the background or potentially backgrounds) are darkened and other subcomponents are selectively adjusted (e.g., so as to improve the relative contrast between the darkened subcomponent and the other subcomponents)(Block 406), and then the subcomponents are composited into a web view (Block 410), and the web view is displayed (Block 412).
Referring next to
As shown in
Referring next to
In conclusion, embodiments of the present invention reduce power consumption on a content display device by selectively adjusting subcomponents of the content. Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
Number | Name | Date | Kind |
---|---|---|---|
6801811 | Ranganathan | Oct 2004 | B2 |
7002593 | Milch | Feb 2006 | B2 |
7614011 | Karidis | Nov 2009 | B2 |
8091038 | Johnson et al. | Jan 2012 | B1 |
8207934 | Plut | Jun 2012 | B2 |
8385987 | Kim | Feb 2013 | B2 |
8704803 | Koyama | Apr 2014 | B2 |
8957886 | You | Feb 2015 | B2 |
9047835 | Bennett | Jun 2015 | B2 |
20030080967 | Milch | May 2003 | A1 |
20080238837 | Yamaguchi | Oct 2008 | A1 |
20100091029 | Han et al. | Apr 2010 | A1 |
20100149197 | Plut | Jun 2010 | A1 |
20100174930 | Kim et al. | Jul 2010 | A1 |
20110069089 | Kopf et al. | Mar 2011 | A1 |
20120127198 | Gundavarapu | May 2012 | A1 |
Entry |
---|
Dolcera Public Wiki, “OLED Mobile Phone Market Research and Analysis Report,” 2011, retrieved from http://www.dolcera.com/wiki/index.php?title=OLED—Mobile—Phones—Market—Research—and—Analysis—Report. |
Anandtech, “Samsung Galaxy S III—Physical Gallery”, Webpage found at http://www.anandtech.com downloaded Sep. 20, 2012, May 2012, p. 4 Published in: US. |
“D.C.T.W.Y.C.D.T.—Don't Code Today What You Can't Debug Tomorrow”, Blog post found at http://ariya.blogspot.com/2010/10/color-inversion-for-web-pages.html downloaded Oct. 8, 2010, Oct. 6, 2010, p. 7, Published in: US. |
Ranganathan, P., et al., “Energy-Aware User Interfaces and Energy-Adaptive Displays”, Computer—Mar. 2006 Whitepaper downloaded Nov. 25, 2009, Mar. 2006, pp. 31-38, Publisher: IEEE Comp. Soc'y, Published in: US. |
Number | Date | Country | |
---|---|---|---|
20120200587 A1 | Aug 2012 | US |