METHOD AND APPARATUS FOR CONTROLLING SIMULATED IN FLIGHT REALISTIC AND NON REALISTIC OBJECT EFFECTS BY SENSING ROTATION OF A HAND-HELD CONTROLLER

Abstract
An intentionally non-realistic video game simulation is provided in which Newtonian Physics may in part be optionally suspended. A truck or other vehicle flying through mid-air with no visible means of adjusting its own pitch and/or velocity may nevertheless adopt an attitude and/or velocity which corresponds to the attitude and/or velocity based on the tilt of a hand-held controller held by a human operator.
Description
TECHNICAL FIELD

The technology herein relates to computer graphics and simulation, and more particularly to methods and apparatus for controlling apparent motion of in-flight objects within a virtual environment. In more detail, the technology herein relates to techniques using a hand-held attitude sensor to provide interesting lift effects to objects in flight. Such objects may include but are not limited to vehicles such as trucks that ordinarily do not fly in the real world.


BACKGROUND AND SUMMARY

Video game enthusiasts have always been fascinated by the “driving game” genre of video games. Broadly speaking, driving games include simulated racing games, aircraft and spacecraft flight simulators and a wide variety of other games and simulations. Such games and simulations often put the game player in control of a virtual vehicle. The user manipulates a joystick, steering wheel, inclinometer or other input device to control the path the virtual vehicle takes through a simulated environment. See for example U.S. Pat. No. 5,059,958 to Jacobs owned by the assignee.


Realistic 3-D graphics and interesting sound effects can make the user feel as if he or she is behind the wheel of a Formula One race car, a dragster, a spacecraft, an aircraft, a bicycle, a boat or jet ski, or any of a wide variety of other vehicles. Although not necessarily technically “driving games,” related games allow the game player to control the path of a game character riding on a skateboard, snow skis, water skis or other moving platforms.


Many such games have attempted to simulate vehicle motion and operation as realistically as possible. Such a realistic approach has been taken to high levels with aircraft, spacecraft and other vehicle simulators, which often accurately model the physics of motion. Sometimes, however, video game players enjoy a more fanciful approach mixing realism with special effects that might not necessarily happen in the real world. For example, some video games have equipped ordinary vehicles with rocket engines, flying capabilities or other special capabilities. Video game players often find it quite interesting to be able to push a button and fire a rocket engine on an ordinary car or truck to achieve a much higher acceleration than might otherwise be possible if a faithfully realistic simulation approach were followed.


While much work has been done in the past, and highly successful driving and other vehicle type games have been developed, video game players are always looking for new and interesting game play effects.


The technology herein provides a vehicle game or simulation feature that may enhance real world physics with fun and interesting new capabilities. In one exemplary illustrative non-limiting implementation, a vehicle such as a car, truck, skateboard or other moving platform is launched into flight through a virtual computer graphics environment. A hand-held sensor at least in part controls the in-flight attitude of the moving platform in a way that in some cases may defy Newtonian Physics—for example, allowing the vehicle to controllably change its attitude and/or velocity while in mid-flight.


In one exemplary illustrative non-limiting implementation, a hand- held controller including internal tilt sensors such as accelerometers is used to control the path the object takes through the virtual environment. Two-handed operation of a hand-held controller may be used to simulate a steering wheel or other control input to control the vehicle's path. Thus, for example, a video game player can move both hands together in a counter-clockwise rotational motion to turn the vehicle to the left. Similarly, when the video game player's hands both move in a clockwise motion, the vehicle path may turn to the right. Controller buttons may be used to control acceleration and deceleration.


In one exemplary illustrative non-limiting implementation, the video game play or simulation allows the vehicle to be launched into mid-air. For example, a truck, snow skis or the like may follow a path over a ramp or jump or drive over a cliff so that it may fly through the air to a destination. During such mid-air flights, the exemplary illustrative non-limiting implementation allows the video game player to affect the attitude and/or velocity of the vehicle in mid-air through additional manipulation of the hand-held controller. In one specific exemplary illustrative non-limiting implementation, when the game player rotates his or her hands toward the body to pitch the controller back toward his or her body, the simulated vehicle shown on the display similarly moves “nose up”. In a similar fashion, the video game player can cause the simulated vehicle to move “nose down” by rotating his or her hands away from the body. Such simulated motion can be provided even though, in one particular non-limiting implementation, the simulated vehicle has no capability to make such movements if the laws of physics were to apply.


Such movement upwards and downwards can be fanciful in that unlike flight simulator games in which the simulated vehicle is a spacecraft or aircraft including attitude controls such as ailerons or steering rockets, the exemplary illustrative non-limiting implementation models the simulated vehicle as a type that in a real world does not have such attitude controls. Accordingly, the resulting visual effect is interesting and fun for the game player to experience. Other exemplary illustrative non-limiting implementations may for example use similar user inputs to fire steering rockets, control aileron positions, etc. to allow the vehicle to change its attitude in a way that would be possible under the laws of physics.


