Claims
- 1. For use in an electrostatographic machine having a plurality of rotatable members, an operational surface associated respectively with each of said plurality of rotatable members, said plurality of rotatable members including a first member having a first operational surface and a second member having a second operational surface, said plurality of rotatable members being in engagement in pressure nips involving the operational surfaces of said plurality of rotatable members, each pressure nip including an engagement between two of said rotatable members, said first member being included in one nip only, and no rotatable member being included in more than two nips, said plurality of rotatable members includes at least one roller, said at least one roller being substantially cylindrical about an axis when not engaged with another rotatable member of said plurality of rotatable members, and a member of said plurality of rotatable members being a driving member causing frictional rotation of all the other rotatable members by a nonslip frictional drive in each of said pressure nips, and an apparatus for controlling a speed ratio between certain of said rotatable members, said apparatus comprising:at least one engagement adjustment device including at least one prime mover to controllably adjust at least one of said pressure nips, wherein said speed ratio, defined as a speed of a first surface portion included in said first operational surface divided by a speed of a second surface portion included in said second operational surface, said first and second surface portions being located where any distortions of said operational surfaces caused by said pressure nips are negligible, is made equal to a predetermined value by activating said at least one engagement adjustment device; wherein said shaft of said at least one roller is adjustable, and a shaft of another rotatable member is non-adjustable, and said at least one engagement adjustment device is activated to controllably adjust engagement in at least one of said pressure nips by adjusting said at least one adjustable shaft to change the distance of separation between said at least one adjustable shaft and said at least one non-adjustable shaft, said shafts being kept parallel to one another upon such adjustment.
- 2. The apparatus of claim 1 wherein said plurality of rotatable members includes at least one roller and a web having the form of an endless loop.
- 3. The apparatus of claim 1 wherein at least one of said rotatable members includes an elastomer.
- 4. The apparatus of claim 3 wherein said elastomer has a Poisson ratio in a range between approximately 0.45 and 0.50.
- 5. The apparatus of claim 1 wherein at least one of said rotatable members includes a resilient foam.
- 6. The apparatus of claim 1 wherein said at least one roller is a fusing roller for a fusing apparatus for fusing a toner image on a receiver member.
- 7. The apparatus of claim 1 wherein said plurality of rotatable members includes a fuser roller and a pressure roller engaged to form a fusing nip, said fuser roller being said first member and said pressure roller being said second member.
- 8. The apparatus of claim 7 wherein each of said fuser roller and said pressure roller includes a coaxial shaft having a first end and a second end, said shafts being mutually parallel and the ends of said shafts projecting respectively from each end of each of said fuser roller and said pressure roller, said ends of said shafts being supported by bearings, wherein said at least one engagement adjustment device is activated to controllably adjust engagement in said fusing nip by moving at least one of said shafts in order to change the distance of separation between said shafts while maintaining said shafts parallel to one another.
- 9. The apparatus of claim 1 wherein said at least one roller is a transfer roller for a transfer apparatus for transferring a toner image from a primary image forming member to a receiver member.
- 10. The apparatus of claim 1 wherein said at least one roller includes at least two rollers each having a respective longitudinally coaxial shaft having a first end and a second end, said shafts being mutually parallel and said ends of said shafts projecting respectively from each end of each of said at least two rollers, said ends of the shafts being supported by bearings.
- 11. The apparatus of claim 10, wherein said bearings supporting each of said non-adjustable longitudinal shafts are fixedly secured to at least one rigid frame portion of said electrostatographic machine, and further wherein said at least one engagement adjustment device includes at least two lever arms for said at least one adjustable shaft, each lever arm having two ends, one end of each lever arm being fixedly secured to a rigid frame portion of the electrostatographic machine and the other end being movable by a prime mover of said at least one engagement adjustment device, each lever arm being attached to a bearing supporting a corresponding end of each of said at least one adjustable shaft at a location part way along the length of said lever arm.
