Embodiments of the invention relate to methods and apparatuses for controlling photovoltaic plant output.
Photovoltaic power generation systems convert solar radiation to electrical current using photovoltaic modules. Since direct irradiance (and therefore electrical current output) varies according to the cosine of the angle at which the Sun's rays strike the photovoltaic modules (the “angle of incidence”), in systems where the photovoltaic modules remain in a fixed position, electrical current output rises and falls as Sun travels from the eastern to western horizon. To provide increased (and more consistent) power generation over the course of a day, power generation systems can employ electromechanical solar trackers that change the inclination of photovoltaic modules to maintain a fixed angle of incidence between the Sun and the photovoltaic modules.
Solar trackers typically employ an algorithm that uses the current date and time and the latitude and longitude of the system as inputs to approximate the position of the sun. With the position of the Sun approximated, the photovoltaic modules can be positioned at substantially zero degrees (the optimum angle of incidence) to the Sun. The inclination of the photovoltaic modules may then be adjusted at regular intervals throughout the day so that the angle of incidence remains constant. Simple trackers such as these, however, generally operate without external inputs and thus fail to account for other variables that may effect power generation, such as ambient air temperature or module temperature. The trackers also fail to account for other factors or desired operating characteristics, such as desired plant output. Accordingly, more refined methods of controlling photovoltaic plant output are needed that can emphasize desired operating characteristics, and account for variables besides the approximated position of the Sun.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and which illustrate specific embodiments of the invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to make and use them. It is also understood that structural, logical, or procedural changes may be made to the specific embodiments disclosed herein without departing from the spirit or scope of the invention.
As illustrated in
As illustrated in
Referring again to
The actuator motor 119 is controlled by a controller 111. The controller 111 generates tracking control signals that are sent to the actuator motor 119. The actuator motor 119 advances or retracts screw arm 118 in the direction and the amount indicated by the tracking control signals. In operation, lever arm 117 is actuated (adjusting the inclination of module support 112) as the actuator motor 119 advances or retracts screw arm 118. The controller 111 is thus able to position the module support 112 at any inclination along the module support's 112 path of rotation.
The controller 111, which comprises at least a processor PR and memory M, contains algorithms used to control the inclination of the module support 112 so that the solar module 115 tracks the path of the sun. For example, the controller 111 may contain an algorithm that positions the module support 112 at the first end position 150 at sunrise so that solar modules 115 are pointed at the sun. As the Sun rises in the sky, the controller 111 periodically sends tracking control signals to the actuator motor 119, causing the screw arm 118 to adjust the inclination of the module support 112 so that the module support 112 and the solar module 115 remain pointed at the Sun as the Sun moves across the sky during the day.
It is typically desired to have solar modules 115 pointed directly at the Sun so that the Sun is at an angle of incidence of substantially 0 degrees with the solar module 115. This maximizes the ability of solar modules 115 to generate electrical power from the solar energy under optimum operating conditions (i.e., no clouds). If solar modules 115 are at an inclination such that an angle of incidence of the Sun light is less or greater than zero degrees, solar modules 115 may generate less power and in some cases operate less efficiently. Generally, after the Sun sets, controller 111 sends a tracking control signal to actuator motor 119 to move the module support 112 to a near flat position generally defined as less than 10 degrees tilt so that solar modules 115 are in position for the Sun rise the next morning. It maintains this idle or “stow” position until the next morning when it resumes normal tracking.
As noted earlier, it is typically desired that electromechanical trackers 110 will point solar modules 115 directly at the Sun so that the Sun light has the optimal angle of incidence with the solar modules 115. However, under certain conditions, it may be desired to adjust the inclination of the s solar modules 115 to a less-than-optimal angle of incidence. There are a number of situations where such functionality would be useful.
In addition, this functionality can be desirable to track away from the sun at times to avoid undesirable conditions, such as high module temperature at times of high ambient condition. Thus, in such locations, an angle of incidence that is not otherwise strictly optimal may be desired because it will decrease the operating temperature of solar modules 115. Importantly, every degree centigrade drop in the operating temperature of solar modules 115 provides an approximately one-quarter percent increase in electrical current output.
Other undesirable conditions are open circuit conditions caused by a system disconnection of solar modules 115 from associated inverters that aggregate the electrical energy generated by the solar modules 115. Such disconnections may occur at times where decreased energy output is desired. Since operating solar modules 115 at an angle of incidence that is not strictly optimal decreases output of solar modules 115, instead of disconnecting solar modules 115 from the inverters, solar modules 115 can be positioned so as to generate less overall energy output. Adjusting solar module 115 output in this manner allows management of system conditions where too much solar energy is being generated; this capability to turn down output artificially by effectively turning down irradiance without causing inverter shutdown or solar module 115 disconnection is advantageous in increasing the life of solar modules 115. To permit such functionality, commands to set a desired solar module 115 output can be received at controller 111 from a connected inverter or directly from a power plant control system. The command to set desired solar module 115 output can be based on, among other things, active or reactive power targets set at the inverter or power plant control system.
Another example of beneficial functionality provided by operating the panels at an angle of incidence that is not strictly optimal occurs on cold, clear days where excessive voltage conditions occur or on days of very high irradiance when the inverters which aggregate the electrical energy generated by the solar modules 115 are operating at or near a clipping condition. In such conditions, an angle of incidence that is not strictly optimal decreases overall output of aggregated solar modules 115, thus avoiding inverter clipping conditions.
A further example of a beneficial altered angle of incidence is in the context of cleaning solar modules 115. For instance, upon signaling of approaching inclement weather, controller 111 can position solar modules 115 at a predetermined tracking angle selected to prevent precipitation or cleaning fluids from pooling on the solar modules 115 and optimize module cleansing.
Accordingly,
Once the second angle of incidence is determined in step 503, in step 504 the electromechanical tracker 110 causes solar modules 115 to track a position of the Sun at the second angle of incidence, until such time as a lag or lead cease condition is identified. Such lag or lead cease conditions can include the solar modules 115 temperature returning to a predetermined module temperature range, the solar modules 115 temperature decreasing by a predetermined amount, ambient air temperature being above or below a predetermined ambient air temperature range, ambient air temperature decreasing by a predetermined amount, elapsing a predetermined amount of time or it being a predetermined time of day. Lag or lead cease conditions can also be received from external sources, such as a notification from an inverter electrically connected to the solar module that a clipping condition has ceased, or generated based on elapsed time, or selected to occur at a particular time of day.
The method illustrated in
While several embodiments have been described in detail, it should be readily understood that the invention is not limited to the disclosed embodiments. Rather the embodiments can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described. Although certain features have been described with some embodiments of the carrier, such features can be employed in other embodiments of the carrier as While several embodiments have been described in detail, it should be readily understood that the invention is not limited to the disclosed embodiments. Rather the embodiments can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described. Although certain features have been described with some embodiments of the carrier, such features can be employed in other embodiments of the carrier as well. Accordingly, the invention is not limited by the foregoing description, but is only limited by the scope of the appended claims.