Referring to
In accordance with the present invention,
The periodic or pulsed discharges from the terminals of electrodes 113 thus electrically stimulate at least specific portions of the cardiac muscle necessary for the targeted chamber(s) of the heart to cooperatively contract and hence pump blood. The specific placement of leads and electrical terminals, as well as the baseline setting of the timing, duration and power of discharges will be set by the physician according to the patient's diagnosis and conditions. Thus, the pacemaker control 114 is generally set at a nominal or baseline conditions for the aforementioned parameters prior to, or at the time of implantation.
The pacemaker 110 includes at least a receiver 116 (and more preferably a transceiver 116′, as shown in
Thus, after the patient has recovered from the implantation surgery (if the pacemaker 110 is internal) when the patient has started to exercise or plans to start to exercise they use the input device 153 to regulate the pacing rate to the most appropriate level. In the case of a non-rate adaptive pacemaker the patient can set a specific pacing rate. In the case of a pacemaker with rate adaptive capabilities, the PIU can be used in multiple ways. These methods include, without limitation, overriding the automatic rate determination function to pace at the nominal fixed rate, or at least a higher, and possibly lower rate.
Alternatively, a rate responsive pacemaker 110 can be normally kept in a constant rate mode, until the patient plans to exercise, at which time they can use the PIU to place the pacemaker in the automatic mode. This method of use avoids the possibility of false readings during most of the day when they are not exercising. Such false readings can occur for example, if a person is sitting in a car which bounces around a lot, as the pacemaker may mistake this movement for an elevated activity level and accelerate the heart rate without need—which may cause the patient physical symptoms such as dizziness etc.
It should be understood that it is intended that the function of the device be limited to acceptable medical practices such that pace rate can only be set with a range having a minimum and maximum value. Such range can be limited by either the pacemaker 110 or the PIU 150. For example, the patient will be prevented from setting a value lower than the normal heart rate or higher that the recommended heart rate for physical activity.
Alternatively, even when the rate responsive pacemaker is in the automatic mode, the PIU can be used to place at least one of upper and lower bounds on the pacing rate that can be changed automatically. For example, if a patient is going to exercise by only moderate bicycle riding, but is concerned that a rough road might give a false positive reading (through excess vibration from the road surface) that they are exercising at a rate that requires a higher demand for oxygen, it would be useful to set an upper limit to the pace rate that is commensurate with intended moderate exercise level.
In any of the above methods of use, the PUI 150 will send a command (preferably wirelessly with an implanted pacemaker) via transmitter 156 to the receiver 116 of the pacemaker 110 to either set a specific rate, enable automatic rate determined pacing and/or set the minimum and maximum parameters for the desired pace rate as may be commensurate with the capabilities of the internal pacemaker control 114 of pacemaker 110.
In step 203, the patient enters the desired heart rate or alternative instruction via PIU 150. The actuation of the patient's determination at this step may be as simply as turning a switch to a graphic indication of the type of exercise they plan to engage in, as the rate or rate limitation may be embodied in a pre-set condition represented by the same switch position.
In step 204, the PIU transmit new rate or an alternative instruction(s) to the pacemaker 110 via transmitter 156. Next, in step 205, pacemaker 110 receives the new rate or the alternative instruction(s) at receiver 116.
Then, in step 206 pacemaker control 114 in response to the information received at receiver 116 increases, decreases or uses instruction to automatically determine rate, as may be subject to a limitation embedded in the pacemaker 110 or sent from PIU 150.
In an alternative embodiment shown in
The computational unit 115, in addition to acquiring the output of sensor 117, also automatically determines the appropriate heart rate. Further, the computational unit 115 may also acquire additional information about the heart rate and the heart electrical activity useful in determining the appropriate power and location of pacing pulses or signal to be applied. Such computational unit may also include operating as a cardioverter, providing defibrillating or other therapeutic shocks to the patient on diagnosis of fibrillation or tachycardia. Thus, the computational unit 115 can automatically determine if the pacing rate should be adjusted upward or downward. The patient interface unit (PIU) 150 also includes a transceiver 156′. The PIU 150 further includes a human interface device 151 that comprises an alerting unit 152 and an input device 153. The alerting unit 152 is preferably non-visual stimulation, such as an audible, vibratory or other tactile alarm, but may also include a visual display interface to alert the patient that the computation unit 114 has detected a condition that under normally recognized medical practices would warrant the a change in the pace rate. While the PIU is preferably external, in other embodiments of the invention the PIU can be an implanted device to provide vibrational or electrical neural stimulation to alert the patient.