- 12. The apparatus of claim 10, wherein said at least one roller includes a primary image forming member (PIFM) roller having a coaxial first shaft, the PIFM being in a first pressure nip engagement in a first transfer nip with an intermediate transfer roller (ITR) having a coaxial second shaft, the ITR being in a second pressure nip engagement in a second transfer nip with a transfer backup roller (TBR) having a coaxial third shaft, each of said shafts being parallel to each other, and wherein said at least one engagement adjustment device is activated by at least one prime mover to controllably adjust said first and second pressure nip engagements by moving at least one of said adjustable shafts in a direction parallel to the other shafts in order to change a distance of separation between said first and second shafts and between said second and third shafts, thereby increasing an engagement in one of said nips and decreasing an engagement in the other of said nips.
- 13. The apparatus of claim 12 wherein said first shaft, second shaft and third shaft are coplanar.
- 14. The apparatus of claim 12, wherein said second shaft is adjustable and said first and third shafts are non-adjustable, and wherein said PIFM is said first member and said second transfer nip includes a receiver member, which receiver member is said second member, said speed ratio being adjustable to a value of substantially 1.000 by said at least one engagement adjustment device.
- 15. The apparatus of claim 12, wherein said second shaft is non-adjustable and said first and third shafts are adjustable, and wherein said PIFM is said first member and said second transfer nip includes a receiver member, which receiver member is said second member, said speed ratio being adjustable to a value of substantially 1.000 by said at least one engagement adjustment device.
- 16. The apparatus of claim 12, wherein one of said plurality of rotatable members is a transport web in the form of an endless loop, said transport web being captured in a pressure nip formed between said ITM and said TBR, and supported in tension by one or more web-supporting rollers including a driving roller.
- 17. The apparatus of claim 16 wherein said transport web is said second member.
- 18. The apparatus of claim 16 wherein a receiver member is adhered to said transport web and is transported by said transport web though said pressure nip formed between said ITM and said TBR.
- 19. The apparatus of claim 18 wherein said receiver member is said second member.
- 20. The apparatus of claim 12 wherein a receiver member is included in said pressure nip formed between said ITM and said TBR, which receiver member is said second member and said PIFM is said first member.
- 21. The apparatus of claim 1 wherein one of said plurality of rotatable members is an intermediate transfer web.
- 22. The apparatus of claim 1 wherein one of said plurality of rotatable members is a primary imaging web.
- 23. The apparatus of claim 1 wherein said at least one prime mover of said engagement adjustment device includes at least one of a group including screws, cams, differential screws, gears, levers, ratchets, wedges, springs, tensioning members, motors, actuators, piezoelectrics, hydraulics, and pneumatics.
- 24. Apparatus for controlling a speed ratio in a transfer apparatus of an electrostatographic machine including a conformable toner image bearing member (TIBM) roller having a first outer surface, and a transfer backup roller (TBR) relatively movable with respect to said TIBM, said TBR having a second outer surface, associated with said TIBM so as to establish a pressure-generated transfer nip between said TIBM and said TBR, wherein said first outer surface deforms in the nip, one of said TIBM and said TBR being rotated about a first axis of rotation, thereby frictionally rotating the other of said TIBM and said TBR about a second axis of rotation in a nonslip condition of engagement in said nip, comprising:an engagement adjustment device enabling engagement in said pressure-generated transfer nip to be controllably adjusted for relocating one of said first axis and said second axis keeping both axes mutually parallel, in order to change, to a predetermined difference, any difference in speeds between a speed of a first portion of said first outer surface and a speed of a second portion of said second outer surface, said first and second portions being situated away from said pressure-generated transfer nip and located where any distortions caused by said pressure-generated transfer nip are negligible.