In one exemplary illustrative non-limiting implementation, the system performs a velocity calculation and comparison based at least in part on the velocity the vehicle was traveling before it left the ground. One exemplary illustrative non-limiting implementation computes a new velocity based for example on a function of the old or previous velocity and the amount of tilt, and the vehicle speed can speed up or slow down depending on a comparison between newly calculated and previous velocity. Different constant multiplications or other functions can be used depending on whether tilt is in a forward direction or in a backward direction.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of exemplary illustrative non-limiting implementations will be better and more completely understood by referring to the following detailed description in conjunction with the drawings of which:



FIG. 1 shows an exemplary external view of a non-limiting interactive computer graphics system in the form of a home video game apparatus for executing a game program;



FIG. 2 is a block diagram showing an internal structure of the game apparatus;



FIGS. 3A, 3B and 4 show different views of an exemplary illustrative non-limiting hand-held controller for the video game system of FIG. 1;



FIG. 5 is a block diagram of an exemplary illustrative non-limiting implementation of the hand-held controller;



FIG. 6 shows an exemplary illustrative non-limiting use of a video game system to play a driving game or simulation involving for example a truck;



FIG. 6A graphically shows three degrees of motion;



FIGS. 7A and 7B show an exemplary no tilt scenario;



FIGS. 8A and 8B show an exemplary tilt down scenario;



FIG. 9A and 9B show an exemplary tilt up scenario;



FIG. 10 shows an exemplary illustrative non-limiting software flowchart; and



FIG. 11 is an exemplary illustrative additional non-limiting software flowchart.





DETAILED DESCRIPTION

Techniques described herein can be performed on any type of computer graphics system including a personal computer, a home video game machine, a portable video game machine, a networked server and display, a cellular telephone, a personal digital assistant, or any other type of device or arrangement having computation and graphical display capabilities. One exemplary illustrative non-limiting implementation includes a home video game system such as the Nintendo Wii 3D video game system, a Nintendo DS or other 3D capable interactive computer graphics display system. One exemplary illustrative non-limiting implementation is described below, but other implementations are possible.


Exemplary Video Game Platform


FIG. 1 shows a non-limiting example game system 10 including a game console 100, a television 102 and a controller 107.


Game console 100 executes a game program or other application stored on optical disc 104 inserted into slot 105 formed in housing 110 thereof The result of the execution of the game program or other application is displayed on display 101 of television 102 to which game console 100 is connected by cable 106. Audio associated with the game program or other application is output via speakers 109 of television 102. While an optical disk is shown in FIG. 1 for use in storing video game software, the game program or other application may alternatively or additionally be stored on other storage media such as semiconductor memories, magneto-optical memories, magnetic memories and the like and/or downloaded over a network or by other means.


Controller 107 wirelessly transmits data such as game control data to the game console 100. The game control data may be generated using an operation section of controller 107 having, for example, a plurality of operation buttons, a key, a stick and the like. Controller 107 may also wirelessly receive data transmitted from game console 100. Any one of various wireless protocols such as Bluetooth (registered trademark) may be used for the wireless transmissions between controller 107 and game console 100.


As discussed below, controller 107 also includes an imaging information calculation section for capturing and processing images from light-emitting devices 108a and 108b. Preferably, a center point between light-emitting devices 108a and 108b is aligned with a vertical center line of television 101. The images from light-emitting devices 108a and 108b can be used to determine a direction in which controller 107 is pointing as well as a distance of controller 107 from display 101. By way of example without limitation, light- emitting devices 108a and 108b may be implemented as two LED modules (hereinafter, referred to as “markers”) provided in the vicinity of a display screen of television 102. The markers each output infrared light and the imaging information calculation section of controller 107 detects the light output from the LED modules to determine a direction in which controller 107 is pointing and a distance of controller 107 from display 101 as mentioned above. As will become apparent from the description below, various implementations of the system and method for simulating the striking of an object described herein do not require use such markers.


Although markers 108a and 108b are shown in FIG. 1 as being above television 100, they may also be positioned below television 100 or in other configurations.


With reference to the block diagram of FIG. 2, game console 100 includes a RISC central processing unit (CPU) 204 for executing various types of applications including (but not limited to) video game programs. CPU 204 executes a boot program stored in a boot ROM (not shown) to initialize game console 100 and then executes an application (or applications) stored on optical disc 104 which is inserted in optical disk drive 208. User-accessible eject button 210 provided on housing 110 of game console 100 may be used to eject an optical disk from disk drive 208.


In one example implementation, optical disk drive 208 receives both optical disks of a first type (e.g., of a first size and/or of a first data structure, etc.) containing applications developed for execution by CPU 204 and graphics processor 216 and optical disks of a second type (e.g., of a second size and/or a second data structure) containing applications originally developed for execution by a different CPU and/or graphics processor. For example, the optical disks of the second type may be applications originally developed for the Nintendo GameCube platform.


