The present invention relates to work machines, and, more particularly, to a method and apparatus for controlling a hydraulic system of a work machine.
Work machines, such as backhoes, are used in many industries, including the agricultural, construction, and forestry related industries. Typical work machines are employed for performing various heavy tasks, such as moving soil, and lifting and moving bales of hay, pallets, and other heavy items with a hydraulically actuated attachment, such as a bucket. In order to perform work using the attachment, hydraulic cylinders are employed, which are controlled by an operator using control devices, such as joystick levers. Generally, the hydraulic pump employed by work machines is driven by the work machine's engine, and thus, the amount of hydraulic flow deliverable by the hydraulic pump varies with the speed of the engine. In situations where the output of the pump falls below the amount of flow requested by the operator of the work machine, e.g., because engine speed selected by the operator is insufficient for the pump to generate the requested flow, operational difficulties may be encountered. For example instability of the hydraulic system may result, which may adversely affect hydraulic system load handling, and engine recovery and stability.
Hence, it is desirable to be able to control the hydraulic system of a work machine in a manner that promotes stable operation.
The present invention provides a method and apparatus for controlling a hydraulic system.
The invention, in one form thereof, is directed to a method for controlling a hydraulic system. The hydraulic system includes an engine-driven hydraulic pump and a hydraulic valve arrangement. The method includes receiving an operator command signal via an operator command input device; receiving a throttle position signal from a throttle configured for setting a speed of the engine; retrieving from a memory a first predetermined correlation between the operator command signal and a corresponding command flow rate from the hydraulic valve arrangement; retrieving from the memory a second predetermined correlation between the throttle position signal and a corresponding available flow rate from the hydraulic pump; determining the command flow rate based on the first predetermined correlation and the operator command signal; determining the available flow rate based on the second predetermined correlation and the throttle position signal; and providing a control signal to the hydraulic valve arrangement based on the available flow rate and the command flow rate.
The invention, in another form thereof, is directed to a work machine for performing work with an attachment. The work machine includes an engine; a throttle configured to provide a throttle position signal for setting a speed of the engine; a hydraulic system including an engine-driven hydraulic pump and a hydraulic valve arrangement. The hydraulic system is configured to hydraulically actuate the attachment via the hydraulic valve arrangement. The work machine also includes an operator command input device configured to provide an operator command signal for directing a motion of the attachment; and a controller. The controller includes a memory storing a first predetermined correlation between the operator command signal and a corresponding command flow rate from the hydraulic valve arrangement. The memory also stores a second predetermined correlation between the throttle position signal and a corresponding available flow rate from the hydraulic pump. The controller also includes a processing unit communicatively coupled to the memory, the throttle and the operator command input device. The processing unit is configured to execute program instructions to: receive the operator command signal from the operator command input device; receive the throttle position signal from the throttle; retrieve from the memory the first predetermined correlation and the second predetermined correlation; determine the command flow rate based on the first predetermined correlation and the operator command signal; determine the available flow rate based on the second predetermined correlation and the throttle position signal; and provide a control signal to the hydraulic valve arrangement based on the available flow rate and the command flow rate.
The invention, in yet another form thereof, is directed to a controller for controlling a hydraulic system. The hydraulic system includes an engine-driven hydraulic pump and a hydraulic valve arrangement controlled in response to an operator command signal from an operator command input device. The speed of the engine is set based on a throttle position signal from a throttle. The controller includes a memory storing a first predetermined correlation between the operator command signal and a corresponding command flow rate from the hydraulic valve arrangement. The memory also stores a second predetermined correlation between the throttle position signal and a corresponding available flow rate from the hydraulic pump. The controller also includes a processing unit communicatively coupled to the memory, the throttle and the operator command input device. The processing unit is configured to execute program instructions to: receive the operator command signal from the operator command input device; receive the throttle position signal from the throttle; retrieve from the memory the first predetermined correlation and the second predetermined correlation; determine the command flow rate based on the first predetermined correlation and the operator command signal; determine the available flow rate based on the second predetermined correlation and the throttle position signal; and provide a control signal to the hydraulic valve arrangement based on the available flow rate and the command flow rate.