- 25. Apparatus for controlling a speed ratio in a transfer apparatus of an electrostatographic machine including a conformable toner image bearing member (TIBM) roller rotatable about a first axis of rotation and having a first outer surface, a transfer backup roller (TBR) relatively movable with respect to said TIBM, said TBR rotatable about a second axis of rotation parallel to said first axis, said TBR associated with said TIBM so as to establish a pressure-generated transfer nip, wherein said first outer surface deforms in said pressure-generated transfer nip, and a transport web, captured in said pressure-generated transfer nip between said TIBM and said TBR, for transporting through said transfer nip a receiver member, having a second outer surface, adhered to said transport web wherein when said transport web is moved through said pressure-generated transfer nip, frictionally causes said TBR and said TIBM to rotate in a nonslip condition of engagement, comprising:an engagement adjustment device enabling engagement in said pressure-generated transfer nip to be controllably adjusted by relocating one of said first axis and said second axis and keeping both axes mutually parallel in order to change, to a predetermined difference, any difference in speeds between a speed of a first portion of said first outer surface and a speed of a second portion of said second outer surface, the first and second portions being situated away from said pressure-generated transfer nip and located where any distortions caused by the nip are negligible.
- 26. In an apparatus having a plurality of image forming modules wherein a plurality of toner images are transferred in register to a receiver member, each module respectively including a rotating generally cylindrical conformable primary image forming member with a respective toner image being formed thereon, a method of controlling a magnitude of a speed ratio comprising the steps of:advancing a receiver member serially into a respective transfer nip with each primary image forming member to transfer a respective toner image formed on each primary image forming member to said receiver member, the generally cylindrical primary image forming member of each module deforming in response to pressure in the respective nip and being in a substantially nonslip condition of engagement with the receiver member in the respective nip; and in each module, adjusting engagement in the respective transfer nip to control, to a same predetermined value in each module, a ratio of a peripheral speed of each respective primary image forming member far from the respective transfer nip, divided by a speed of the receiver in the respective transfer nip.
- 27. In an apparatus having a plurality of image forming modules wherein a plurality of toner images are transferred in register to a receiver member, each module respectively including a primary image forming member and a rotating generally cylindrical conformable intermediate transfer member, respective toner images being formed on each primary image forming member and respectively transferred to each intermediate transfer member in a respective first transfer nip, a method of controlling a magnitude of a speed ratio comprising the steps of:advancing a receiver member serially into a respective second transfer nip with each intermediate transfer member to transfer a respective toner image from each intermediate transfer member to said receiver member, the generally cylindrical intermediate transfer member of each module deforming in response to pressure in the respective second transfer nip and being in a substantially nonslip condition of engagement with the receiver member in the respective second transfer nip; and in each module, adjusting engagement in at least one of the first and second respective transfer nips to control, to a same predetermined value in each module, a ratio of a peripheral speed of each respective intermediate transfer member far from the respective transfer nip, divided by a speed of the receiver in the respective transfer nip, said predetermined value including substantially 1.000.
- 28. Included in an electrostatographic machine, an apparatus for use in controlling a frictional drive, the apparatus comprising:a system of frictionally driven rotatable members including rotating rollers, said rotatable members including at least one conformable member, the rotatable members having respective operational surfaces, the rotational members engaged to establish pressure nips, no rotatable member being engaged in more than two nips, and the rotations of said driven rollers being produced by a driving element which may be a member in frictional driving relation to one of the driven rotatable members; and wherein one of said frictionally driven rotatable members and said driving element is a specified one of said rotatable members, said apparatus including an engagement adjustment device for controllably adjusting at least one engagement of a pressure nip between certain of said rotatable members in order to control a speed ratio to a predetermined value, said speed ratio being a speed of the operational surface of said specified one of said rotatable members far from any nip divided by a speed far from any nip of the operational surface of a member which is not said specified one of said rotatable members.
- 29. The apparatus according to claim 28 wherein two or more pressure nip engagements are adjusted by said engagement adjustment device, and said speed ratio includes substantially 1.000.
- 30. The apparatus according to claim 28 wherein said system of rotatable members is included in a toner fusing station of an electrostatographic machine.
- 31. The apparatus according to claim 28 wherein said system of rotatable members is included in a toner transfer station of an electrostatographic machine.
- 32. The apparatus according to claim 31 wherein said system includes at least two rollers each comprising a coaxial shaft having a first end and a second end, said shafts being mutually parallel and the ends of the shafts projecting from each end of each of said at least two rollers, said ends of the shafts being supported by bearings.