CPU 204 is connected to system LSI 202 that includes graphics processing unit (GPU) 216 with an associated graphics memory 220, audio digital signal processor (DSP) 218, internal main memory 222 and input/output (10) processor 224.


processor 224 of system LSI 202 is connected to one or more USB ports 226, one or more standard memory card slots (connectors) 228, WiFi module 230, flash memory 232 and wireless controller module 240.


USB ports 226 are used to connect a wide variety of external devices to game console 100. These devices include by way of example without limitation game controllers, keyboards, storage devices such as external hard-disk drives, printers, digital cameras, and the like. USB ports 226 may also be used for wired network (e.g., LAN) connections. In one example implementation, two USB ports 226 are provided.


Standard memory card slots (connectors) 228 are adapted to receive industry-standard-type memory cards (e.g., SD memory cards). In one example implementation, one memory card slot 228 is provided. These memory cards are generally used as data carriers. For example, a player may store game data for a particular game on a memory card and bring the memory card to a friend's house to play the game on the friend's game console. The memory cards may also be used to transfer data between the game console and personal computers, digital cameras, and the like.


WiFi module 230 enables game console 100 to be connected to a wireless access point. The access point may provide internet connectivity for online gaming with players at other locations (with or without voice chat capabilities), as well as web browsing, e-mail, file downloads (including game downloads) and many other types of on-line activities. In some implementations, WiFi module may also be used for communication with other game devices such as suitably-equipped hand-held game devices. Module 230 is referred to herein as “WiFi”, which is generally used in connection with the family of IEEE 802.11 specifications. However, game console 100 may of course alternatively or additionally use wireless modules that conform with other wireless standards.


Flash memory 232 stores, by way of example without limitation, game save data, system files, internal applications for the console and downloaded data (such as games).


Wireless controller module 240 receives signals wirelessly transmitted from one or more controllers 107 and provides these received signals to 10 processor 224. The signals transmitted by controller 107 to wireless controller module 240 may include signals generated by controller 107 itself as well as by other devices that may be connected to controller 107. By way of example, some games may utilize separate right- and left-hand inputs. For such games, another controller (not shown) may be connected to controller 107 and controller 107 could transmit to wireless controller module 240 signals generated by itself and by the other controller.


Wireless controller module 240 may also wirelessly transmit signals to controller 107. By way of example without limitation, controller 107 (and/or another game controller connected thereto) may be provided with vibration circuitry and vibration circuitry control signals may be sent via wireless controller module 240 to control the vibration circuitry. By way of further example without limitation, controller 107 may be provided with (or be connected to) a speaker (not shown) and audio signals for output from this speaker may be wirelessly communicated to controller 107 via wireless controller module 240. By way of still further example without limitation, controller 107 may be provided with (or be connected to) a display device (not shown) and display signals for output from this display device may be wirelessly communicated to controller 107 via wireless controller module 240.


Proprietary memory card slots 246 are adapted to receive proprietary memory cards. In one example implementation, two such slots are provided. These proprietary memory cards have some non-standard feature such as a non-standard connector or a non-standard memory architecture. For example, one or more of the memory card slots 246 may be adapted to receive memory cards developed for the Nintendo GameCube platform. In this case, memory cards inserted in such slots can transfer data from games developed for the GameCube platform. In an example implementation, memory card slots 246 may be used for read-only access to the memory cards inserted therein and limitations may be placed on whether data on these memory cards can be copied or transferred to other storage media such as standard memory cards inserted into slots 228.


One or more controller connectors 244 are adapted for wired connection to respective game controllers. In one example implementation, four such connectors are provided for wired connection to game controllers for the Nintendo GameCube platform. Alternatively, connectors 244 may be connected to respective wireless receivers that receive signals from wireless game controllers. These connectors enable players, among other things, to use controllers for the Nintendo GameCube platform when an optical disk for a game developed for this platform is inserted into optical disk drive 208.


A connector 248 is provided for connecting game console 100 to DC power derived, for example, from an ordinary wall outlet. Of course, the power may be derived from one or more batteries.


GPU 216 performs image processing based on instructions from CPU 204. GPU 216 includes, for example, circuitry for performing calculations necessary for displaying three-dimensional (3D) graphics. GPU 216 performs image processing using graphics memory 220 dedicated for image processing and a part of internal main memory 222. GPU 216 generates image data for output to television 102 by audio/video connector 214 via audio/video IC (interface) 212.


Audio DSP 218 performs audio processing based on instructions from CPU 204. The audio generated by audio DSP 218 is output to television 102 by audio/video connector 214 via audio/video IC 212.


External main memory 206 and internal main memory 222 are storage areas directly accessible by CPU 204. For example, these memories can store an application program such as a game program read from optical disc 104 by the CPU 204, various types of data or the like.


ROM/RTC 238 includes a real-time clock and preferably runs off of an internal battery (not shown) so as to be usable even if no external power is supplied. ROM/RTC 238 also may include a boot ROM and SRAM usable by the console.


Power button 242 is used to power game console 100 on and off. In one example implementation, power button 242 must be depressed for a specified time (e.g., one or two seconds) to turn the consoled off so as to reduce the possibility of inadvertently turn-off. Reset button 244 is used to reset (re-boot) game console 100.