Referring now to
Work machine 10 may include a cab 12, and a work system 14 for operating an attachment 16. Attachment 16 is an interchangeable implement designed for performing particular tasks. In the embodiment of
Cab 12 houses the operator of work machine 10 while operating work machine 10. Located in cab 12 may be a control console 20 for operating work system 14. Control console 20 includes a throttle 22 and an operator command input device 24. Throttle 22 is employed by the operator to set the speed of engine 18, and is configured to provide a throttle position signal accordingly. Operator command input device 24 is configured to provide an operator command signal for directing the motion of attachment 16 based on manual inputs from the operator. As used herein, the term, “command,” pertains to an action sought by the operator to be performed by virtue of the operator's manual input to operator command input device 24, such as the operator moving the joy stick for the purpose of commanding attachment 16 to be raised or lowered to a particular position at a particular speed desired by the operator.
Work system 14 may include a frame 26, and on each side of work machine 10, a boom 28, a boom cylinder 30 and a bucket cylinder 32. Work machine 10 also includes a hydraulic system 34 for providing hydraulic power to operate work system 14.
Boom 28 is pivotably connected to frame 26 at one end, and pivotably connected to attachment 16 at the other end. Boom cylinder 30 is coupled to both frame 26 and boom 28, and via hydraulic power from hydraulic system 34, is used to raise and lower boom 28, and hence attachment 16. Boom cylinder 30 is a double-acting hydraulic cylinder, and is controlled by the operator of work machine 10 using operator command input device 24. Bucket cylinder 32 is coupled to both boom 28 and attachment 16, and via hydraulic power from hydraulic system 34, is used to rotate attachment 16 in a curl rotation direction 36 and in a dump rotation direction 38. Bucket cylinder 32 is a double-acting hydraulic cylinder, and is also controlled by the operator of work machine 10 using operator command input device 24. Rotation of attachment 16 in curl direction 36 results from bucket cylinder 32 extension in curl linear direction 40, and rotation of attachment 16 in dump direction 38 results from bucket cylinder retraction in dump linear direction 42. It will be noted that bucket cylinder 32 is so named because many work machine owners/operators commonly use an attachment 16 in the form of a bucket, as is depicted in
Referring now to
Hydraulic system 34 is configured to, among other things, direct hydraulic flow to boom cylinder 30 and bucket cylinder 32 in response to signals from controller 44. These signals from controller 44 are based on commands from the operator via operator command input device 24 that are received by controller 44. In the present embodiment, operator command input device 24 is a two-axis joy stick, wherein one axis, illustrated in
Hydraulic system 34 includes a variable displacement hydraulic pump 46, such as a swash-plate pump, that is coupled to and driven by engine 18, and a hydraulic valve arrangement 48. Hydraulic system 34 is a pressure compensated load sensing system, and is configured to hydraulically actuate attachment 16 via hydraulic valve arrangement 48. Hydraulic valve arrangement 48 includes a valve module 50 and a valve module 52.
Controller 44 includes a processing unit 54 and a memory 56 communicatively coupled to processing unit 54. Controller 44 is communicatively coupled to valve module 50 via a communications link 58, and is communicatively coupled to valve module 52 via a communications link 60. Controller 44 is communicatively coupled to throttle 22 via a communications link 62, which also communicatively couples throttle 22 to engine 18. Controller 44 is communicatively coupled to operator command input device 24 via communications link 64, which may be capable of transmitting multiple electrical signals to controller 44 in parallel. In the present embodiment, communications links 62 and 64 are control area network (CAN) connection links, although it will be understood that other types of communications links may be employed without departing from the scope of the present invention.
In the present embodiment, processing unit 54 is a microprocessor, and operates by executing program instructions in the form of software stored in memory 56. However, it will be understood that other types of processing elements may be employed in addition to or in place of a microprocessor, without departing from the scope of the present invention. For example, processing unit 54 may take the form of programmable logic circuits or state machines. In addition, it will be understood that other forms of program instructions may also or alternatively be employed, without departing from the scope of the present invention, for example, firmware and/or hardware logic.
Valve module 50 is coupled to boom cylinder 30 via hydraulic lines 66 and 68. Valve module 50 is configured to direct hydraulic flow to extend and retract boom cylinder 30 in order to manipulate attachment 16 by raising and/or lowering boom 28 in response to control signals received from controller 44. Similarly, valve module 52 is coupled to bucket cylinder 32 via hydraulic lines 70 and 72. Valve module 52 is configured to direct hydraulic flow to extend and retract bucket cylinder 32 in order to rotate attachment 16 in response to control signals received from controller 44.
Hydraulic valve arrangement 48 is coupled to pump 46 via hydraulic lines 74, 76 and 78. Hydraulic line 74 is a load sense line, and provides a load sense pressure to pump 46 that is used to control the displacement of pump 46, e.g., by altering a swash-plate angle. Hydraulic line 76 provides pump output pressure and flow to hydraulic valve arrangement 48 for use by valve module 50 and valve module 52. Hydraulic line 78 is a return line that returns hydraulic fluid to pump 46.