- 33. The apparatus according to claim 32, wherein at least one of said shafts being an adjustable shaft and at least one of said shafts being a non-adjustable shaft, said engagement adjustment device being activated by at least one prime mover to controllably adjust engagement in at least one of said nips by relocating an axis of said at least one adjustable shaft to change at least one distance of separation between said shafts, said shafts being kept parallel to one another during the adjustment.
- 34. The apparatus according to claim 33, wherein said bearings supporting each said adjustable shaft being fixedly secured to at least one rigid frame portion of said electrostatographic machine, and wherein said engagement adjusting device comprises at least two lever arms for said adjusting, each lever arm having two ends, one end of each lever arm being fixedly secured to a rigid frame portion of the electrostatographic machine and the other end being movable by a prime mover, each lever arm being attached at a location part way along the length of the lever arm to a bearing supporting a corresponding end of each of said adjustable shafts.
- 35. The apparatus according to claim 34 wherein said engagement adjustment device includes at least one of a group including screws, cams, differential screws, gears, levers, ratchets, wedges, springs, tensioning members, motors, actuators, piezoelectrics, hydraulics, and pneumatics.
- 36. The apparatus according to claim 34 wherein said prime mover includes a piezoelectric actuator activated by a voltage controlled by a programmable power supply.
- 37. The apparatus according to claim 36 wherein said piezoelectric actuator is used in conjunction with an auxiliary piezoelectric sensor to sense a pressure change produced by a differential overdrive in at least one of said pressure nips, said piezoelectric sensor sandwiched between and attached to both said lever arm and said bearing.
- 38. For use in an electrostatographic machine, an apparatus for adjusting a speed difference between members of a frictionally driven system such that the speed difference is made equal to a predetermined value, said members of said frictionally driven system including a conformable member having a nip relationship with at least one other member, the speed difference adjusting apparatus comprising:a plurality of rotatable members having respective operational surfaces, said plurality of rotatable members including a first member having a first operational surface and a second member having a second operational surface, at least one of said plurality of rotatable members being conformable; a plurality of pressure nips being produced by engagements between said plurality of rotatable members, said first member being included in one nip only, and no rotatable member being included in more than two nips; and at least one engagement adjustment device for activation by at least one prime mover for controllably adjusting at least one said engagements for provision of said speed difference between said first operational surface and said second operational surface, which speed difference being related to locations on said first operational surface and said second operational surface far from any said nips.
- 39. For use in an electrostatographic machine having a plurality of rotatable members, an operational surface associated respectively with each of said plurality of rotatable members at least one of which is conformable, said plurality of rotatable members including a first member having a first operational surface and a second member having a second operational surface, said plurality of rotatable members being in engagement in pressure nips involving the operational surfaces of said plurality of rotatable members, each pressure nip including an engagement between two of said rotatable members, said first member being included in one nip only, and no rotatable member being included in more than two nips, and a member of said plurality of rotatable members being a driving member causing frictional rotation of all the other rotatable members by a nonslip frictional drive in each of said pressure nips, and an apparatus for controlling a speed ratio between certain of said rotatable members, said apparatus comprising:at least one engagement adjustment device including at least one prime mover to controllably adjust at least one of the engagements, wherein said speed ratio, defined as a speed of a first surface portion included in said first operational surface divided by a speed of a second surface portion included in said second operational surface, said first and second surface portions being located where any distortions of said operational surfaces caused by said pressure nips are negligible, is made equal to a predetermined value by activating said at least one engagement adjustment device.
CROSS REFERENCE TO RELATED APPLICATION
This application is related to the following application filed on even date herewith:
U.S. patent application Ser. No. 09/785,853, filed Feb. 16, 2001, entitled METHOD AND APPARATUS FOR USING A CONFORMABLE MEMBER IN A FRICTIONAL DRIVE, in the names of Donald S. Rimai et al.
US Referenced Citations (25)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0 413 941 |
Feb 1991 |
EP |
0 866 385 |
Sep 1998 |
EP |
1156393 |
Apr 2001 |
EP |
04-233557 |
Aug 1992 |
JP |
8-234584 |
Sep 1996 |
JP |