With reference to FIGS. 3 and 4, example controller 107 includes a housing 301 on which operating controls 302a-302h are provided. Housing 301 has a generally parallelepiped shape and is sized to be conveniently holdable in a player's hand. Cross-switch 302a is provided at the center of a forward part of a top surface of the housing 301. Cross-switch 302a is a cross-shaped four-direction push switch which includes operation portions corresponding to the directions designated by the arrows (front, rear, right and left), which are respectively located on cross-shaped projecting portions. A player selects one of the front, rear, right and left directions by pressing one of the operation portions of the cross-switch 302a. By actuating cross-switch 302a, the player can, for example, move a character in different directions in a virtual game world.


Cross-switch 302a is described by way of example and other types of operation sections may be used. By way of example without limitation, a composite switch including a push switch with a ring-shaped four-direction operation section and a center switch may be used. By way of further example without limitation, an inclinable stick projecting from the top surface of housing 301 that outputs signals in accordance with the inclining direction of the stick may be used. By way of still further example without limitation, a horizontally slidable disc-shaped member that outputs signals in accordance with the sliding direction of the disc-shaped member may be used. By way of still further example without limitation, a touch pad may be used. By way of still further example without limitation, separate switches corresponding to at least four directions (e.g., front, rear, right and left) that output respective signals when pressed by a player may be used.


Buttons (or keys) 302b through 302g are provided rearward of cross-switch 302a on the top surface of housing 301. Buttons 302b through 302g are operation devices that output respective signals when a player presses them. For example, buttons 302b through 302d are respectively an “X” button, a “Y” button and a “B” button and buttons 302e through 302g are respectively a select switch, a menu switch and a start switch, for example. Generally, buttons 302b through 302g are assigned various functions in accordance with the application being executed by game console 100. In an exemplary arrangement shown in FIG. 3, buttons 302b through 302d are linearly arranged along a front-to-back centerline of the top surface of housing 301. Buttons 302e through 302g are linearly arranged along a left-to-right line between buttons 302b and 302d. Button 302f may be recessed from a top surface of housing 701 to reduce the possibility of inadvertent pressing by a player grasping controller 107.


Button 302h is provided forward of cross-switch 302a on the top surface of the housing 301. Button 302h is a power switch for remote on-off switching of the power to game console 100. Button 302h may also be recessed from a top surface of housing 301 to reduce the possibility of inadvertent pressing by a player.


A plurality (e.g., four) of LEDs 304 is provided rearward of button 302c on the top surface of housing 301. Controller 107 is assigned a controller type (number) so as to be distinguishable from the other controllers used with game console 100 and LEDs may 304 may be used to provide a player a visual indication of this assigned controller number. For example, when controller 107 transmits signals to wireless controller module 240, one of the plurality of LEDs corresponding to the controller type is lit up.


With reference to FIG. 3B, a recessed portion 308 is formed on a bottom surface of housing 301. Recessed portion 308 is positioned so as to receive an index finger or middle finger of a player holding controller 107. A button 302i is provided on a rear, sloped surface 308a of the recessed portion. Button 302i functions, for example, as an “A” button which can be used, by way of illustration, as a trigger switch in a shooting game.


As shown in FIG. 4, an imaging element 305a is provided on a front surface of controller housing 301. Imaging element 305a is part of an imaging information calculation section of controller 107 that analyzes image data received from markers 108a and 108b. Imaging information calculation section 305 has a maximum sampling period of, for example, about 200 frames/sec., and therefore can trace and analyze even relatively fast motion of controller 107. The techniques described herein of simulating the striking of an object can be achieved without using information from imaging information calculation section 305, and thus further detailed description of the operation of this section is omitted. Additional details may be found in Application Nos. 60/716,937, entitled “VIDEO GAME SYSTEM WITH WIRELESS MODULAR HAND-HELD CONTROLLER,” filed on Sep. 15, 2005; 60/732,648, entitled “INFORMATION PROCESSING PROGRAM,” filed on Nov. 3, 2005; and application number 60/732,649, entitled “INFORMATION PROCESSING SYSTEM AND PROGRAM THEREFOR,” filed on Nov. 3, 2005. The entire contents of each of these applications are incorporated herein.


Connector 303 is provided on a rear surface of controller housing 301. Connector 303 is used to connect devices to controller 107. For example, a second controller of similar or different configuration may be connected to controller 107 via connector 303 in order to allow a player to play games using game control inputs from both hands. Other devices including game controllers for other game consoles, input devices such as keyboards, keypads and touchpads and output devices such as speakers and displays may be connected to controller 107 using connector 303.


For ease of explanation in what follows, a coordinate system for controller 107 will be defined. As shown in FIGS. 3 and 4, a left-handed X, Y, Z coordinate system has been defined for controller 107. Of course, this coordinate system is described by way of example without limitation and the systems and methods described herein are equally applicable when other coordinate systems are used.


