This invention relates to power amplifiers. In particular, this invention relates to techniques for controlling the output power of power amplifiers.
In some applications utilizing power amplifiers, there is a need to vary the output power delivered to a load. For example, in a cell phone environment, it is desired to vary the output power of the cell phone based on various factors. For example, a base station may dictate the power level at which each cell phone should transmit (based on factors such as the physical distance from the base station, for example).
A standard method of controlling the output power of a power amplifier is to use a voltage regulator to regulate the battery or power supply voltage. Typical approaches to controlling the output power of a power amplifier use an “open loop” or a “closed loop” control technique. Closed loop techniques use an RF sensor, such as a directional coupler, to detect the power amplifier output power. The detected output power is used in a feedback loop to regulate the output power. “Open loop” techniques control the output power by regulating either the power supply voltage or power supply current used by the power amplifier. Open loop techniques are popular since open loop techniques do not have the loss and complexity associated with RF sensor elements.
Open loop techniques have several problems. For example, because output sensing is not used, components using open loop techniques suffer from inaccuracies and part-to-part variations. It would be desirable to use an open loop technique which achieves low thermal and minimal part-to-part variation.
In general, voltage regulation is preferred in an open loop design since voltage regulation does not suffer from the loss associated with a current sensing element, such as resistor R1 in
A circuit of the invention is provided for controlling the output power of a power amplifier comprising: a voltage sensor; a current sensor; and control circuitry coupled to the voltage sensor and the current sensor for controlling the output power of the power amplifier.
Another embodiment of the invention provides a power regulator for use with a power amplifier, the power regulator comprising: a voltage regulator; a current regulator; and control circuitry coupled to the voltage regulator and to the current regulator for regulating the output power of the power amplifier using the voltage regulator and the current regulator.
Another embodiment of the invention provides an integrated circuit comprising: a power amplifier; a voltage sensor; a current sensor; and control circuitry coupled to the voltage sensor and the current sensor for controlling the output power of the power amplifier using information from the voltage and current sensors.
Another embodiment of the invention provides a method of controlling the output power of a power amplifier comprising: providing a voltage regulator; providing a current regulator; and controlling the output power of a power amplifier using the voltage regulator at high power levels and using the current regulator at low power levels.
Another embodiment of the invention provides a method of controlling the output power of a power amplifier comprising: sensing current provided to the power amplifier; sensing voltage provided to the power amplifier; selectively using the sensed current and sensed voltage to control the output power of the power amplifier.
Other objects, features, and advantages of the present invention will be apparent from the accompanying drawings and from the detailed description that follows below.
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
In order to provide a context for understanding this description, the following illustrates an example of a typical application of the present invention. A power amplifier using the power control techniques of the present invention may be used with a wireless transmission system such as a wireless telephone or other device. In a wireless device such as a cellular telephone, the wireless device may include a transceiver, an antenna duplexer, and an antenna. Connected between the transceiver and the antenna duplexer is an RF power amplifier for amplifying signals for transmission via the antenna. In the case of a wireless telephone application, the invention may be applied to GSM, CDMA, PCS, DCS, etc., or other wireless systems. This is just one example of an application of a power amplifier utilizing the present invention. The invention may also be used in any other application requiring a power amplifier.
Generally, the present invention uses a combination of voltage and current regulation to regulate the output power of a power amplifier. In one example, voltage regulation is used at high power levels (i.e., a first output voltage range), while current regulation is used at low power levels (i.e., a second output voltage range).
V3=V1, when V1<V2; and
V3=V2, when V2<V1.
In the circuit shown in
The less than block 116 shown in
The present invention takes advantage of the reliability of voltage regulation at high power levels, and the reliability of current regulation at low power levels.
The present invention may be used in conjunction with any device requiring a regulated power supply, such as power amplifiers. The invention may be implemented in an integrated circuit (e.g., CMOS, etc.) or implemented using discrete components. If desired, the invention can be implemented in the same integrated circuit that contains the device requiring the regulated power (e.g., a power amplifier, etc.).
In the preceding detailed description, the invention is described with reference to specific exemplary embodiments thereof. Various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation of commonly owned U.S. patent application Ser. No. 10/880,962 filed on Jun. 30, 2004, entitled “METHOD AND APPARATUS FOR CONTROLLING THE OUTPUT POWER OF A POWER AMPLIFIER,” (U.S. Pat. No. 7,106,137) which is a continuation of commonly owned U.S. patent application Ser. No. 10/378,779 filed on Mar. 4, 2003, entitled “METHOD AND APPARATUS FOR CONTROLLING THE OUTPUT POWER OF A POWER AMPLIFIER” (U.S. Pat. No. 6,897,730). This application is related to Ser. No. 09/660,123, entitled “POWER AMPLIFIER CIRCUITRY AND METHOD USING AN INDUCTANCE COUPLED TO POWER AMPLIFIER SWITCHING DEVICES”, by Susanne A. Paul et al. (U.S. Pat. No. 6,549,071), which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5142219 | Hsu et al. | Aug 1992 | A |
6081161 | Dacus et al. | Jun 2000 | A |
6137354 | Dacus et al. | Oct 2000 | A |
6566944 | Pehlke et al. | May 2003 | B1 |
6614309 | Pehlke | Sep 2003 | B1 |
6653902 | Bachhuber et al. | Nov 2003 | B1 |
7268621 | Kanoh et al. | Sep 2007 | B2 |
Number | Date | Country |
---|---|---|
WO0048307 | Aug 2000 | WO |
WO02097972 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070063774 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10880962 | Jun 2004 | US |
Child | 11468324 | US | |
Parent | 10378779 | Mar 2003 | US |
Child | 10880962 | US |