In one mode of operation, the pacemaker 110 transmits a warning to the PIU 150 and waits a predetermined time to before changing the pace rate. The PIU receives the warning and communicates it to the patient via the alerting unit 110. If the patient is conscious and has good reason to believe there is no need to increase the pace rate, i.e. the signal for increased/decreased oxygen demand is false, then they have the option of preventing the change in pace rate using the input device 153. The input device is preferably a tactile switch, which when activated by the patient, transmits via transceiver 156′ a signal to the pacemaker 110 directing the override of the pending increase in pace rate. Thus, if the pacemaker 110 receives the override signal within the predetermined time period from sending the warning to the PIU 150, the change in pace rate is cancelled. However, if say the patient is rendered drowsy or unconscious by the cardiac condition recognized by the computation unit as requiring more oxygenated blood, or is otherwise distracted by their actual exercise or exertion, they will either be unable to activate the input device or simply ignore it and will then have their pace rate increased or decreased according to the direction of the computational unit 115.
In the next step 202, depending on the patient's physical condition the computation unit 115 determine automatically that the pace rate of the patient 1 should be increased or decreased to a particular value from the current rate.
Then, in step 203 the pacemaker 110 transmits a warning to the PIU 150 that a change in pace rate is imminent, that is it will be applied within a predetermined period of time if not cancelled by the patient. Step 204 is shown as delaying the change in pace rate by the pacemaker 110 by the predetermined time while awaiting to receive a cancellation signal from the PIU 150 (step 207)
In the next step 205, the warning signal, if any, is received at the PIU transceiver 156′. Then in step 206 the patient 1 if conscious, will be alerted via the alerting unit 152.
If conscious, the patient 1 may then determine that the change in pace is not necessary and does not want their heart rate changed. Thus, using via interface unit 151 the patient 1 will use the input device 153 to cancel the impending change in pace rate. Thereafter in step 207, the PIU then generates and transmits the cancellation signal to the pacemaker device 110.
Then, in step 208 the computational unit 115 determines if the cancellation signal has been detected by the transceiver 116′ during delay time. The alternative outcomes leading to step 209 or 210 respectively are the change in pace rate (step 209) if no cancellation signal is received, and the cancellation of the change in pace rate (step 210) if the cancellation signal is received in step 208.
Other embodiments of the invention include the ability of the patient or clinician to set the predetermined time (in step 204) for future pending changes in pace rate via the PIU 150.
In other embodiments of the invention, it is preferable that at least one of the pacemaker 110 and the PIU 150 can be programmed to limit the override functions under predetermined conditions. For example, under conditions of apparently extreme need for increased blood oxygen that could not possibly be explained as errors or artifacts it would be desirable to immediately change the pace rate of the patient and avoid any delay, whereas for more uncertain or borderline diagnosis it would be preferably to provide the patient the opportunity to override or cancel the change in pace rate as envisioned in steps 203-210 of
In another embodiment of the invention potential modes of using or initializing the PIU 150, such as the delay time or the conditions when the override would not be possible, can only be set by the patient's physician, and not the patient. A more preferred embodiment of the invention may include providing a password or related secured code means for modifying the operational parameters of at least one of the PIU 150 and pacemaker 110 or device 100. In another aspect of the invention, the automatic or alert modality of pacemaker 110, described with respect to
Another aspect of the invention includes providing means to store, which is a data log, the conditions under which changes in pace rate were predicted and applied or cancelled by the patient, including output means for clinician use. Such data logging provides a history of the conditions under which changes pace rate were determined as appropriate by the computational unit 115 and applied or cancelled by the patient 1. Having such a history is expected to allow the physician to more appropriately adjust the automatic diagnostic parameters of the pacemaker 110, such that a lower number of false positive indications of a need for a change in pace rate would occur and need to be canceled or overridden by the patient.
Another preferred aspect of the invention includes the diagnostic function of the pacemaker 150 being automatically responsive to the logged history of the when changes in the pace rate were determined as appropriate by the computational unit 115 and either allowed to be applied or cancelled by the patient 1. That is, the logic control of computation unit 115 “learns” from the patient override history to better distinguish between false positive readings and actual abnormalities that require a change in pace rate.
It will of course be appreciated that when the pacemaker device 110 is internal or implanted in the patient the transmitter, receiver and/or transceiver communication means between the pacemaker 110 and the PIU 150 is preferably wireless, with protocols that might include the Bluetooth standard, and the like.
In another embodiment of the invention, at least one of the pacemaker 110 and the PIU 150 can be programmed with conditions that override or prevent the override functions of steps 203 to 208. Such predetermined conditions to limit the override functions may include frequency of overrides per unit of time (i.e. 1×/3 hours) as well as specific sensor and/or ECG parameters, and the like.
While the invention has been described in connection with a preferred embodiment, it is not intended to limit the scope of the invention to the particular form set forth, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be within the spirit and scope of the invention as defined by the appended claims.
The present application claims priority to the U.S. provisional application for a “Method and Apparatus for Control of Pacemakers” having Ser. No. 60/828,754 filed on Oct. 9, 2006, which is incorporated herein by reference
Number | Date | Country | |
---|---|---|---|
60828754 | Oct 2006 | US |