As shown in the block diagram of FIG. 5, controller 107 includes a three-axis, linear acceleration sensor 507 that detects linear acceleration in three directions, i.e., the up/down direction (Y-axis), the left/right direction (Z-axis), and the forward/backward direction (X-axis). Alternatively, a two-axis linear accelerometer that only detects linear acceleration along the Y-axis may be used. Generally speaking, the accelerometer arrangement (e.g., three-axis or two-axis) will depend on the type of control signals desired. As a non-limiting example, the three-axis or two-axis linear accelerometer may be of the type available from Analog Devices, Inc. or STMicroelectronics N.V. Preferably, acceleration sensor 507 is an electrostatic capacitance or capacitance-coupling type that is based on silicon micro-machined MEMS (micro-electromechanical systems) technology. However, any other suitable accelerometer technology (e.g., piezoelectric type or piezoresistance type) now existing or later developed may be used to provide three-axis or two-axis linear acceleration sensor 507.


As one skilled in the art understands, linear accelerometers, as used in acceleration sensor 507, are only capable of detecting acceleration along a straight line corresponding to each axis of the acceleration sensor. In other words, the direct output of acceleration sensor 507 is limited to signals indicative of linear acceleration (static or dynamic) along each of the two or three axes thereof. As a result, acceleration sensor 507 cannot directly detect movement along a non-linear (e.g. arcuate) path, rotation, rotational movement, angular displacement, tilt, position, attitude or any other physical characteristic.


However, through additional processing of the linear acceleration signals output from acceleration sensor 507, additional information relating to controller 107 can be inferred or calculated (i.e., determined), as one skilled in the art will readily understand from the description herein. For example, by detecting static, linear acceleration (i.e., gravity), the linear acceleration output of acceleration sensor 507 can be used to determine tilt of the object relative to the gravity vector by correlating tilt angles with detected linear acceleration. In this way, acceleration sensor 507 can be used in combination with micro-computer 502 of controller 107 (or another processor) to determine tilt, attitude or position of controller 107. Similarly, various movements and/or positions of controller 107 can be calculated through processing of the linear acceleration signals generated by acceleration sensor 507 when controller 107 containing acceleration sensor 307 is subjected to dynamic accelerations by, for example, the hand of a user, as will be explained in detail below.


In another embodiment, acceleration sensor 507 may include an embedded signal processor or other type of dedicated processor for performing any desired processing of the acceleration signals output from the accelerometers therein prior to outputting signals to micro-computer 502. For example, the embedded or dedicated processor could convert the detected acceleration signal to a corresponding tilt angle (or other desired parameter) when the acceleration sensor is intended to detect static acceleration (i.e., gravity).


Returning to FIG. 5, image information calculation section 505 of controller 107 includes infrared filter 528, lens 529, imaging element 305a and image processing circuit 530. Infrared filter 528 allows only infrared light to pass therethrough from the light that is incident on the front surface of controller 107. Lens 529 collects and focuses the infrared light from infrared filter 528 on imaging element 305a. Imaging element 305a is a solid-state imaging device such as, for example, a CMOS sensor or a CCD. Imaging element 305a captures images of the infrared light from markers 108a and 108b collected by lens 309. Accordingly, imaging element 305a captures images of only the infrared light that has passed through infrared filter 528 and generates image data based thereon. This image data is processed by image processing circuit 520 which detects an area thereof having high brightness, and, based on this detecting, outputs processing result data representing the detected coordinate position and size of the area to communication section 506. From this information, the direction in which controller 107 is pointing and the distance of controller 107 from display 101 can be determined.


Vibration circuit 512 may also be included in controller 107. Vibration circuit 512 may be, for example, a vibration motor or a solenoid. Controller 107 is vibrated by actuation of the vibration circuit 512 (e.g., in response to signals from game console 100), and the vibration is conveyed to the hand of the player holding controller 107. Thus, a so-called vibration-responsive game may be realized.


As described above, acceleration sensor 507 detects and outputs the acceleration in the form of components of three axial directions of controller 107, i.e., the components of the up-down direction (Z-axis direction), the left-right direction (X-axis direction), and the front-rear direction (the Y-axis direction) of controller 107. Data representing the acceleration as the components of the three axial directions detected by acceleration sensor 507 is output to communication section 506. Based on the acceleration data which is output from acceleration sensor 507, a motion of controller 107 can be determined.