Each of valve modules 50 and 52 are post-compensated valve modules, and are configured to mechanically perform flow sharing therebetween, e.g., based on hydraulic pressure. By being “post-compensated,” it will be understood that pressure compensation is based on the pressure balance between load sense pressure and a workport pressure of the valve module. The workport pressure pertains to the pressure of the valve module that is directed to boom cylinder 30 and bucket cylinder 32 via hydraulic lines 66, 68, 70 and 72. With a post-compensated valve module, the pump is responsible for maintaining a pressure differential between pump output pressure and workport pressure. In contrast, pre-compensated valve systems perform pressure compensation based on the pressure balance between pump output pressure and valve workport pressure, and the valve is responsible for maintaining a pressure differential between the pump output pressure and workport pressure. Thus, with pre-compensated valve system, the controller that controls such a valve system performs operations to maintain the pressure differential between the pump output pressure and workport pressure, whereas with post-compensated valve systems, a pressure margin may be “built-in” to the system, without requiring the controller to perform operations to maintain such pressure differential. Because the present embodiment employs a post-compensated valve system, controller 44 is not required to control valve modules 50 and 52 in such a manner as to preserve pressure margin.
In addition, because valve modules 50 and 52 perform mechanical flow sharing, controller 44 is not required to do so, and hence is not configured to perform flow sharing, which may reduce the cost and complexity of controller 44 relative to other controllers that perform flow sharing control. Thus, controller 44 is configured to generate and direct control signals to valve modules 50 and 52 in response to operator command without modifying the operator command signals for purposes of flow sharing.
During normal operations of work machine 10 that require the use of attachment 16, the operator moves throttle 22 to a desired position to control engine 18 speed. The output of throttle 22 is a throttle position signal, which may be expressed as a percentage, and which in the present embodiment varies between 0% and 100% throttle, where 0% throttle is engine 18 idle speed, and where 100% speed is engine 18 maximum continuous speed. The throttle position signal is supplied to engine 18 and controller 44 via communications link 62. In the present embodiment, 0% throttle is 900 rpm, 100% throttle is 2400 rpm, and engine speed varies linearly with throttle position.
With engine 18 speed set at the desired value, the operator may employ operator command input device 24 to direct the operations of attachment 16 by moving the joy stick in one or both of the X and Y axes. Operator command input device 24 generates an operator command signal that is provided to controller 44 via communications link 64. The operator command signal is a signal that is employed by controller 44 as an input from the operator, which is used by controller 44 to generate an output that controls one or both of valve modules 50 and 52 in order to control hydraulic flow in response to operator commands. Controller 44 thus receives the operator command signal, and generates a control signal by processing of the operator command signal into a form suitable for use by valve modules 50 and/or 52, and transmits the control signal (which is thus based on the operator command signal) to one or both of valve modules 50 and 52 to direct hydraulic flow to boom cylinder 30 and bucket cylinder 32, respectively, for performing the desired operations with attachment 16.
The operator command signal includes two components, a first command signal component pertaining to boom cylinder 30 operation, and thus valve module 50, and a second command signal component pertaining to bucket cylinder 32 operation, and thus valve module 52. In the present embodiment, each command signal component is in the form of electrical currents in a range of 0 to approximately 1500 mA. Controller 44 processes the incoming command signals, and provides a control signal having a first control signal component directed to valve module 50 and a second control signal component directed to valve module 52, wherein the first control signal component is based on the first command signal component, and the second control signal component is based on the second command signal component.
Each command signal component and corresponding control signal component is used for directing the operations of one of the valve modules 50 and 52 in the present embodiment. In other embodiments, it is considered that more than two valve modules may be employed in hydraulic valve arrangement 48, and/or that multiple hydraulic valve arrangements, each having one or more valve modules, may be employed without departing from the scope of the present invention. In such cases, a command signal component and its corresponding control signal component may be employed for each valve module.
Referring now to
At step S100, with reference to
Referring now to
At step S102, with reference again to
Referring now to
At step S104, with reference again to
In the present embodiment, the process of generating the first and second correlations and storing them in controller 44 ends at step S104. The presently described method embodiment of the present invention picks back up at step S106, which takes place during normal operations of work machine 10, when the operator of work machine 10 performs work using attachment 16.
At step S106, with reference now to
At step S108, controller 44, in particular processing unit 54, retrieves the first and second predetermined correlations, e.g., correlations 80 and 88, from memory 56 of controller 44.
