N/A
This invention relates generally to video surveillance systems and in particular to methods of controlling video cameras in a video surveillance system.
Coaxitron® (Coaxitron is a registered trademark of Pelco) protocol is a highly effective control method for use with video cameras in video surveillance systems. In this protocol the control signals are transmitted on the same cable, such as a coaxial cable, that is utilized for transmitting the video signal thereby eliminating additional wiring costs and reliability issues. The video signal is generated by a video camera and is transmitted through the cable to a remote controlling device. The remote controlling device receives the video signal generated by the video camera and transmits control signals to the video camera by superimposing the control signals on the vertical blanking interval of the video signal so that there is no effect on the video signal when it is viewed on a monitor. The control signals are received, decoded, and executed by the video camera to effectuate the desired movement, such as panning or tilting of the camera.
Many of today's security installations requiring extremely long cable runs exceed the quality, bandwidth, and distance capabilities of standard RG-59/U coaxial cable where video and control signals start to degrade when transmitted beyond 288 meters. In addition, since the control signals in a Coaxitron protocol system are transmitted to the video camera during a specific time window in the vertical blanking period, the control signals arrive at the video camera outside of the receive time window at distances greater than approximately 288 meters.
Accordingly, there has been a long felt need for a method and system that utilizes the highly effective communication method of Coaxitron protocol at distances that exceed 288 meters.
In accordance with the present invention there is provided an apparatus for controlling a camera in a video surveillance system comprising a camera for providing a video signal having a vertical blanking interval, a controller for controlling the camera, the controller adapted to provide control signals to the camera during a vertical blanking interval in the video signal, a transmission line having a length such that the transmission of a control signal from the controller to the camera will have a propagation delay causing the control signal to arrive at the camera outside of the vertical blanking interval, a first transmitter connected to the camera and the transmission line and a first receiver connected to the controller and the transmission line, the first transmitter providing the video signal to the transmission line and the first receiver receiving the video signal, a second transmitter connected to the controller and the transmission line, the second transmitter providing control signals from the controller to the transmission line such that the control signals do not interfere with the video signal, and a second receiver connected to the camera and the transmission line for receiving the control signals transmitted by the second transmitter, the second receiver detecting a vertical blanking interval in the video signal and providing the control signals from the transmission line to the camera during a vertical blanking interval in the video signal.
In a further aspect of the present invention there is provided a method of controlling a camera in a surveillance system wherein the camera provides a video signal having a vertical blanking interval, the controller provides a control signal to the camera during the vertical interval, and the transmission line between the controller and the camera has a length such that the propagation delay causes the control signal to arrive at the camera outside of the vertical blanking interval. The method comprises the steps of transmitting a video signal over the transmission line from the camera to the controller, providing a control signal to the transmission line during a vertical blanking interval such that the control signal does not interfere with the video signal, receiving the control signal from the transmission line, determining the occurrence of a vertical blanking interval, and providing the control signal to the camera during the vertical blanking interval.
In the present invention, the control signals are stripped, removed, or separated from the video signal at the controller, transmitted as separate data over a fiber optic cable and then synchronized and injected into the video signal at the camera end. Utilizing the present invention allows essentially unlimited transmission distances. In addition, the present invention is compliant with the standards of Coaxitron protocol control because the control signals are transmitted over the same cable as the video, i.e., no add additional wiring is required. The video and the control signals are transmitted at different wavelengths, and the video and control signals can be transmitted over one or two fibers.
Other advantages and applications of the present invention will be made apparent by the following detailed description of the preferred embodiment of the invention.
A basic Coaxitron control system consists of the controller/transmitter, coaxial cable, and receiver. The receiver can be built into the camera or can be a separate unit. The Coaxitron signals are then converted to drive voltages or relay switching for the appropriate accessory equipment controlled. The basic system can be expanded in one of two ways to control multiple camera sites with the addition of switching devices. The first way to control cameras in the multiple camera system is to select the camera signal fed to the controller/transmitter, which then feeds the monitor. When a camera selection is made, that video line is dedicated to the transmitter, which allows the associated Coaxitron receiver to be controlled. The second way in the multiple camera system is not dependent on selecting a camera to a monitor, but to select the camera for control without viewing the video, thus allowing for system level camera site control. When the camera for control selection is made the Coaxitron information is inserted in to the vertical interval without viewing the camera on the monitor, which allows the associated Coaxitron receiver to be controlled.
The control functions operate simultaneously over the same coaxial cable as the video transmission by utilizing the vertical blanking interval, during which control pulses are superimposed upon the normal video signal at a point where it is unnoticeable on the monitor. Thus, the need for additional control cables is eliminated. The basic functional concept of the Coaxitron system is that control pulses are fed in a reverse direction from the controller/transmitter to the receiver located near each camera station. These control pulses do not interfere with the video monitor presentation because they occur during the vertical blanking interval of the video signal.
Exemplary signals at various points in video surveillance system 30 are illustrated in
Referring to
It is to be understood that variations and modifications of the present invention can be made without departing from the scope of the invention. It is also to be understood that the scope of the invention is not to be interpreted as limited to the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing disclosure.
This application claims the benefit of U.S. Provisional Application No. 60/613,191, entitled Transmitting Video Surveillance Control Signals Over a Fiber Optic Link, and filed Sep. 24, 2004. U.S. Provisional Application No. 60/613,191 is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60613191 | Sep 2004 | US |