Communication section 506 includes micro-computer 502, memory 503, wireless module 504 and antenna 505. Micro-computer 502 controls wireless module 504 for transmitting and receiving data while using memory 503 as a storage area during processing. Micro-computer 502 is supplied with data including operation signals (e.g., cross-switch, button or key data) from operation section 302, acceleration signals in the three axial directions (X-axis, Y-axis and Z-axis direction acceleration data) from acceleration sensor 507, and processing result data from imaging information calculation section 505. Micro-computer 502 temporarily stores the data supplied thereto in memory 503 as transmission data for transmission to game console 100. The wireless transmission from communication section 506 to game console 100 is performed at a predetermined time interval. Because game processing is generally performed at a cycle of 1/60 sec. (16.7 ms), the wireless transmission is preferably performed at a cycle of a shorter time period. For example, a communication section structured using Bluetooth (registered trademark) technology can have a cycle of 5 ms. At the transmission time, micro-computer 502 outputs the transmission data stored in memory 503 as a series of operation information to wireless module 504. Wireless module 504 uses, for example, Bluetooth (registered trademark) technology to send the operation information from antenna 505 as a carrier wave signal having a specified frequency. Thus, operation signal data from operation section 302, the X-axis, Y-axis and Z-axis direction acceleration data from acceleration sensor 507, and the processing result data from imaging information calculation section 505 are transmitted from controller 107. Game console 100 receives the carrier wave signal and demodulates or decodes the carrier wave signal to obtain the operation information (e.g., the operation signal data, the X-axis, Y-axis and Z-axis direction acceleration data, and the processing result data). Based on this received data and the application currently being executed, CPU 204 of game console 100 performs application processing. If communication section 506 is structured using Bluetooth (registered trademark) technology, controller 107 can also receive data wirelessly transmitted thereto from devices including game console 100.


The exemplary illustrative non-limiting system described above can be used to execute software stored on optical disk 104 or in other memory that controls it to interactive generate displays on display 101 of a progressively deformed object in response to user input provided via controller 107. Exemplary illustrative non-limiting software controlled techniques for generating such displays will now be described.


EXAMPLE VIDEO GAME OR SIMULATION OPERATION


FIG. 6 shows an exemplary illustrative non-limiting use of console 100 and overall video game system to play a driving game or simulation involving for example a truck 502 through a virtual landscape 504. In the exemplary illustrative non-limiting implementation, the video game player P holds hand-held controller 107 sideways in both hands and uses it to simulate a steering wheel. Using the conventional terminology of “pitch,” “yaw” and “roll” where pitch refers to rotation about the X axis, yaw refers to rotation about the Y axis and roll refers to rotation about the Z axis (see FIG. 6A), when game player P uses both hands to change the roll of the hand-held controller 107, the simulated vehicle 502 steers. Thus, for example, if the game player P moves his or her hands such that the left hand moves downwards and the right hand moves upwards (with each hand holding an end of the remote 107), the simulated truck 502 steers to the left. Similarly, if the game player P moves his hands so that the right hand moves downwards and the left hand moves upwards, the simulated truck 502 steers to the right. Such a simulated truck can obey the laws of physics while its wheels are in contact with the ground of virtual landscape 504. Buttons on the controller 107 can be operated by the thumb or thumbs for example to provide acceleration and deceleration or other vehicle effects (e.g., firing rockets, firing weapons, etc).


In exemplary illustrative non-limiting implementation, part of virtual landscape 504 includes opportunities for the simulated truck 502 to fly through the air. For example, the truck may be driven up a ramp or other jump in order to become suspended in mid-air. Or, the truck 502 may drive off a cliff or other sudden drop. Unlike in the real world where a large truck would almost immediately drop due to the force of gravity, the exemplary illustrative non- limiting implementation permits the simulated truck 502 to fly through the air while descending slowly toward the ground. The simulated velocity of the truck as it travels through the air may have a relationship to the truck's velocity before it left the ground in one exemplary illustrative non-limiting implementation.


In an exemplary illustrative non-limiting implementation, the video game player P can exert control over the simulated motion of the vehicle while it is in mid-air. For example, changing the yaw or roll of the hand-held controller 107 can cause the path of truck 502 to steer to the left or right even though the truck is in mid-air and there is no visible or even logical reason why, if the laws of physics were being applied, the truck could be steered in this fashion. In one example non-limiting implementation, only the Roll axis is used for this purpose (it is not possible in some implementations to detect Yaw angles using certain configurations of accelerometers, because the direction of gravity does not change with regard to the controller). Other implementations that use both roll and yaw or just yaw, or pitch in various ways are of course possible.


Under Newtonian Physics, presumably the only way the simulated truck 502 could change its course while in mid-air would be for the truck to apply a force against its environment and for the environment to apply an equal and opposite force against it. Since the video game player P may imagine that he or she is behind the wheel of the simulated truck 502, there is no way in reality using the steering wheel that the truck operator could have much influence over the path the truck takes as if flies through mid-air. The virtual truck 502 can be equipped with rockets, but in the real world the rockets would have to be huge to sustain the truck in flight. However, the exemplary illustrative non-limiting implementation is a video game rather than a close simulation of reality, and therefore the laws of physics can be partially suspended in the interest of fun and excitement.