At step S110, the command flow rate is determined based on the first predetermined correlation and the operator command signal, e.g., correlation 80 and command signal 82. For example, with correlation 80 in the form of a lookup table, the operator command signal 82 may be used as an input to look up the corresponding command flow rate in the lookup table.
At step S112, the available flow rate is determined based on the second predetermined correlation, e.g., correlation 88, and the throttle position signal. For example, with correlation 88 in the form of a lookup table, the throttle position signal may be used as an input to look up the corresponding available flow rate in the lookup table.
At step S114, controller 44 compares the available flow rate and the command flow rate.
At step S116, it is determined whether to modify the operator command signal based on the comparison of the available flow rate and the command flow rate. The operator command signal is modified when command flow rate exceeds the available flow rate, in which case the control signal is based on a modified operator command signal. An unmodified operator command signal is employed when the available flow rate exceeds the command flow rate, e.g., the control signal is based on the original, unmodified operator command signal.
Accordingly, at step S116, if the command flow rate is greater than the available flow rate, process flow is directed to step S118, whereas if the command flow rate is not greater than the available flow rate, process flow is directed to step S122.
At step S118, controller 44 modifies the operator command signal by reducing the magnitude of the commanded flow rate to fall within the available flow rate delivered by pump 46 at the particular engine 18 speed set by throttle 22. The control signal is generated by controller 44 based on the modified operator command signal. In the present embodiment, the modified operator command signal is configured to preserve a predetermined operating margin of hydraulic system 34, and hence, the control signal provided to hydraulic valve arrangement 48 incorporates the predetermined operating margin of hydraulic system 34. The predetermined operating margin pertains to an amount of flow capacity deliverable by pump 46 above that which is delivered by hydraulic valve arrangement 48 to the hydraulic devices operated by hydraulic valve arrangement 48, e.g., boom cylinder 30 and bucket cylinder 32, in response to operator commands.
For example, referring again to
In addition, in the present embodiment, control signal 90 represents the sum of individual control signal components. For example, when the operator of work machine 10 is commanding flow to both boom cylinder 30 and bucket cylinder 32, there are two operator command signal components and two corresponding control signal components. In such a case, one command signal component and one corresponding control signal component are associated with boom cylinder 30, the others are associated with bucket cylinder 32; the sum of the two control signal components is represented by control signal 90. However, it will be understood that each control signal component may be separately processed, without departing from the scope of the present invention, e.g., by making individual determinations between available flow rate and command flow rate pertaining to each command signal component and corresponding control signal component.
Further, in the present embodiment, a proportional relationship as between the first command signal component and the second command signal component is maintained as between the first control signal component and the second control signal component. For example, if the operator command signal includes two components, e.g., an operator command signal component calling for a 20 gpm command flow rate to boom cylinder 30 and an operator command signal component calling for a 10 gpm flow rate to bucket cylinder 32, this would represent a total operator command flow rate of 30 gpm. However, if only 25 gpm were available (including the predetermined operating margin) at the given engine 18 speed, control signal 90 would call for 25 gpm total, and the control signal component pertaining to boom cylinder 30 flow would call for 16.67 gpm, whereas the control signal component pertaining to bucket cylinder 32 would call for 8.33 gpm, thus preserving the proportional relationship between the first command signal component and the second command signal component. Nonetheless, it will be understood that other schemes that do not preserve a proportional relationship may be employed without departing from the scope of the present invention.
At step S120, with reference again to
At step S122, since the command flow rate is not greater than the available flow rate (see step S116) the original, unmodified operator command signal received by controller 44 is employed by controller 44 to generate control signal 90. As set forth above, control signal 90 may be made up of more than one control signal component.
At step S124, controller 44 provides control signal 90 to valve module 50 and/or valve module 52 of hydraulic valve arrangement 48, depending on the command inputs from the operator of work machine 10.
As will be apparent to those skilled in the art, with the present invention, the operator of the work machine may not draw all of the available hydraulic power at a given engine speed, which may enhance the stability of a hydraulic system relative to other hydraulic systems. In addition, adverse impacts on the recovery and stability of the engine, e.g., in response to sudden or unanticipated hydraulic loads, may be reduced relative to other hydraulic systems. In addition, by providing operating margin, adverse impact to the operation of mechanical flow sharing may be avoided, e.g., by not delivering all of the pump 46 flow capacity at a given engine speed. Further, the accuracy of closed loop control features, e.g., parallel lift and anti-spill, may be similarly improved, since an operating margin is provided, which may negate uncontrolled flow starvation to hydraulic system components.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.