In one exemplary illustrative non-limiting implementation, the hand-held remote 107 can be moved in another degree of freedom—in this case by changing its pitch. As shown in FIG. 7A, if the video game player P holds hand-held remote 107 in a slightly inclined but relatively natural and level attitude (see FIG. 7B), the simulated truck 502 in mid-air will maintain an attitude that is substantially level. However, if the video game player P tilts the remote 107 forward (thereby establishing a forward pitch), the simulated truck 502 similarly moves to an inclination where the front of the truck faces downward while it is in mid-air (see FIG. 8A). The amount of such a tilt can also affect the velocity the truck 502 travels while it is mid-air. In the exemplary illustrative non-limiting implementation, if the video player P pitches the inclination of remote 107 upwards (see FIG. 9A), the simulated truck 502 will similarly move to an attitude where the front or nose of the truck inclines upwardly while the truck is descending through mid-air—and the amount of such tilt can similarly affect the velocity.



FIG. 10 shows an exemplary illustrative non-limiting software flow of code that may be disposed on the storage device such as an optical disk inserted into console 100 or a flash or other resident or non-resident memory into which software code is downloaded. Referring to FIG. 10, when the simulated truck 502 is in flight, the exemplary illustrative non-limiting implementation causes the console 100 to read the inputs provided by the three axis accelerometer within the hand-held remote 107 (block 1002) to detect controller attitude or inclination. If no controller pitch change is sensed (“no” exit to decision block 1004), control flow returns to block 1002. However, if the console 100 senses that the remote 107 pitch has changed (“yes” exit to decision block 1004), then the console 100 determines whether the current remote attitude is level (as in FIG. 7B), tilted back (as in FIG. 9B), or tilted forward (as in FIG. 8B). The console 100 will, using conventional 3-D transformations well known to those skilled in the art (see for example Foley and Van Dam, Computer Graphics, Principles & Practice (2d Ed. 1990) at Chapter 5, incorporated herein by reference), apply transformations to the model of virtual truck 502 to cause the truck to adopt the same pitch as the hand-held remote 107. An additional bias can be built in if necessary to make level truck attitude (see FIG. 7A) correspond to a slightly upturned hand-held controller attitude (see FIG. 7B). Such processes performed by blocks 1006-1016 may be performed continuously as hand-held controller 107 attitude and pitch changes in order to make the simulated truck 502 follow the attitude of the hand-held controller in real time.



FIG. 11 is a flowchart of an additional exemplary non-limiting implementation of a software flowchart illustrating one way that controller tilt can affect velocity of the truck 502. In the FIG. 11 example, the vehicle typically starts with its wheels on the ground (block 1050) If the vehicle continues to stay in contact with the ground or other suspending surface, the exemplary illustrative non-limiting tilt function is not necessarily activated in one non-limiting implementation (“yes” exit to decision block 1052). If the vehicle has left the ground (“no” exit to decision block 1052), then the velocity of the vehicle before it left the ground or other surface is stored in a variable V0.


If the vehicle remains in the air (“yes” exit to decision block 1056), then V is set to be the current (initial) velocity of the vehicle and the variable t is set to be the forward/backwards tilt of the controller (block 1058). The system then computes a new “mid-air” velocity as a function f of the initial velocity and the amount of tilt. In the exemplary illustrative non-limiting implementation, the function f can be defined differently depending on whether the controller tilt is forward or backward, for example:






f(V0, tback)=V0*kmax






f(V0, tfront)=V0*kmin.


(see block 1058). The exemplary illustrative non-limiting implementation thus applies different constant or non-constant velocity correction factors for forward and backward tilt. Backward tilt of controller 107 can slow the vehicle down, and forward tilt can speed the vehicle up. In another non-limiting example, forward tilt of controller 107 can slow the vehicle down, and backward tilt can speed the vehicle up. These effects can be used for example in conjunction with a constant simulated gravitational force (causing the truck to drop at a constant rate) to permit the player to control where the truck lands. The force of gravity need not be accurate for example rather than 9.81 meters per second some other (e.g., lesser) constant could be used so the truck remains suspended in the air longer than it would in the real world. Other functions, effects and simulations are possible.


In one exemplary illustrative non-limiting implementation, the current vehicle velocity V is compared to the newly computed vehicle velocity V′ (block 1060). If the current velocity is greater than the newly calculated velocity (V>V′), the animation slows down the apparent vehicle velocity (block 1062). The animation speeds up the apparent vehicle velocity if the current velocity is less than the newly calculated velocity (V<V′) (block 1064). Control then returns to decision block 1056 to determine whether the vehicle is still in the air (if so, processing of block 1058 and following is repeated).


Although the exemplary illustrative non-limiting implementation is described in connection with a truck, any type of vehicle or other object could be used. While the simulated truck described above has no visible means of controlling its own attitude, so that the laws of Newtonian Physics will be selectively suspended or not closely modelled, other more accurate models and simulations (e.g., flight simulators of aircraft or spacecraft, flying projectiles such as missiles or balls, etc.) could be modelled and displayed in addition or substitution. While the controller 107 described above senses its orientation and tilt through use of accelerometers, any type of tilt sensing mechanism (e.g., mercury switches as in the above-referenced Jacobs patent, gyroscopes such as single chip micromachined coriolis effect or other types of gyros, variable capacitive or inductive, or any other type of sensing mechanisms capable of directly and/or indirectly sensing rotation, orientation or inclination could be used instead or in addition). While a wireless remote handheld controller that can sense its own orientation is used in the exemplary illustrative non-limiting implementation, other implementations using joysticks, trackballs, mice, 3D input controllers such as the Logitech Magellan, or other input devices are also possible.


While the technology herein has been described in connection with exemplary illustrative non-limiting implementations, the invention is not to be limited by the disclosure. The invention is intended to be defined by the claims and to cover all corresponding and equivalent arrangements whether or not specifically disclosed herein.

Claims
  • 1. A method of manipulating a virtual object, displayed on a display, using at least an input device, comprising: causing said displayed virtual object to break contact with a displayed virtual surface on which said virtual object is primarily designed to travel;determining an input device orientation change; andadjusting said virtual object display at least in part responsively to said determined orientation change.
  • 2. The method of claim 1, further comprising returning said displayed virtual object to contact with said displayed virtual surface at a predetermined rate.
  • 3. The method of claim 2, further comprising varying said predetermined rate based at least in part on said determined orientation change.
  • 4. The method of claim 1, further comprising changing a virtual object traveling direction at least in responsively to said determined orientation change.
  • 5. The method of claim 1, wherein said virtual object is a vehicle.
  • 6. The method of claim 1, wherein said virtual object is a moving platform bearing a game character.
  • 7. The method of claim 1, wherein said virtual object is a game character.
  • 8. The method of claim 1, wherein said virtual surface is a virtual solid surface.
  • 9. The method of claim 1 wherein said virtual surface is a virtual semi-solid surface.
  • 10. The method of claim 1, wherein said virtual surface is a virtual liquid surface.
  • 11. The method of claim 1, wherein said orientation change corresponds to a yaw, a pitch, or a roll.
  • 12. The method of claim 1, wherein said adjusting includes adjusting the attitude of said virtual object.
  • 13. The method of claim 1, further comprising determining an input device neutral orientation corresponding to a virtual object neutral orientation.
  • 14. The method of claim 13, wherein said adjusting includes causing the virtual object to adopt the same orientation away from said virtual object neutral orientation as the input device is oriented away from said input device neutral orientation.
  • 15. The method of claim 1, further comprising: determining if said virtual object is in contact with said virtual surface; andignoring orientation changes other than orientation changes about a single predetermined axis if said virtual object is in contact with said virtual surface.
  • 16. The method of claim 15, wherein said predetermined axis is substantially perpendicular to an upper face of a input device having at least a control button provided thereon.
  • 17. A storage device that stores the following data for use in manipulating a virtual object, displayed on a display, at least in part responsive to an input device: first program instructions for causing said displayed virtual object to break contact with a displayed virtual surface on which said virtual object is primarily designed to travel;second program instructions for determining an input device orientation change; andthird program instructions for adjusting said virtual object display at least in part responsively to a determined orientation change.
  • 18. The storage device of claim 17, further comprising fourth program instructions for returning said virtual object to contact with said displayed virtual surface at a predetermined rate.
  • 19. A game apparatus, provided with at least a display and an input device, comprising: a programmed virtual object first movement process that causes a displayed virtual object to break contact with a displayed virtual surface on which said virtual object is primarily designed to travel;a programmed orientation determination process that determines a change in an input device orientation; anda programmed object adjustment process that adjusts said virtual object display at least in part responsively to a determined orientation change.
  • 20. The apparatus of claim 19, further comprising a programmed virtual object second movement process that causes said virtual object to return to contact with said displayed virtual surface at a predetermined rate.
  • 21. A method of providing driving game play comprising: (a) sensing rotation of a handheld device;(b) steering a virtual vehicle at least in part in response to sensed rotation of said handheld device about a first axis; and(c) controlling the pitch of said virtual vehicle at least in part in response to sensed rotation of said handheld device about a second axis that is substantially orthogonal to said first axis, whereinsaid pitch controlling would at least partially violate Newtonian Physics if said virtual vehicle were a physical vehicle.
  • 22. The method of claim 21 wherein said pitch controlling comprises controlling the pitch of a non-flying vehicle while the vehicle is in mid-air.
  • 23. A method of controlling a virtual object as it moves through free space comprising: (a) instructing a user to hold a bar-shaped device in first and second hands simultaneously;(b) sensing first rotation of said bar-shaped device responsive to up and down motion of said first and second hands;(c) sensing second rotation of said bar-shaped device responsive to forward and backward rotation of said first and second hands;(d) at least in part controlling the path of said virtual object as it moves through a 3D virtual world at least in part in response to said sensed first rotation; and(e) at least in part controlling the tilt of said virtual object in response to said sensed second rotation.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 11/560,495 filed Nov. 16, 2006, which application claims the benefit of priority from provisional application no. 60/826,950 filed Sep. 26, 2006, incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60826950 Sep 2006 US
Continuation in Parts (1)
Number Date Country
Parent 11560495 Nov 2006 US
Child 11736222 US